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Global transcript expression experiments are commonly used to investigate the biological processes
that underlie complex traits. These studies can exhibit complex patterns of pleiotropy when trans-
acting genetic factors influence overlapping sets of multiple transcripts. Dissecting these patterns
into biological modules with distinct genetic etiology can provide models of how genetic variants
affect specific processes that contribute to a trait. Here we identify transcript modules associated
with pleiotropic genetic factors and apply genetic interaction analysis to disentangle the regulatory
architecture in a mouse intercross study of kidney function. The method, called the combined anal-
ysis of pleiotropy and epistasis (CAPE), has been previously used to model genetic networks for
multiple physiological traits. It simultaneously models multiple phenotypes to identify direct genetic
influences as well as influences mediated through genetic interactions. We first identified candidate
trans expression quantitative trait loci (eQTL) and the transcripts potentially affected. We then clus-
tered the transcripts into modules of co-expressed genes, from which we compute summary module
phenotypes. Finally, we applied CAPE to map the network of interacting module QTL (modQTL)
affecting the gene modules. The resulting network mapped how multiple modQTL both directly and
indirectly affect modules associated with metabolic functions and biosynthetic processes. This work
demonstrates how the integration of pleiotropic signals in gene expression data can be used to infer
a complex hypothesis of how multiple loci interact to co-regulate transcription programs, thereby
providing additional constraints to prioritize validation experiments.
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1. Introduction

The widespread adoption of genomic technologies has greatly increased the power and scope
of genetic studies. One especially fruitful approach to understanding how genetic variation
affects biological processes is the study of the genetics of gene expression.1–5 In these studies,
transcript levels are treated as panels of thousands of phenotypes that quantify the cellular
composition and gene expression of a tissue sample that is related to a physiological phenotype
such as disease. These data are commonly analyzed to identify expression quantitative trait
loci (eQTL), which are specific chromosomal regions that associate with the expression level
of a given transcript.

Associated eQTL are generally classified as local, cis-acting variants that affect the expres-
sion of a gene located near the associated variant, or remote, trans-acting variants that affect
the expression of a gene located at a distance (i.e. outside of linkage disequilibrium (LD) or on
another chromosome). The more common cis associations have the straightforward biological
interpretation of a sequence variant directly affecting the self transcript production, stability,
or splicing. However, trans associations are often more difficult to interpret. The structure of
gene regulatory networks suggests that these trans associations are caused by transcription
factors or other proteins that bind and regulate DNA or RNA. The co-regulatory structures
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Fig. 1. Hypothetical regulatory architecture of transcripts (T1, ..., T6) that serve as an endophenotype for
an organism-level trait. (A) Simple model in which all transcripts are associated with trans-acting eQTL1
and part of a single underlying biological process affecting the trait. (B) Model with transcripts grouped
into two modules that combine to affect the trait. Models (A) and (B) are indistinguishable using single-locus
association. (C) Model obtained with co-expression clustering and CAPE analysis, in which the eQTL has been
replaced by two multiple module QTL (modQTL). The genetic effects now map to the two modules distinctly,
and the modQTL are linked by a directional influence mapping feed-forward regulation from modQTL1 to the
red module via modQTL2.

of these networks, in which proteins regulate multiple transcripts in complex hierarchies,6

suggest that a genetic variation in one regulatory gene could have significant effects on the
expression of multiple target transcripts. This would generate extensive pleiotropy as many
redundantly regulated transcripts would associate with the variant. While this is pleiotropy
in the sense that one genetic variant is influencing multiple traits, it is somewhat trivial in
that the multiple traits are redundant outputs of the same regulatory module. This effect
can be efficiently modeled by first finding modules of co-expressed transcripts that map to
the common trans-acting module QTL (modQTL). Pleiotropy between modQTL, in which a
single variant is associated with multiple distinct gene modules, is more informative in the
sense of a single variant affecting multiple regulatory programs in a more complex genetic
architecture (Figure 1). Distinguishing between trivial and informative pleiotropy can be dif-
ficult for complex regulatory networks in which multiple regulatory variants combine to affect
hundreds of transcript outputs.

In this paper, we address this problem by modeling interacting trans associations for mod-
ules of co-expressed genes. We use kidney transcript data from a panel of F2 mouse intercross
progeny to dissect the genetic regulation of multiple biological processes that affect over-
all kidney function in these genetically diverse mouse models. We use co-expression analysis
to identify gene modules with correlated expression and common function and derive sum-
mary endophenotypes that describe transcriptional states. We next use a combined analysis
of pleiotropy and epistasis (CAPE7) to simultaneously assess patterns of pleiotropy and sta-
tistical interactions between trans modQTL, in order to infer the variant-to-variant ordering
of regulatory influences on the multiple processes. This approach improves the interpretation
of genetic interactions in terms of directed QTL-to-QTL influences that map how a given
locus suppresses or enhances the effects of a second locus. By integrating evidence of epistasis
across multiple phenotypes, the CAPE method can improve power to detect modQTL inter-
actions and assign directionality to the relationship. Furthermore, CAPE inherently parses



QTL-to-phenotype associations into direct effects and effects modified through genetic inter-
actions, thereby separating the target transcripts into subsets that are influenced by distinct
combinations of modQTL. In the case of transcript data, the result is a model of how multiple
modQTL affect one another and, in turn, the regulation of multiple modules of co-expressed
genes (Figure 1C). The resulting network model provides a clearer dissection of the nature of
the observed pleiotropy and generates more specific hypotheses of variant activity and action.

2. Methods

We followed a multi-step strategy to systematically identify and model multiple gene modules
that underlie kidney health and disease. The procedure is outlined in Figure 2, and consisted
of three main steps: a preliminary eQTL analysis to identify transcripts affected by one or
more genetic factors; clustering of the affected transcripts into co-expressed gene modules;
and a network analysis to map how the gene modules are regulated by multiple interacting
genetic loci. We began with a study of gene expression related to kidney function in a mouse
intercross.8 An F2 intercross population was derived from the kidney damage-susceptible
SM/J inbred strain and the nonsusceptible MRL/MpJ inbred strain. Male SM/J mice exhibit
kidney dysfunction, as measured by an increase in urinary albumin-to-creatine ratio (ACR).
To identify causal genetic loci, ACR was measured in 173 male F2 progeny. Significant QTL
were mapped on chromosomes (Chrs) 1, 4, and 15, with an additional suggestive QTL on Chr
17.8 This established ACR as a trait affected by multiple QTL that vary between the SM/J
and MRL/MpJ lines.

2.1. Data

To identify the biological pathways and processes underlying the ACR results, mRNA was
collected from whole kidneys of the 173 F2 animals. Data generation and processing is de-
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Fig. 2. Overview of analytical strategy.



scribed in depth in the initial publication8 and will be summarized here. All mice were geno-
typed using an array that contained 258 polymorphisms that were informative between the
MRL/MpJ and SM/J strains. RNA samples were labeled and hybridized to the mouse gene
1.0 ST microarray (Affymetrix, Santa Clara, California). Microarray data were imported in
R (http://www.r-project.org) and processed using the affy package from Bioconductor
(http://bioconductor.org). Normalization of the data was performed using robust multi-
array average without any background subtraction. In total, 33,881 probe sets were consid-
ered.8 Data were downloaded from the QTL Archive (http://www.qtlarchive.org).

2.2. Transcript Selection

Following the initial study, we performed eQTL scans using R/qtl9 to test the association of
every transcript with every marker. Transcript expression data were subjected to a Van der
Waerden transformation10 prior to eQTL mapping. Pseudo-markers were generated at 2 cM
spacing for each chromosome and Haley-Knott regression was performed genome-wide for each
transcript. To identify suggestive eQTL (P < 0.63), we followed the originally-reported LOD
thresholds of 2.23 and 1.44 for autosomes and the X chromosome, respectively,8 This com-
prised a set of candidate transcripts with at least one suggestive association, each potentially
regulated by one or more genetic loci. Because we were interested in analyzing overlapping
patterns of pleiotropy, we further reduced this list to a set of transcripts that were associated
with at least two distinct suggestive eQTL.

2.3. Co-Expression Modules

Since the co-regulation of multiple genes is expected to be manifest as co-expression in array
data, we next performed weighted gene correlation network analysis (WCGNA)11 to identify
gene modules. WGCNA has been widely and successfully used to parse sets of transcripts
into co-expressed modules, particularly in genetic mapping populations.12 A comprehensive
list of tutorials on WGCNA can be found at http://www.genetics.ucla.edu/horvath/

CoexpressionNetwork. WGCNA generates an adjacency matrix based on the underlying ab-
solute values of Pearson correlations among all pairs of transcripts raised to a user-defined
power β. Here, the β parameter was set to 6 in order to generate the scale-free topology cri-
terion as defined by Zhang and Horvath.13 For each module, we separately obtained the first
principal component (termed “eigengenes” in WCGNA) to represent the summary expression
pattern for that module. We hereafter refer to these quantitative expression vectors as mod-
ule phenotypes since they represent composite phenotypes (and the term eigengene may be
confused with our distinct concept of an eigentrait in Section 2.4). Modules were queried for
coherent functions using the R package GOstats.14 Both Gene Ontology annotations15 and
KEGG pathways16 were queried for functional overrepresentation. GO enrichment significance
scores were corrected for multiple tests using the decorrelation of GO graph structure.17

2.4. CAPE Network Derivation

The combined analysis of pleiotropy and epistasis (CAPE) is an approach to modeling two
or more phenotypes across a population harboring genetic variation. Detailed explanations



of the method have been published elsewhere7 and will be briefly summarized here. CAPE
is designed to translate data from genetic studies with multiple traits into an integrated
model that accounts for variance across all phenotypes. As input, the method requires two or
more quantitative phenotypes and a matrix of genotype values at markers across the genome.
Variants can be engineered mutations such as gene knockouts or amplifications, or natural
variants that are commonly used to map QTL. In this work, the variants will be the modQTL
associated with module phenotypes. The model of variants affecting phenotypes is obtained
by multivariate linear regression followed by a novel reparametrization of the results.7 For a
given pair of genetic variants, this reparametrization recasts the set of interaction coefficients
(one for each trait) in terms of two coefficients that describe how each variant suppresses or
enhances the effects of the other. This procedure translates trait-specific interaction terms into
trait-independent, directed edges between the two variants, providing a common model of gene
action that consistently fits all traits. These quantitative, variant-to-variant influences can be
readily interpreted as genetic suppression or enhancement. When combined with the variant-
to-phenotype edges, the final output is a directed network of both direct and indirect effect
of variants on multiple traits. CAPE is available as an R package (http://cran.r-project.
org/web/packages/cape), which was used in our analysis.18

We first identified a subset of modules suitable for CAPE. Each module phenotype was
first scanned for modQTL associations,12 with candidate loci identified using a suggestive
threshold (P < 0.63) based on a null distribution generated from 100 permutations. Genetic
markers were used as loci for regression, with homozygous MRL/MpJ markers coded as 0,
heterozygous markers as 0.5, and homozygous SM/J markers as 1. CAPE modules were then
selected by identifying module phenotypes with a combination of candidate modQTL that
included both shared and unique associations, and exhibited some degree of correlation (Figure
3). These criteria are essential to the CAPE method, given that it requires biologically related
phenotypes (e.g. all modules related to kidney function) that also exhibit unique signals from
which to draw functional distinctions.

The selected module phenotypes and sample genotypes were then used as input for the
R implementation of CAPE.18 As a first step in the analysis, CAPE decomposes all pheno-
types into eigentraits using singular value decomposition (SVD). This procedure reorganizes
the phenotypes into common and distinct signals that are expected to map to common and
distinct genetic loci. Each eigentrait is scanned for its own QTL, and a user-defined number of
eigentraits are selected for further analysis. This allows one to filter non-genetic signals in the
data and maximizes efficiency in the analysis. In this case, the eigentraits were linear combi-
nations of the module phenotypes. A suggestive threshold was used (P < 0.63, determined via
200 permutation tests) and the union of all suggestive markers comprised the set of markers
to undergo pair-wise association tests.

Pair-wise regression models were derived and reparametrized following the CAPE
method.7,18 In all except specified instances, default CAPE parameters were used. To avoid
effects due to LD, we omitted marker pairs with genotypes showing Pearson correlation above
0.6. Effects from QTL to eigentraits are then recomposed to map modQTL-to-phenotype influ-
ences. We performed 100,000 permutations to generate empirical P values for each parameter



in the model, and then performed a false discovery rate (FDR) correction19 to compute q

values. For the final network model, we used a significance cutoff of q < 0.05 on both variant-
to-variant and variant-to-phenotype influences.

3. Results

3.1. Selected Transcripts

We performed eQTL scans on 33,881 probe transcripts across 254 independent genetic markers.
This procedure yielded 53,134 suggestive associations for 26,097 transcripts, including both
cis- and trans-acting loci (Table S1). In order to restrict our analysis to pleiotropic loci,
we identified the number of trans eQTL per chromosome. This varied from 5977 transcripts
associated with Chr 1 to 1101 transcripts associated with Chr 10. Since we were particularly
interested in the loci associated with the ACR phenotype we concentrated our analysis on the
top eight chromosomes, which comprised 60% of the associations. As in the previous study,8

Chrs 1, 4, 15, and 17 were among the top trans chromosomes. With our weak significance
cutoff, we also found four additional candidate chromosomes (Chrs 2, 6, 7, and 11). These
patterns suggested widespread co-regulation of hundreds of genes by a few genetic loci. To
explore potential pleiotropic effects, we selected the 8,144 transcripts associated with two or
more of these chromosomes in order to analyze how these loci affect transcripts both jointly and
distinctly. This provided us a large number of overlapping endophenotypes while maintaining
focus on a tractable number of biological processes.

3.2. Gene Modules Analysis

WCGNA was performed on the 8,144 transcripts identified in the previous step. We obtained
14 distinct modules, which were automatically assigned color identifiers by the software. The
number of genes per module ranged from 25 to 1299 (Table S2). We queried each module for
functional overrepresentation and found GO and KEGG associations for nearly all modules
at a significance of P < 10−4 (Table S3). We observed a diversity of processes across mod-
ules, which included small organic molecule metabolism, macromolecule metabolism, immune
processes, and structural development. However, the largest modules were concentrated in
metabolic and transcriptional processes. These module results generally matched the KEGG
pathways identified in the original analysis of the data,8 which were obtained through a dif-
ferent analytical procedure.

We next assessed correlations between module phenotypes. Since the CAPE method relies
on moderately correlated data, we sought pairs of modules with similar, but not redundant,
profiles. The module phenotypes exhibited absolute Pearson correlations ranging from 0.001
to 0.8 (Figure S1).

3.3. Single-Locus Genome Scans

We performed single-locus scans on the 14 module phenotypes to assess common associations
and pleiotropic loci (Figure S2). As expected, most (82%) of the suggestive (P < 0.63) modQTL
were located on the eight chromosomes that were pre-selected for associations with individual



Table 1. Summary of gene modules used in CAPE analysis.

Suggestive
Module Genes modQTL Representative GO Function Representative KEGG Pathway

blue 969 2,4,7,9,11,15 oxoacid metabolic process (6 × 10−13) fatty acid metabolism (8 × 10−8)
grey 1299 1,4,9,11,17 oxidation-reduction process (1 × 10−4) oxidative phosphorylation (3 × 10−3)
turquoise 1228 1,17 translational initiation (8 × 10−5) cell cycle (5 × 10−5)

transcripts. Chrs 1, 4, 11, and 17 had the greatest number of associations, suggesting a strong
biological overlap with the ACR phenotype. The number of suggestive modQTL ranged from
one locus (magenta module) to eight loci (brown module).

3.4. Pair-Wise Scans and Interaction Network

We next performed two-locus interaction scans and CAPE reparametrization to derive a net-
work of pleiotropic effects on gene modules. We selected modules with partial pleiotropy and
correlation for further analysis, since modules with simpler genetic associations would not re-
quire genetic dissection with CAPE. We selected the three largest modules for CAPE analysis,
summarized in Table 1. These modules met the criteria of exhibiting moderate correlations
(Figure 3A) and had suggestive associations with one or more pleiotropic modQTL (Table 1).
They comprised 78% of the annotated genes in all modules together, thereby accounting for
the vast majority of expression variance in the data set. All modules had multiple significantly
enriched annotations (Table S3). The blue module contained specific acid metabolic processes
and transport genes. The grey module was concentrated in metabolic processes, programmed
cell death, and catabolism. Although WCGNA assigns the grey color to transcripts that do
not belong to any other module based on correlated expression, and therefore might not be
co-expressed in some cases, our pre-selection of transcripts based on eQTL associations gener-
ated a grey module phenotype with sufficient common signal to generate modQTLs and a gene
set with common functional annotations. Genes in the turquoise module were associated with
gene expression and RNA metabolism, and other cell cycle processes. While it would have been
feasible to include additional modules in the analysis, many of the modules had relative weak
associations and poor correlation with other modules (Figures S2 and S3), suggesting CAPE
analysis would provide little additional information. Furthermore, the addition of phenotypes
associated with non-pleiotropic modQTL will likely have distinct genetic etiology, and thus
can weaken significance of CAPE results by adding genetically independent variance.7

We performed SVD on the three selected module phenotypes to obtain three eigentraits
(Section 2.4), which represent linear combinations of the three module phenotypes (Figure
3B). We scanned each eigentrait for QTL associations and found that most of our candi-
date modQTL were associated with the first and/or second eigentrait, suggesting that the
genetically-driven variance is captured by these two composite phenotypes. Additionally, the
first two eigentraits are of comparable weight and together account for 87% of the global vari-
ance. We therefore used these two eigentraits in our analysis, which is the default for CAPE.18

A total of 54 candidate markers were identified by pooling those markers with suggestive ef-



fects, leading to 1303 marker pairs tested after removing pairs in LD. After performing the
interaction analysis (Section 2.4) we transformed the eigentraits back to the original mod-
ule phenotypes. This transformation does not change modQTL-to-modQTL influences.7 An
adjacency matrix of significant results for all marker pairs is shown in Figure 4. This non-
symmetric matrix maps directed edges from each source marker to each target marker or
target phenotype (rightmost columns).

A summary interaction network is shown in Figure 5. To avoid redundant interactions and
nodes due to adjacent markers within a given modQTL, each modQTL-containing chromosome
is represented by a single node. Although the pleiotropic modQTL and genetic interactions
consistently map to the same regions on the indicated chromosomes (Figures 4 and S4), the
relatively large intervals preclude reliable identification of candidate genes and therefore we
simply represent the modQTL with chromosome names. Network nodes represent the effect of
the SM/J allele at each modQTL. Thus the modQTL-to-phenotype edges represent the effects
of a SM/J allele at the modQTL, and negative modQTL-to-modQTL interaction represents
the presence of a SM/J variant at one locus suppressing another SM/J variant at a second
locus. All interactions between modQTL were negative, consistent with the vast majority
of findings in intercross experiments.20 This may be due to functional redundancy between
modQTL, suggesting that variants within pathways underlie the interactions.21–23 In sum, we
detected six significant modQTL-to-modQTL interactions between chromosome pairs and 15
significant modQTL-to-phenotype interactions.

Our interaction network most prominently detected interactions between Chr 1, 4, and 15.
These correspond to QTL previously associated with ACR and kidney health,8 and also com-
prised the most significant influences in our analysis. The co-suppression observed between
Chr 1 and Chr 15 and between Chr 4 and Chr 15 suggest candidate genes of similar function
underlie these modQTL. This genetic co-suppression was frequently observed for knockdowns
of genes in the same pathways in a previous study of fly cell proliferation,23 and is a conse-
quence of highly redundant effects when SM/J alleles are present at both loci. We also note
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that upon conditioning on interaction effects, these modQTL are pleiotropic, with each sig-
nificantly influencing both the blue and grey modules. Interestingly, the turquoise module is
primarily influenced by a network of interactions between modQTL on Chrs 7, 9, and 17.
The Chr 9 modQTL suppression of the Chr 17 modQTL is an example of how the CAPE
method can identify indirect effects between loci, in that the Chr 9 SM/J-derived effects on
the turquoise and grey modules are mediated via the presence of an SM/J allele at the Chr 17
locus. The hypothesis is that Chr 9 allele indirectly acts to suppress the Chr 17 allele, and this
conditional dependence on the Chr 17 modQTL renders the Chr 9 modQTL only marginally
significant when considered in isolation (Figure S2).

4. Discussion and Conclusions

The CAPE method has been developed to map networks of how multiple genetic variants
interact to affect multiple phenotypes, thereby identifying shared and distinct genetic etiology
of complex traits. Here, we have applied this approach to address the regulation of kidney
gene expression in an inbred mouse intercross. This required a focused approach to identify-
ing patterns of co-expressed genes, followed by an application of the CAPE algorithm that
separated the co-regulation of those genes in a network of causal genetic loci.
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4.1. Co-Expressed Gene Modules as Complex Pleiotropy

By clustering transcripts into modules, we efficiently identified common trans-acting modQTL
that regulate multiple co-expressed genes.12 Although this strategy will not detect the majority
of cis eQTL, which can be readily detected through direct associations of each individual
transcript, it quickly identifies trans modQTL that exhibit pleiotropy by affecting multiple
gene modules. Furthermore, the coherent expression patterns within each gene module were
used as summary traits representing the activity levels of multiple biological processes. This
allowed the use of the CAPE approach to map an interacting network of causal gene variants,
providing an enhanced view of how multiple genetic variants commonly and differentially
affected multiple gene expression patterns in the kidneys of genetically diverse mice.

4.2. How Genetic Interactions Modify Pleiotropic Effects

By simultaneously analyzing genetic interactions across multiple module phenotypes, we were
able to identify cases in which pleiotropic modQTL are directly associated with a module and
cases in which the modQTL was indirectly affecting a module via interaction with a second
modQTL. This separation provides an improved genetic model of how the modQTL might
affect overall kidney health through two or more processes. The interaction cascade observed
for Chrs 7, 9, and 17 suggests a series of co-dependent effects from the SM/J variant at these
loci (Figure 5). When all three modQTL are inherited from SM/J, the model implies that the
Chr 9 and Chr 17 modQTL are suppressed and ineffective, leading to an overall Chr 7 positive
effect on the expression of the turquoise and blue modules. However, changing this scenario
with an MRL/MpJ allele at the Chr 9 modQTL implies the Chr 17 modQTL counteracts the
effect of the Chr 7 modQTL on the turquoise module, leaving the primary effect of the Chr 7
modQTL on the blue module only and therefore diminishing its pleiotropic effect. Examples
of epistasis-dependent pleiotropy are a key element of hypotheses generated from CAPE, and
their inference requires a systematic integration of both epistasis and pleiotropy in a single
model of genetic effects.



4.3. Overlapping Patterns of Pleiotropy to Model Complex Traits

At the core of the CAPE method is the use of multiple QTL with partially overlapping patterns
of pleiotropy over a panel of complex traits. The information coded in these patterns is used
to constrain models of genetic interactions and, at the same time, map pleiotropic effects as
either independent or dependent on other QTL. Thus the appropriate choice of phenotypes in
analysis is essential. The most direct method is to perform single-locus scans for all phenotypes
to identify shared QTL regions, with the assumption that the causal variant is common to
all phenotypes. However, the sensitivity of QTL significance on limited sample numbers can
rarely preclude that a QTL that falls slightly below a significance threshold is in fact causal.

In this work, we have surmounted this problem by allowing highly permissive significance
thresholds for pre-selection of potentially interacting loci. Nevertheless, some of our modules
exhibited few suggestive modQTL or unique loci, such as the distal Chr 6 locus that dominates
the magenta module scan (Figure S2). An alternative, related approach is to select phenotypes
with moderately correlated values across all samples, such as Pearson correlations of 0.3-0.8.
Excessive correlation among phenotypes generates redundant genetic associations, which are
ineffective for the CAPE approach, while a lack of sufficient correlation between phenotypes
introduces too many conflicting signals to arrive at a common genetic model. Finally, we note
that an excess of complex phenotypes can reduce the ability of CAPE to find a common
genetic model. While the number of phenotypes that can be co-analyzed is theoretically un-
limited, the core of the analysis is based on a dimensional reduction of a series of epistasis
coefficients (one for each phenotype) to two influence parameters describing how a pair of
QTL influence each other in either direction.7 While the method maximizes the amount of
phenotype information in two degrees of freedom independently for each locus pair, conflicting
data can weaken the interaction signal. Indeed, in an earlier study of global transcript data
that directly modeled principal components instead of more focused co-expression modules,
it was found that simultaneously modeling more than three components diluted the power to
detect interactions.7 This finding applies whether the additional components are interpreted
as experimental noise or additional biological signal.

4.4. Potential Extensions and Validation

The genetic models obtained by CAPE are formulated in terms of inferred influences that
quantify the associated effects of variants on (1) all phenotypes; and (2) the effective weight of
other variants on the phenotypes. The resulting networks structure provides a hypothesis of
regulatory architecture, but does not provide any direct evidence of molecular binding. When
available, the network can be used as a template for the integration of complementary molec-
ular interaction data, with candidate regulatory interactions limited by the sign and direction
of each variant-to-variant influence.24 In systems lacking existing molecular interaction data,
the inferred networks can serve to direct experimental validation to specific combinations of
loci. For example, the binding sites of a candidate transcription factor may be predicted to be
modified by the presence of a second trans-acting variant. This could be directly assayed with
chromatin immunoprecipitation experiments performed with and without the second vari-
ant. This framework can guide follow-up investigations by providing additional constraints to



prioritize candidate regulators.

Supplementary Material

Tables S1-S3 and Figures S1 and S2 are located at http://carterdev.jax.org/psb2014.
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