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High-throughput proteomics is a rapidly developing field that offers the global profiling 
of proteins from a biological system.  These high-throughput technological advances are 
fueling a revolution in biology, enabling analyses at the scale of entire systems (e.g., 
whole cells, tumors, or environmental communities).  However, simply identifying the 
proteins in a cell is insufficient for understanding the underlying complexity and 
operating mechanisms of the overall system.  Systems level investigations generating 
large-scale global data are relying more and more on computational analyses, especially 
in the field of proteomics. 

1. Introduction  

Proteomics is a rapidly advancing field offering a new perspective to biological 
systems.  As proteins are the action molecules of life, discovering their function, 
expression levels and interactions are essential to understanding biology from a 
systems level.  The experimental approaches to performing these tasks in a high-
throughput (HTP) manner vary from evaluating small fragments of peptides 
using tandem mass spectrometry (MS/MS), to  two-hybrid and affinity-based 
pull-down assays using intact proteins to identify interactions.  No matter the 
approach, proteomics is revolutionizing the way we study biological systems, 
and will ultimately lead to advancements in identification and treatment of 
disease as well as provide a more fundamental understanding of biological 
systems.  The challenges however are amazingly diverse, ranging from 
understanding statistical models of error in the experimental processes through 
categorization of tissue types.  The papers presented in this session are a 
representative snapshot of this broad field of research that spans scale and 
scientific disciplines. 
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Figure 1. A typical MS proteomics process from protein isolation through peptide identification. 
Proteins are first isolated from other cellular components (top left) and then cleaved into peptides by 
enzymatic digestion(top middle). The peptides are partially separated using chromatography (top 
right) and then further separated by mass-to-charge ratios in the first stage of mass spectrometry 
(center). In tandem mass spectrometry, the isolated peptide is then collisionally-activated causing it 
to fragment into pieces. The mass-to-charge ratio of each fragment is measured (bottom right), and 
this fragmentation pattern is compared to model spectra (bottom left) for the peptide that are derived 
from training data or expert opinion. The peptide with a model spectrum that best matches the 
experimental spectrum is a potential match. 

 

1.1. HTP Mass Spectrometry 

The application of high-throughput (HTP) liquid-based separations and mass 
spectrometry (MS) to global profiling of proteins is providing an essential 
component to the challenge of understanding biology at a systems level (1).  
Figure 1 depicts a typical MS-based proteomics analysis that is performed in 
many laboratories.  Enzymatic digestion of proteins extracted from cells results 
in the lysis at defined locations in the proteins producing peptides of predictable 
length (when derived from a known protein sequence).  Reversed phase high 
performance liquid chromatography is used to partially separate the peptides in 
the solution. The eluting peak consists of a population of peptides which are 
analyzed by a mass spectrometer interfaced with the chromatography system. 
The electrospray process aerosolizes and ionizes the peptides into the gas phase 
and the charged particles are propelled into the mass spectrometer for analysis.  
The mass spectrometer scans the population of eluting ions, measures the mass 
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to charge ratio, and in the case of tandem mass spectrometry proceeds to the 
fragmentation step.  This step consists of the capture of all ions in a narrow 
mass-to-charge range in the ion trap of the mass spectrometer, the peptides are 
vibrationally excited by collision with an inert gas.  The peptides then fragment 
at labile bonds and a subsequent mass spectrum is obtained of the fragments of 
the peptide.  Because the peptides tend to fragment into recognizable patterns, 
the identity of the peptide can frequently be determined from this spectrum. 

1.2. HTP Yeast-Two-Hybrid 

In contrast to the destructive technique of HTP MS-based approaches, two-
hybrid assays (2) are used for assessing protein-protein interactions in live cells. 
A typical implementation of the two-hybrid assay involves the attachment of 
bait and prey proteins to separated binding and activating domains of a 
transcription factor, typically GAL4, that controls for the production of a 
reporter protein. In principle, if the bait and prey interact then the modularized 
domains of the transcription factor are brought together and the newly combined 
transcription factor can both bind DNA and activate the gene coding for the 
reporter protein. Conversely, if the reporter protein is present in the assay, then it 
is presumed that the bait-prey pair interact. False negatives can occur for several 
reasons, such as when the covalent attachment of the transcription factor domain 
to the bait protein interferes with interaction with the prey protein. Likewise, 
false positives can occur if adaptive mutations or auto-activation result in 
expression of the reporter protein regardless of interaction between the bait and 
prey proteins. While issues regarding the interference of the binding of the bait 
to the prey due to blocking by the transcription factor modules may represent a 
random, independent source of errors, auto-activation is a systematic error 
affecting the entire screening process. Two-hybrid methods are most frequently 
used in genetically-tractable organisms such as yeast, C. elegans, and 
Drosophila. Recent development of bacterial two-hybrid systems may 
eventually result in the expansion of this method to many other genomes. 

2. Challenges  

2.1. Accuracy of Peptide Identification 

Intrinsic to the MS-based proteomics measurement process is the comparison of 
MS/MS fragmentation patterns to model fragmentation patterns derived from 
the predicted peptides of a sequenced genome, which provides the basic peptide 
identification upon which all other evaluations are based (3-5).  The common 
approach is to search the experimental spectra against a database of 
computationally generated model spectra in a database representing the 
constituent peptides of the entire genome.  The computational peptide 
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identification process measures how well the mass peaks in an experimental 
spectrum match those in the model spectrum of a candidate peptide (3, 5-7).  
However, these database search routines are known to return both correct 
identifications against the experimental spectra, as well as a similar number of 
false positives.  Considerable work on the data analysis front is still required (8). 

The false positive problem of MS-based proteomics is largely due to the 
introduction of many sources of errors through the entire experimental and 
identification stages.  Since the experimental observation of peaks introduces a 
mass error,  a mass error distribution is often used in this matching process (9-
11), i.e., the peaks of the experimental and theoretical are not expected to match 
up exactly.  However, in most computational identification methods to-date 
these error models have followed simple statistical distributions. In fact, by far 
the most widely used distribution is the uniform distribution. Fu et al.a present, 
improved estimations of mass error distributions that can be incorporated into 
the identification process.  Another major technical challenge lies downstream 
from the database search routines.  These database search procedures typically 
return several metrics associated with the match, creating a challenge in 
separating true from false identification.  To counter this problem there has been 
a fair level of effort placed on the development of probability-based scores(12-
15).  These statistical metrics have alleviated some problems with false 
positives, but make uniform assumptions about the identifiability of each 
peptide. That is, it is generally universally assumed that all peptides are equally 
detectable. Alves et al.b revisit the protein inference problem accounting for this 
assumption on peptide detectability. 

2.2. Network Inference 

Rapid advances are currently being made in the determination of protein 
networks (16-19).  Typical approaches use either a two-hybrid screening of an 
entire genome, or affinity purifications to pull-down a pre-selected bait protein 
and the prey proteins that interact, directly or indirectly.  This information can 
be used to construct a protein interaction network in which all discovered 
interactions are laid out.    A common challenge in both affinity-based methods 
and two-hybrid screens is that of estimating and reducing error rates.  The paper 

                                                             
a Y. Fu. W. Gao, S. He, R. Sun, H. Zhou, R and R.Zeng.  Mining tandem mass 

spectral data for more accurate mass error model for peptide identification. 
PSB 2007. 

b P. Alves, R.J. Arnold, M.V. Novotny, P. Radivojac, J.P. Reilly and H. Tang.  
The protein inference problem in shotgun proteomics – revisited.  PSB 2007. 
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by Sontag et al.c describes a novel approach to estimating errors in two-hybrid 
experiments which could be adopted also for affinity purifications.  
Appropriately modeling this error allows better use of the data leading to better 
identification of interacting proteins.  Due the error in the experimental system, 
it is common to utilize multiple sources of diverse information in defining 
protein interactions, for example, cell location or sequence motif composition.  
However, a common challenge in integrating all this information with the 
experimental data is that each source has varying levels of reliability.  
Computing reliability metrics for multiple sources of information to infer 
networks is the topic of Leach et al.d. 

3. Final Thoughts 

Ultimately, a major motivation for investments into the development of 
proteomics and systems biology is to develop advanced methods of disease 
diagnosis, understanding disease processes, and remedies.  Each experimental 
approach offers a unique view, for example unlike MS/MS or two-hybrid 
approaches, MALDI-based Imaging MS (IMS) offers an approach to study the 
spatial distribution of biomolecules, such as proteins, in tissue.  However, 
similar to other imaging based methods, classes in the data associated with the 
tissue must be identified in order to differentiate diseased tissue.  A principal 
component analysis based approach is taken for IMS data in Van de Plas et al.e.   

The field of HTP proteomics is becoming a central component enabling 
systems level analyses. The level of complexity from inception of the 
experimental technique through the data analysis and modeling is incredible.  As 
seen in this session research is taking place at the level of errors within a mass 
spectrum through the study of entire tissues.  Proteomics is likely to offer a 
central role in understanding protein function and complex biological systems 
leading to a new revolution in advanced targeted therapeutics to treat disease.   
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