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TagSNP selection is an important step in designing case control association studies.
Among selection methods that have proliferated, the ones based on pairwise LD
measurement are attractive for the purpose of designing association studies. The
goal is to minimize the number of markers selected for genotyping in a particular
platform and therefore reduce genotyping cost while simultaneously representing
information provided by all other markers. Depending on the platform, it is also
important to select sets that are robust against occasional genotyping failure. An
array of methods has been proposed to effectively select these tagSNPs using var-
ious criteria. In this study, we extend the algorithms used in FESTA, a computer
program we previously developed for picking tagSNPs using r2 criteria. We ap-
plied FESTA to the HapMap whole chromosome data in two different populations,
and we also performed a power analysis for case-control association studies using
simulated data. FESTA chooses 294322 tagSNPs in the autosomes in the CEPH
samples. The YORUBA samples require 61.5% more tagSNPs than the CEPH
samples. The power study showed that limiting ourselves to only tagSNPs, in-
stead of choosing all SNPs in the interval for an association study, results in a
power loss of only about 5-10%.

1. Introduction

Rapid advancement in genotyping technologies together with the successful

deployment of the International HapMap project 1,2 further popularized the

genome-wide association studies, where a dense set of SNP markers across

the whole genome is assayed to locate a susceptible chromosomal region that

potentially harbors disease predisposing genetic variants. An important

initial step in designing an association study is to choose a set of SNPs to

represent all variants in the genomic regions of interest. Various algorithms

have been proposed for selecting these so called tagSNPs4,5,6,7,8,9,10,11,12,13.

Most of these strategies aim at choosing “haplotype tagging” SNPs, which

are able to capture most of the haplotype diversity, and therefore, could
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potentially capture most of the information for association between a trait

and the marker loci14. Recently, Zhang and Jin15 and Carlson et al.4 in-

troduced a simpler criterion for choosing tagSNPs which is based on the

pairwise LD measure16. These methods search for a small set of SNPs that

are in strong LD (measured through pairwise r2) with all the other SNPs

that are not selected for genotyping. Pairwise r2 is an attractive criterion

for tagSNP selection since it is closely related to statistical power for case

control association studies, where a directly associated SNP is replaced with

an indirectly associated tagSNP17.

In studies conducted in this manuscript, we adopted the newly devel-

oped pairwise LD-based algorithm named Fragmented Exhaustive Search

for TAgSNPs18. FESTA implements a novel partition step to allow com-

prehensive search to be carried out. Therefore, it produces fewer tagSNPs

than the greedy approach. FESTA also incorporates alternative solution

picking according to additional criteria; it can force certain markers in or

out of the tagSNP set; and find double coverage tagSNPs. FESTA readily

identifies equivalent tagSNP sets, so that additional selection criteria can

be incorporated.

We extended the FESTA algorithms by adding a new user-defined cri-

terion, which can be used to pick among the alternative tagSNP sets iden-

tified by FESTA. This added flexibility can be quite useful under some

situations. We also applied FESTA to whole chromosome HapMap data

to identify tagSNPs genome wide. Next, we conducted a simulation study

for power analysis; comparing power of detecting association to the disease

causing variant using tagSNPs chosen by FESTA. We use two benchmarks

to compare the performance of the tagSNPs, (a) all the SNPs in the interval

and (b) the same number of random SNPs in the interval.

2. Methods

2.1. FESTA: Algorithms

In this section, for the sake of completeness, we briefly review the algorithm

implemented in FESTA. The basic idea is to replace a greedy search, where

the most connected markers are added sequentially to the tagSNP set, with

an exhaustive search where all marker combinations are evaluated. In most

settings, our method is guaranteed to find the optimal tagSNP set(s) defined

by the r2 criterion. The details of the FESTA program and the results of

comparison with the greedy approach can be found in Qin et al18.

Define S to be the set of all SNPs in the precinct under consideration.
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Our aim is to find a tagSNP set, denoted by T , a subset of S such that

for all ai not in T , there exists aj in T such that r2(ai, aj) ≥ r0. In our

explanation of the algorithm, we introduce two intermediate SNP sets, P

and Q. The candidate set P contains all the markers that are eligible to

be chosen as tagSNPs and the target set Q contains all the markers that

are yet to be tagged, i.e. no marker in Q is in LD with any tagSNP in T .

Typically, the candidate set P is the complement of the tagSNP set T , and

P = Q. We describe several different algorithms for updating P, Q and T

starting with a greedy approach4. We then outline successive refinements

of a partition and exhaustive search algorithm, designed to allow processing

of very large number of markers. Finally, we discuss enhancements to our

algorithm.

2.1.1. Greedy Approach

The greedy algorithm4 constructs a tagSNP set by adding the most con-

nected marker to the tagSNP set. It then removes the chosen marker and

all connected markers from consideration. This is repeated till there are no

markers to be considered. Though the greedy approach is efficient, it does

not always find the optimal solution18.

2.1.2. Exhaustive Search and Partitioning

An exhaustive search guarantees the minimum tagSNP set. Genome-wide

tagSNP selection requires considering thousands of SNP markers. In these

cases, exhaustive searches can not be directly applied due to prohibitive

computation costs. Here we use the spatial locality property of LD, i.e.

high LD can only be maintained over short distances; therefore we can

decompose the set of markers into disjoint precincts such that no marker

in a precinct is in high LD with any marker outside the precinct.

After the partitioning step, we perform the tagSNP selection within

each precinct using exhaustive search. The result of the greedy algorithm

can be used as an upper bound on the number of tagSNPs required in the

precinct. The detailed algorithm follows;

(1) Apply BFS20 to decompose the entire set of markers into precincts

Si such that strong LD can only be observed within precincts. S =⋃n

i=1
Si, and Si

⋂
Sj = ∅∀i 6= j;

(2) Within each precinct Si, set ki = 1,

a Enumerate all possible ki-marker combinations. Pi = Qi =
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Si. If no such combination can cover the entire precinct, set

ki = ki + 1 and repeat this step;

b Record all tagSNP sets that can cover the precinct. These

form the complete minimum tagSNP sets T
j

i : j = 1, ..., Ji,

where Ji is the number of such minimum tagSNP sets.

(3) Any combination of tagSNP sets identified from all disjoint subsets

forms a tagSNP set for the whole set S, the overall size of such

minimum tagSNP sets is
∑n

i=1
ki, and the total number of minimum

tagSNP sets is
∏n

i=1
Ji.

FESTA uses a hybrid of greedy and exhaustive algorithms to solve

precincts that are not computationally feasible.

In addition to the basic tagSNP selection, we have implemented the

following additional features to assist in tagSNP selection.

(1) Include/Exclude tagSNP markers: As discussed earlier, it may be

important to include/exclude some SNPs in the tagSNP set to re-

duce genotyping cost or ensure genotyping success. Specific SNPs

may be included/excluded from the tagSNP set using the manda-

tory/exclude option in FESTA respectively.

(2) Choosing between alternate solutions based on LD: Exhaustive

search may return more than one tagSNP solution for a given

precinct. All these sets contain the same number of tagSNPs. Three

additional criteria were implemented in FESTA to select one set,

(a) Maximize the average r2 between tagSNPs and the untagged

SNPs they represent; (b) Maximize the lowest r2 between tagSNPs

and the untagged SNPs they represent; (c) Minimize the average r2

among all pairs of tagSNPs;

(3) Double coverage: Current pairwise LD based tagSNP picking al-

gorithms aim to find a tagSNP set such that each SNP marker is

either a tagSNP itself or is in LD with at least one of the tagSNPs.

Random genotyping failure or error on these tagSNPs can result

in loss of power. To be more robust, FESTA implemented a more

stringent criterion requiring that, if possible, every untyped marker

should be in LD with at least two tagSNPs.

2.1.3. Extensions to FESTA

How to choose an optimal set of tagSNPs for genotyping is a practical

problem. Specific issues may arise in various scenarios, therefore it is im-
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perative that the tagSNP selection tool is flexible enough to let the user

impose different optimization rules or apply certain restrictions by them-

selves. One idea is to introduce an additional criteria to constrain all the

available results.

It is common to obtain a large number of tagSNP sets of the same size

using the pairwise LD criterion based tagging tools such as FESTA. To

select a particular tagSNP set for a particular study, additional criteria

need to be introduced to narrow down to the ultimate optimal tagSNP set

according to the study requirement. In addition to the additional criteria

described above which are already implemented in FESTA, we added a

new feature to the FESTA program to allow optimization based on user-

specified ad hoc variables. An example of such a variable is the quality or

design scores of some genotyping platforms such as Illumina. The design

score is a continuous variable, which ranges from 0 to 100, where high scores

indicate higher genotyping success rate. By entering such scores for all the

candidate SNPs, FESTA will to identify the tagSNP set that is optimized

in the sense of high design scores among all the tagSNP sets that have

the same size according to the pairwise r2 criteria alone. By adding this

constraint, genotyping failure rate will be reduced. Another variable that

can be assigned to each SNP is the minor allele frequency (MAF). In this

case FESTA can produce a tagSNP set that maximizes the average MAF

of all tagSNPs.

This additional variable can also be discrete. For example, whether or

not this SNP is in the coding region (cSNP), missense SNP or double hit

SNP can be indicated using this variable. FESTA can then report which

of the tagSNP sets contained the largest number of such desired SNPs.

Another example, some of the markers are “preferred” because they may

have already been typed in earlier rounds of studies. To minimize the cost

of retyping them, an additional indicator variable can be added showing

whether this marker is preferred. Then the tagSNP set containing the

most number of preferred tagSNPs can be selected among all tagSNP sets

picked by pairwise LD criterion alone. In association studies, these practical

constraints can be quite valuable.

2.2. Power Analysis

Similar to the power comparison study21 by Zhang et al., we conducted a

simulation study to assess the power of performing case control association

studies using tagSNPs identified by FESTA.
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2.2.1. Simulation scheme

We first simulated a large number of chromosomes consisting of many con-

secutive SNPs across a 500 kb genomic region using the ‘ms’ program22.

It assumes the standard coalescent approximation to the Wright-Fisher

model. We assume a constant population size, without subpopulation or

gene conversion. We further assume a constant mutation rate throughout

this region. The mutation parameter, θ = 4N0µ, was chosen to be 200,

where N0 is the effective diploid population size, and µ = 10−8 is the neu-

tral mutation rate per site for this segment. The recombination parameter,

ρ = 4N0r was set to 20. Here, r = 10−9 is the probability of recombination

in this interval. A hundred populations each containing 2200 chromosomes

were generated.

After generating the haplotypes, we randomly chose a marker locus as

the disease locus as long as its minor allele frequency was greater than

0.05. The remaining marker loci that had minor allele frequency greater

than 0.05 were also retained.

The tagSNP sets were selected using FESTA. The pairwise LD measure-

ment, r2, was calculated from two marker haplotype frequencies and allele

frequencies calculated from the first 200 chromosomes in each population.

The case control samples were generated using the remaining 2000 chro-

mosomes, where a hypothetical individual was formed by randomly picking

two chromosomes from the pool. The disease status for each hypotheti-

cal individual was determined by the penetrance of the individual’s disease

locus genotype. We assumed the four common disease models: additive,

multiplicative, dominant and recessive. In order to mimic a common dis-

ease, common variant situation, we specified population disease prevalence

to be P = 0.05 and P = 0.1, and the sibling recurrence risk ratio λs
23 was

fixed at 1.02.

The association test is based on the difference in allele frequency be-

tween case individuals and control individuals24. Suppose N is the number

of case/control individuals, ni and mi are the number of allele Ai in case

and control individuals, and pi and qi are the frequency of allele Ai in case

and control individuals respectively. The test statistic is

χ2 =

2∑

i=1

(ni − mi)
2

ni + mi

= 2n

2∑

i=1

(pi − qi)
2

pi + qi

(1)

The above test statistic approximately has a χ2 distribution with 1 degree

of freedom under the null hypothesis of no association. The use of this test
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statistic assumes Hardy-Weinberg Equilibrium25, as shown by Sasieni.

Since there are a large number of marker loci involved, multiple testing

is a critical issue for the performance of association test. Simple adjustment

approaches such as Bonferroni correction do not perform well. An alterna-

tive approach is the permutation test using a Monte Carlo strategy26. The

maximum value of the test statistic from all markers, denoted as χ2
max,

was taken as the test statistic for the association test of the interval. The

same test statistic is also calculated for each of the permuted case control

samples (generated by switching case control labels for randomly picked in-

dividuals). The overall p-value is calculated as the proportion of permuted

case control samples that have higher χ2

max value than the one observed

from the original case control sample.

The following procedure illustrates our simulation scheme:

(1) Generate 100 populations of 2200 chromosomes using ms program.

(2) In each population, use the first 200 chromosomes to calculate the

pairwise r2, and select tagSNPs using the FESTA program. Subse-

quently, generate 500 case and 500 controls by sampling from the

remaining 2000 chromosomes.

(3) Calculate the test statistic χ2

max under three different cases:

a. all SNPs in this segment,

b. only the tagSNPs,

c. the same number of randomly chosen SNPs.

(4) Perform random permutation 100 times within each case control

sample, and calculate the same test statistics χ2
max.

(5) Calculate the overall p-value by determining the proportion of the

permuted samples that have higher test statistics than the ones

observed from the original case control sample.

Since FESTA provides multiple tagSNP sets for each precinct, and thus

for the entire set of markers as well, we chose 3 tagSNP sets, which we used

to calculate the power of the tagSNPs to associate the interval to a disease.

We used the 3 in-built criteria based on LD, described in 2.1.2, to choose

from the alternative solutions. The power of the tagSNPs was reported as

the average power of the 3 chosen solutions.
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3. Results

3.1. Genome wide tagSNP selection

We applied FESTA to pick tagSNPs in the entire human genome using

the HapMap data. Two different populations with African and European

ancestry were used. A minor allele frequency (maf) threshold of 0.05 was

used to prune the SNP map. The total number of SNPs is 742180 in the

CEPH samples (European ancestry) and it is 775420 in the YORUBA sam-

ples (African ancestry). The total number of tagSNPs in autosomes, using

a threshold of r2 = 0.8, identified in the CEPH samples is 294322 and it is

475307 in the YORUBA samples. The YORUBA samples contain almost

61.5% more tagSNPs compared to the CEPH samples. The summary of

percentage of tagSNPs in each chromosome is summarized in table 1. It is

interesting to note that chromosome 19, the most gene-rich of all human

chromosomes, has the largest proportion of tagSNPs in three out of four

cases.

Table 1. Proportions of tagSNPs in 22 human autosomes in 2 populations.

r2 > 0.5 r2 > 0.8

Mean Min Max Mean Min Max

CEPH 0.251 0.178(8) 0.352(19) 0.410 0.312(8) 0.517(19)
YORUBA 0.434 0.335(8) 0.534(19) 0.624 0.514(9) 0.705(16)

The average computation time, in seconds, in the CEPH samples is

603.54 with a minimum of 169.7 (chr 20) and a maximum of 1313.25 (chr

3), whereas in the YORUBA samples, the average computation time is

628.05, with a minimum of 183.87 (chr 19) and a maximum of 1421.15 (chr

8).

Figure 1 shows the proportion of tagSNps selected in the 22 autosomes

in the two populations using the thresholds of r2 = 0.5 and r2 = 0.8.

3.2. Power results

We analyzed the power of the tagSNPs to detect association of a disease

to the interval as mentioned in the previous section. We simulated a 100

populations of 2200 haplotypes each. The number of selected SNPs (MAF

> 0.05) in a population ranges from 236 to 902 with an average of about 584

SNPs per population. The number of tagSNP in a population ranges from

66 to 346, and the average number of tagSNPs selected in a population was

about 162 markers. On average, 28% of SNPs were selected as tagSNPs,
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Figure 1. Proportion of tagSNPs in human autosomes using r2 = 0.5 (black) and
r2 = 0.8 (gray) thresholds.

across the 100 populations. The disease marker had an average MAF of

about 0.216.

Table 2. Power analysis results with disease marker included.

Disease Model Prevalence = 0.05 Prevalence = 0.1

All SNPs TagSNPs Random All SNPs TagSNPs Random

Additive 0.49 0.45 0.407 0.63 0.603 0.563
Multiplicative 0.11 0.11 0.087 0.145 0.1367 0.13
Dominant 0.45 0.42 0.417 0.54 0.547 0.513
Recessive 0.42 0.427 0.407 0.47 0.47 0.437

Table 3. Power analysis results with disease marker excluded.

Disease Model Prevalence = 0.05 Prevalence = 0.1

All SNPs TagSNPs Random All SNPs TagSNPs Random

Additive 0.61 0.603 0.586 0.6 0.6 0.6
Multiplicative 0.1 0.115 0.087 0.15 0.13 0.123
Dominant 0.41 0.39 0.37 0.49 0.4833 0.453
Recessive 0.51 0.49 0.487 0.59 0.58 0.58

We also conducted the power analysis in two ways, by: (i) including the
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disease marker in the set of simulated SNPs and (ii) excluding the disease

marker from the set of simulated SNPs. Exclusion of the disease marker

ensures that none of the sets being analyzed contain the disease marker.

We used a threshold of r2 = 0.8 for FESTA to identify the tagSNPs in both

cases. The results of the simulation study are summarized in tables 2 and 3

given above.

4. Discussion

As can be observed from the results in the above tables, the loss of power is

minimal in the case of tagSNPs selected by the FESTA program. However,

it is higher when using a random set of SNPs to represent the information

in the interval. There is about a 5-10% loss of power when we choose only

tagSNPs instead of all the SNPs in the interval, whereas choosing the same

number of random SNPs results in a power loss of about 20%. With higher

prevalence of the disease, we get better power to associate the interval to

the disease.

We also compared the performance of the algorithm under two other

situations, viz., when the disease marker is central to the interval, i.e. if

we represent the interval as (0, 1), the disease marker lies in the region [0.4

0.6], and when the disease marker is not central to the interval. We find

that a central location of the disease marker favors tagSNPs more heavily

than it does random SNPs. If, however the marker is not centrally located,

random SNPs perform almost as well as tagSNPs; e.g., in the multiplicative

model with P = 0.1, the power of the tagSNPs is about 0.17 whereas the

random SNPs show a power of 0.13 when the disease marker is central;

when the disease marker is not central both the tagSNPs and the random

SNPs exhibit a power of about 0.14.

Our current simulation study is still very limited. More comprehensive

comparison is needed for us to better understand the effect of tagSNPs

under different scenarios.

Pairwise LD is just one criterion for choosing tagSNPs. An interesting

alternative is to consider multipoint LD instead. Since a marker may not be

in high LD with any single marker, but may be correlated well with haplo-

types consisting of multiple linked markers. Therefore, typically multipoint

LD12,27 based tagSNP selection algorithms such as Tagger28 produce fewer

tagSNPs compared to pairwise LD based approaches. However, when con-

ducting association studies using single markers, tagSNPs picked based on

pairwise LD criterion are likely to show better power.
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The extended FESTA program is freely available at

http://www.sph.umich.edu/csg/qin/FESTA.
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