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Despite increasing investments in pharmaceutical R&D, there is a continuing paucity of 
new drug approvals. Drug discovery continues to be a lengthy and resource-consuming 
process in spite of all the advances in genomics, life sciences, and technology. Indeed, it 
is estimated that about 90% of the drugs fail during development in phase 1 clinical 
trials1 and that it takes billions of dollars in investment and an average of 15 years to 
bring a new drug to the market2. 

Meanwhile, there is an ever-growing effort to apply computational power to improve the 
effectiveness and efficiency of drug discovery3. Traditional computational methods in 
drug discovery were focused on understanding which proteins could make good drug 
targets, sequence analysis, modeling drugs binding to proteins, and the analysis of 
biological data. With the attention on translational research in recent years, a new set of 
computational methods are being developed which examine drug-target associations and 
drug off-target effects through system and network approaches. These new approaches 
take advantage of the unprecedented large-scale high- throughput measurements, such as 
drug chemical structures and screens4, 5, side effect profiles6, 7, transcriptional responses 
after drug treatment8, 9, genome wide association studies10, and combined knowledge11, 
12. More importantly there are increasing reports of these findings being validated in 
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experimental models6, 8, 13, 14, thus clarifying the value proposition for computational drug 
discovery. As a result, now is an exciting time for computational scientists to gain 
evidence for reusing an existing drug for a different use or generate testable hypotheses 
for further screening15.  

Despite the progress, there is clearly room for technical improvement with regard to 
computational repurposing approaches. Furthermore, to materialize the true potential and 
impact of these methods, much work is needed to show that they can be successfully 
adopted into practical applications. Hence, the aim of our session is to provide a forum to 
bring together the research community for a serious examination of these important 
issues.  

The six papers accepted to this year’s session reflect both the value of integrating 
disparate sources of data and an emerging emphasis in the field on target prediction using 
improvements on chemical informatics methods 

Brubaker et al., using data from the Cancer Genome Project, present a study on the 
sensitivity of cancer lines to a large group of drugs. Looking at gene expression, copy 
number data, mutational data, known mechanisms of drugs, and the known targets of 
drugs, they make mechanistic inferences about the mechanisms of drug resistance and 
sensitivity. Extracting this type of knowledge from large, complex repositories of 
screening data will be increasingly important in the coming years. This study also 
explains how these genomic changes may affect the efficacy of drugs, which connects 
repurposing with personalized medicine. 

Zhu et al. present a semantic reasoner that identifies repurposing opportunities for breast 
cancer. Instead of using machine learning, as do the other papers in the session, their 
approach looks to connect disparate pieces of information, from several sources, to make 
a logical case that supports repurposing a effort. 

Ng et al propose an interesting random-walk based approach to finding repurposing 
opportunities for malaria. The authors rightly identify specific challenges in applying 
chemical informatics in infection disease, and there method seems, nonetheless, to make 
good progress towards overcoming these challenges. Molecules are connected to one 
another if they are structurally similar and are annotated with their known targets. They 
show how random walks on this molecule network can identify the targets of molecules 
known to inhibit Malaria and also suggest potential repurposing opportunities with FDA 
approved drugs.  

Yang et al, similarly, propose a promising approach to predicting the protein targets of 
molecules, a key tool in identifying repurposing opportunities. They use a conditional 
random field to integrate information from chemical similarity, protein similarity, and 
known side-effects. This approach predicts the targets of molecules with high accuracy, 
and is exciting because it integrates critical but disparate data in a unified approach. 

Yera et al. propose another approach to predicting the targets of molecules. They use a 
combination of 2D structural similarity, 3D structural similarity, and clinical effect (as 



reported in package label) similarity. Their best models get a performance boost from 
including the clinical effect information from package inserts. They also see strong 
predictive performance in identifying known off-targets of drugs. 

Blucher et al. makes the point that there are substantial issues in the metadata, data 
quality and completeness of public repositories of chemical assay data, like PubChem 
and ChemBank. Many computational approaches to repositioning seek to identify 
patterns in publically available chemical assay data, so the issues they identify are critical 
for the whole field. In particular, we hope their request for improved data submission 
standards and guidelines will be heeded. Moreover, the next steps forward for the target 
prediction methods that rely on these datasets may include finding better ways of curating 
and managing noise in the assay data. 

This is the second year Computational Drug Repositioning has been offered as a track at 
the Pacific Symposium on Biocomputing, and we are pleased with the results of our call 
for participation. These papers reflect a trend in the field towards target and off-target 
prediction of molecules. Understanding how drugs work and could work in human 
disease is, unsurprisingly, the central challenge in computational repurposing. They also 
reflect a trend towards integrating data from disparate sources, to make connections that 
would otherwise be hidden. 

In the future, we expect the field will continue to develop these themes. There will 
continue to be cross-pollination with chemical informatics and further progress towards 
integrating information from disparate datasets. We believe these challenges and 
opportunities will continue to stimulate innovative work for years to come. 
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