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Postoperative Atrial Fibrillation (PoAF) is the most common arrhythmia after heart 
surgery, and continues to be a major cause of morbidity. Due to the complexity of this 
condition, many genes and/or environmental factors may play a role in susceptibility. 
Previous findings have shown several clinical and genetic risk factors for the 
development of PoAF. The goal of this study was to determine whether interactions 
among candidate genes and a variety of clinical factors are associated with PoAF. We 
applied the Multifactor Dimensionality Reduction (MDR) method to detect interactions in 
a sample of 940 adult subjects undergoing elective procedures of the heart or great 
vessels, requiring general anesthesia and sternotomy or thoracotomy, where 255 
developed PoAF. We took a random sample of controls matched to the 255 AF cases for 
a total sample size of 510 individuals. MDR is a powerful statistical approach used to 
detect gene-gene or gene-environment interactions in the presence or absence of 
statistically detectable main effects in pharmacogenomics studies. We chose 
polymorphisms in three (IL-6, ACE, and ApoE) candidate genes, all previously 
implicated in PoAF risk, and a variety of environmental factors for analysis. We detected 
a single locus effect of IL-6 which is able to correctly predict disease status with 58.8% 
(p<0.001) accuracy. We also detected an interaction between history of AF and length of 
hospital stay that predicted disease status with 68.34% (p<0.001) accuracy. These 
findings demonstrate the utility of novel computational approaches for the detection of 
disease susceptibility genes. While each of these results looks interesting, they only 
explain part of PoAF susceptibility. It will be important to collect a larger set of candidate 
genes and environmental factors to better characterize the development of PoAF. 
Applying this approach, we were able to elucidate potential associations with 
postoperative atrial fibrillation. 

1. Introduction 

Atrial fibrillation (AF) is the most frequent complication after cardiac surgery, 
occurring in 25-40% of patients1-3. It is an abnormal irregular heart rhythm 
whereby electrical signals are generated apparently randomly throughout the 
upper chambers (atria) of the heart.  Its onset leads to a significantly higher risk 
for stroke compared with patients in sinus rhythm and other adverse events4.  In 

 



 

addition, patients who develop PoAF are more likely to have other postoperative 
complications such as peri-operative myocardial infarction, congestive heart 
failure and respiratory failure5. Post-op AF (PoAF) has been associated with 
increased frequency of inotropic and mechanical circulatory support, ventilation 
time4, and increased length of hospital stay. Management strategies have 
focused on reducing PoAF mainly through antiarrhythmic drugs such as beta-
blockers, sotalol, and amiodarone.  These drugs have had some success in 
reducing risk, but are far from universally effective6.   

The mechanism of PoAF is complex and not fully understood, but almost 
certainly multifactorial, involving susceptibility and triggering factors.  
Genomic approaches offer one way of analyzing risk, but a significant challenge 
involves identifying sequence variations associated with increased risk.  In the 
case of rare, Mendelian single-gene disorders such as sickle-cell anemia or 
cystic fibrosis, the genotype to phenotype relationship is often apparent, as 
disease phenotypes can be explicitly attributed to a mutant genotype.  In the 
case of common complex diseases and pharmacological responses, such 
relationships are more difficult to characterize since the phenotype is likely the 
result of many genetic and environmental factors.  In addition, epistasis, or 
gene-gene interaction, is increasingly assumed to play a crucial role in the 
genetic architecture of common diseases7-9 and pharmacological responses10. 

There has been strong evidence for both genetic and environmental risk 
factors contributing to the development of AF11.  The most frequently identified 
risk factors include increased age, valvular heart disease, atrial enlargement, 
preoperative atrial arrhythmias and chronic lung disease12-14.   AF was first 
reported in a familial form in 194315.  More recent studies have indicated a 
genetic susceptibility to disease shown by the fact that parental AF increases the 
risk of AF in their offspring16.  Linkage analysis has indicated a number of 
genetic loci in kindreds with a familial form of AF.  Mutations in three 
potassium channel genes have been identified, each in a single kindred17,18,19.  
Other loci have been implicated, but no disease gene within these regions has 
yet been identified (10q2220; 6q14-1621; 5p1322). Though family studies have 
been successful in demonstrating a genetic component to AF, the familial form 
is uncommon.  It is possible that this is largely a genetic disorder with highly 
variable penetrance.  Association studies of acquired forms of AF have 
identified several candidate genes, but without much replication of results.  One 
report form Japan identified a polymorphism in the ACE gene that confers 
disease risk23.  Also, recently, a small study (110 patients) implicated the –
174C/G polymorphism in the interleukin-6 (IL-6) gene as a risk factor for 
PoAF24.  Earlier reports from our group confirm the association of the IL6 
promoter polymorphism with PoAF25. 



 

 The goal of this study was to determine whether interactions among 
candidate genes and a variety of clinical factors are associated in PoAF risk.  
We selected polymorphisms in six candidate genes, all chosen because of 
previous work implicating them in PoAF risk.  We also chose a variety of 
recognized environmental factors to analyze.   

 For this study, we used Multifactor Dimensionality Reduction (MDR), a 
method for analyzing interactions designed to address many of the limitations of 
traditional methods.  A key problem in traditional parametric methods is that the 
dimensionality involved in the evaluation of combinations of many genetic and 
environmental variables quickly diminishes their usefulness.  Referred to as the 
curse of dimensionality26, as the number of genetic or environmental factors 
increases and the number of possible interactions increases exponentially, many 
contingency table cells will be left with very few, if any, data points.  This can 
result in increased type I errors and parameter estimates with very large standard 
errors27.  Traditional approaches using logistic regression modeling are limited 
in their ability to deal with many factors and simultaneously fail to characterize 
epistasis models in the absence of main effects due to the hierarchical model 
building process28.  This leads to an increase in type II errors and decreased 
power29.  This is particularly a problem with relatively small sample sizes.   

MDR reduces the dimensionality of multilocus data to improve the ability 
to detect genetic combinations that confer disease risk.  MDR pools genotypes 
into “high-risk” and “low-risk” or “response” and “non-response” groups in 
order to reduce multidimensional data into only one dimension.  It is a 
nonparametric method, so no hypothesis concerning the value of any statistical 
parameter is made.  It is also a model free method, so no inheritance model is 
assumed 30. 

MDR has been used to identify higher order interactions in the absence of 
any significant main effects in simulated data.  In addition, MDR has 
demonstrated gene-gene interactions in a variety of different clinical datasets, 
including sporadic breast cancer30, essential hypertension28, type II diabetes31, 
atrial fibrillation32, amyloid polyneuropathy33, and coronary artery 
calcification34.  Studies with simulated data (of multiple models of different 
allele frequencies and heritability) have also shown that MDR has high power to 
identify interactions in the presence of many types of noise commonly found in 
real datasets (including missing data and genotyping error), while errors such as 
heterogeneity (genetic or locus), and phenocopy diminish the power of MDR 35.  
Additionally, theoretical mathematical approaches strongly support the idea that 
MDR is an optimal method to discriminate between clinical endpoints using 
multi-locus genotype data more efficiently than any other method36. 



 

Using MDR, we identified both a genetic effect and an environmental 
interaction that confers increased risk of PoAF.  These findings demonstrate the 
utility of novel computational approaches for the detection of disease 
susceptibility genes and risk factors.   

2. Methods 

2.1. Sample Population 

Since 1999, our group has been enrolling elective cardiac surgery patients into a 
genetic registry to study genetic variables that impact clinical outcomes.  
Following IRB approval and informed consent, we evaluated 940 adult cardiac 
surgery patients in the registry, and determined the following polymorphisms:  -
174G/C of IL-6, angiotensin converting enzyme (ACE) intron 16 
insertion/deletion (I/D) polymorphism, and the apolipoprotein E alleles 2, 3, and 
4.  These loci have been previously identified as genetic risk factors for 
cardiovascular disease24,37-40.  PoAF was defined as having occurred if present 
on either a postoperative ECG or rhythm strip, or documented by at least two of 
the following: progress notes, nursing notes, discharge summary, consultation, 
or change in medication.  Other clinical variables were determined by chart 
review, and are listed in Table 2.  These include clinical variables which have 
previously been associated with PoAF41.  Prophylactic beta blockade was 
defined as receiving beta blockers after surgery but before discharge or onset of 
atrial fibrillation, whichever happened first.  Of the 940 subjects enrolled, 255 
developed PoAF. We took a random sample of 255 controls along with the 255 
AF cases for a total sample size of 510 individuals.  
 

Table 1:  Genetic Parameters Measured in PoAF sample 

Number of IL-6 -174G alleles (0,1,2) 
Number of ACE D alleles 
Number of ApoE2 alleles 
Number of ApoE3 alleles 
Number of ApoE4 alleles 

2.2. Laboratory Techniques 

Genomic DNA was isolated from blood sampled at the time of surgery.  DNA 
processing was performed by the Vanderbilt Center for Human Genetics DNA 
Core Laboratory using Puregene (Gentra Systems).  ACE insertion/deletion 
polymorphism was determined by amplification of intron 16 and agarose gel 
fragment size determination, similar to that of Perticone et al42.  The ABI Prism 
7900HT Sequence Detection System (Applied Biosystems) was used for 



 

genotyping the IL-6 -174G/C and Apolipoprotein E (ApoE) alleles. This system 
utilized the 5’ nuclease allelic discrimination Taqman assay in a 384-well 
format, a fluorescent method similar to that of MacLeod et al43.   
 

Table 2: Clinical Parameters: 

Patient demographics 
Gender Age Ethnicity  

Surgical procedure 
Valve operation Coronary bypass 

operation 
Non-coronary, non-

valve operation 
Open chamber 

procedures 
Duration of 

cardiopulmonary 
bypass 

Offpump procedures Repeat sternotomy  

Preoperative medications 
Aspirin Corticosteroids Nonsteroidal anti-

inflammatory drugs 
Alpha-2 

antagonists 
Beta-blockers ACE inhibitors Antilipid drugs Calcium 

antagonists 
Diuretics Inotropes   

Medical history 
Hypertension Diabetes Preoperative tobacco 

history 
Left ventricular 
ejection fraction 

Preoperative use of 
intra-aortic balloon 

pump 

History of congestive 
heart failure 

Atrial fibrillation at time 
of surgery 

History of atrial 
fibrillation 

Postoperative events 
Reoperation for 

bleeding 
Death during 

hospitalization 
Use of intra-aortic 

balloon pump 
New neurologic 

deficit 
Use of prophylactic 

beta blockers 
Blood loss during first 
24 hours after surgery 

Units of blood products 
transfused after surgery 

Length of hospital 
stay 

2.3. Statistical Techniques 

To explore potential multifactor interactions, we applied the Multifactor 
Dimensionality Reduction (MDR) method.  The details of the MDR algorithm 
have previously been described30,35,44.  A diagram explaining the steps of the 
MDR algorithm is shown in Figure 1. 

In the first step of MDR, the dataset is divided into multiple partitions for 
cross-validation.  MDR can be performed without cross-validation; however, 
this is rarely done due to the potential for over-fitting45.  Cross-validation46 is an 
important part of the MDR method, as it tries to find a model that not only fits 
the given data, but can also predict on future, unseen data.  Since attainment of a 
second dataset for testing is time-consuming and often cost-prohibitive, cross-
validation produces a testing set from the given data to evaluate the predictive 
ability of the model produced. The training set is comprised of 9/10 of the data 
while the testing set is comprised of the remaining 1/10 of the data. 



 

Second, a set of n genetic and/or environmental factors is selected for 
analysis, and a list of all possible combinations of factors is created.  In the third 
step these n factors are arranged in contingency tables in n-dimensional space 
with all possible multifactorial combinations as individual cells in the table. The 
cases and controls for each locus combination are counted and in the fourth step 
the ratio of cases to controls within each cell is calculated.  Each multilocus 
genotype combination is then labeled as “high risk” or “low risk” based on a 
threshold set at 1: if the ratio within a multifactor combination is >1, it is labeled 
as “high risk” for disease and if it is <1, it is labeled as “low risk” for disease.  
This step compresses multidimensional data into one dimension with two 
classes.  For pharmacogenomic endpoints, each genotype combination could be 
labeled “response” or “non-response” based on the ratio of responders to non-
responders. 

 

 
Figure 1.   Summary of the general steps to implement the MDR method (adapted from 30).   

The disease risk classifications from each of the multifactorial combinations 
represent the MDR models for a particular combination of multilocus 
genotypes.  The classification error for each model is calculated based on the 
number of individuals within the model that are actually cases in genotype 
combinations classified as “low risk” and the number of individuals that are 
actually controls in the genotype combination classified as “high risk.” The best 
n locus model is selected and the model is evaluated against the testing group 
and prediction error is calculated.  Prediction error is based on the number of 
misclassified individuals in the testing set, based on the model developed in the 
training set.  This is repeated for each training set and the average classification 
error and prediction error are calculated. Among all of the models created, the 
one model with the lowest prediction error is chosen.  This process is completed 



 

for each number of loci combinations that is computationally feasible.  For this 
analysis, single-locus through four-way interactions were evaluated.  A model is 
chosen for each number of loci considered; so a one-locus model, two-locus 
model, three-locus model, etc will each comprise a set.   

Once this set of models is completed, a final model is chosen.  The final 
model is selected based on minimization of prediction error and maximization 
of cross-validation consistency.  Prediction error is how well the model predicts 
risk/disease status in independent testing sets - generated through cross-
validation.  The error for the model is calculated by taking the average of the 
prediction errors in each of the ten testing sets.  Cross-validation consistency is 
the number of times a model is identified across the cross-validation sets.  
Therefore, for ten-fold cross-validation, the consistency can range from one to 
ten.  The higher the cross-validation consistency is, the stronger the support for 
the model.  When prediction error and cross-validation indicate different 
models, the rule of parsimony, or the simpler model, is used to choose between 
them. 

Once a best/final model is chosen, permutation testing is used to test the 
significance of the hypothesis generated.  Permutation testing involves creating 
multiple permuted datasets by randomizing the disease status labels. One 
thousand randomized datasets are generated.  The entire MDR procedure is 
repeated for each randomized dataset. The best model is extracted for each 
random data set as described above which generates a distribution of one 
thousand prediction errors and cross-validation consistencies that could be 
expected by chance alone.  The significance of the final model is determined by 
comparing the prediction error of the final model to the distribution.  A p-value 
is extracted for the model by its location in this empirical distribution.   A p-
value < 0.05 is considered statistically significant. 

3. Results 

Table 3 shows the results of the MDR analysis of the genotype data.  We 
detected a single locus effect of IL-6 which is able to correctly predict disease 
status with 58.8% accuracy (Figure 2).  This model was significant at the 
p<0.001 level. 

Table 3.  Results of MDR Analysis in Genotype Sample  

Number 
of Loci 

Polymorphism in Model Cross Validation 
Consistency 

Prediction 
Error 

1 IL6 10 41.2* 
2 IL6, APOE4 5 46.8 
3 IL6, ACE, APOE3 9 46.01 
4 IL6, ACE, APOE2, APOE3 10 42.77 
* p=<0.001 



 

            
Figure 2.  Single-locus MDR Model demonstrating effect of IL-6 which is able to correctly predict 
disease status with 58.8% accuracy.  Light grey cells are low-risk, while dark grey cells are high risk.  
The number of cases is shown in the histogram on the left in each cell, while controls are shown by 
the histogram on the right.  The genotype labels indicate number of IL-6 promoter -174 G alleles. 

Table 4 shows the results of the clinical risk factor analysis.  All four MDR 
models were found to be statistically significant at the p<0.001 level, but we 
focus on the two-locus interaction model because of the low prediction error and 
high cross-validation consistency.  We detected an interaction between history 
of AF and length of hospital stay that predicted disease status with 68.34% 
accuracy (Figure 3).   

Table 4.  Results of MDR Analysis in Clinical Risk Factor Sample 

Number 
of Loci 

Variable in Model Cross Validation 
Consistency 

Prediction 
Error 

1 Length of stay 10 33.06* 
2 History of AF, length of stay 8 31.46* 
3 AF at time of surgery, age, length of stay 3 38.64* 
4 AF at time of surgery, age, coronary bypass 

operation, length of stay 
10 33.4* 

* p=<0.001 

4.   Discussion 

Post-operative atrial fibrillation is likely the result of multiple genetic and 
environmental factors.  In this study, we investigated potential associations 
between both candidate genes and risk of PoAF, and clinical risk variables and 
PoAF.  A case-control study design was used, with a large population size and 
randomly selected controls. We detected an interesting single locus effect of IL-
6 which is able to correctly predict disease status with 58.8% accuracy.  PoAF is 
known to prolong length of hospital stay, and preoperative history of AF is a 
risk factor for postoperative AF41,47.  Consistent with these findings, we also 
detected an interaction between history of AF and length of hospital stay that 
predicted disease status with 68.34% accuracy.  These findings demonstrate the 



 

utility of novel computational approaches for the detection of disease 
susceptibility genes. 
 

               
Figure 3.  MDR model demonstrating an interaction between history of AF and length of hospital 
stay that predicted disease status with 68.34% (p<0.001) accuracy.  Light grey cells are low-risk, 
while dark grey cells are high risk.  The number of cases are shown in the histogram on the left in 
each cell, while controls are shown by the histogram on the right.  Length of stay was defined as the 
date difference between surgery date and discharge date. It is coded as follows: 1=0-4 days, 2=5-7 
days, 3= 8-13 days, 4=14 or more days.  These cutoffs correspond to the 40th, 80th and 95th percentile 
cutoffs. 

Part of the challenge in exploring epistatic interactions in 
pharmacogenomics or genetic epidemiology is the interpretation of results.  Two 
interesting associations were found – both a main effect and an interactive 
effect.  That IL-6 was shown to have an association with disease risk replicates 
the findings of24 providing support for a postulated role for activation of 
inflammatory pathways in this48 and perhaps other forms of AF49.  This 
underscores a possible role for anti-inflammatory approaches for the prevention 
of this common complication.  

The interaction model demonstrates the importance of genetic and 
environmental interactions, and represents a possible approach for detection of 
at-risk subgroups. The occurrence of multiple significant models also 
demonstrates the extreme complexity of the phenotype and could imply the 
importance of complicating issues such as heterogeneity and phenocopy.    

Future studies may focus on a larger set of candidate genes and 
environmental factors to better characterize the development of post-operative 
AF. In addition, cases and controls could be matched on a number of clinical 
factors to control for confounding. This study demonstrated the importance of 
looking for both main effects and interactive effects, as well as demonstrating 
the utility of MDR in analyzing multiple gene-gene and gene-environment 
interactions. 
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