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Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard
currently available for the measurement of mental health. This issue is exacerbated by the fact that
the information physicians use to diagnose these disorders is episodic and often subjective. Current
methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances
in EEG and video monitoring technologies have not been widely adopted due to invasiveness and
inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for
providing continuous, quantitative data about a patient. Here, we introduce PRISM — Passive, Real-
time Information for Sensing Mental Health. This platform integrates motion, light and heart rate
data from a smart watch application with user interactions and text entries from a web application.
We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13
subjects. We have engineered appropriate features and applied both unsupervised and supervised
learning to develop models that are predictive of user-reported ratings of their emotional state,
demonstrating that the data has the potential to be useful for evaluating mental health. This platform
could allow patients and clinicians to leverage continuous streams of passive data for early and
accurate diagnosis as well as constant monitoring of patients suffering from mental disorders.
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1. Introduction

1.1. The current state of mental health care

Neuropsychiatric disorders are the leading cause of disability among non-communicable dis-
eases worldwide and are estimated to be the cause of around 10.4% of the global burden
of disease.1,2 These disorders include mood disorders (depression, unipolar and bipolar dis-
orders), anxiety-related disorders (anorexia and other eating disorders, obsessive-compulsive
disorders, panic disorders and post-traumatic stress syndrome), schizophrenia, substance- and
alcohol-use disorders, dementia, as well as neurological disorders like epilepsy, Parkinson’s and
multiple sclerosis. Within this group, depressive disorders accounted for the most DALYs, fol-
lowed by anxiety disorders.1 Historically, major health policy decisions have been primarily
informed through mortality statistics. As a result, the impact of these pervasive and disabling
neuropsychiatric disorders has been undervalued in comparison to cardiovascular diseases,
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cancer and communicable diseases. Thus, research on these disorders has not been a priority
and improvement in the management of mental health is lagging behind. The current stan-
dard practices for patients with such mental health disabilities, including those described in
the APA’s Diagnostic and Statistical Manual of Mental Disorders (DSM), rely on descrip-
tive criteria and are often not evidence-based.3,4 Unlike in other areas of medicine, very few
objective clinical tests or medical devices are routinely used in mental health care.5 The in-
formation physicians use to make diagnoses is not only subjective, but it is also episodic,
capturing only occasional snapshots from patient visits and ignoring the finer dynamics of a
patient’s condition. EEG-based methods have been shown to be effective for quantitatively
capturing a patients condition,6 but they are invasive and thus do not permit continuous data
collection. Other methods, such as video monitoring, have been shown to be useful for mon-
itoring the mental health status of patients, but are extremely difficult to interpret.7 These
drawbacks have been a barrier to widespread adoption of these modern technologies. While
the first EEG-based mental health evaluation tool has recently been approved for ADHD,8

more comprehensive patient-friendly technologies and robust methods are needed to improve
the state of mental health care.

1.2. The applicability of web and wearable technologies

Wearable products have emerged as a ubiquitous technology for passive collection of quantita-
tive data. Over 10 million fitness trackers, smart watches and other such devices are sold each
year and the market is growing rapidly.9 Many such products have the ability to measure phys-
iological data, environmental data, and activity data. In addition, other data, such as keystroke
dynamics and eye tracking, can be collected based on the user’s interaction with their wear-
ables and other devices. Unlike in other emerging solutions discussed previously, these data can
be collected in a passive manner, without affecting the day-to-day life of the user. Preliminary
evidence has shown that these data can be leveraged for use in monitoring of mental health
patients.10,11 Variability in heart rate, activity and light exposure have been studied previously
for screening in disorders like sleep apnea, dementia and epilepsy.12,13 Patient-reported out-
comes, as collected through social networks and citizen science approaches, serve as real-time
evidence for determining emotional distress symptoms.14,15 Performing sentiment analysis over
social streams provides a better understanding of human emotions than occasional surveys.16

Web and wearable technologies have been experimented with for unobtrusive data collection
to detect seizures and mental fatigue.10,11,17 However, such methods have only been applied
individually in a very narrow set of test cases. We believe that the integration of these diverse
passive data types will provide a robust and quantitative method for characterizing a wide
range of mental health states.

Here, we describe a novel platform, PRISM (Passive, Real-time Information for Sensing
Mental Health), which allows for passive collection of many types of quantitative measures
that have been shown to be related to mental health outcomes.11,13,17 In addition, the web
interface enables patients to easily access and understand their own data and thus their
health condition. This system has the potential both to generate more knowledge about which
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treatments work best for patients and to allow informed decision making in the clinic. We
believe that this integrated system for collecting and analyzing quantitative information about
a patient will have huge ramifications for the improvement of the care of mental health patients.

Fig. 1. The PRISM platform for data collection, integration and analysis is outlined here. Our system allows
for a smooth workflow that incorporates data acquisition, data analysis and feedback to the user.

2. Materials & Methods

2.1. Platform Development

The first phase of our project was to develop a platform that aggregates passively recorded user
data from smart watches with user interaction patterns from a web application. Our platform
architecture is composed of six different layers — i) Data acquisition, ii) Text mining, iii)
Feature Engineering, iv) Machine Learning, v) Access and vi) Presentation (Fig. 1). The
data acquisition layer relies on the Samsung Gear S smart watches and the Tizen APIs18 to
collect physiological, environmental and activity data of the users. A separate web application
incorporates a private blog-based feature for users to self-report their moods. User keystroke
and mouse interaction patterns are captured as the user types and navigates across the web
application. The web application also serves as a presentation layer that provides different
visualizations through interactive widgets, allowing users to explore their own data. A role-
based access is enabled to delineate two different categories of users of our platform: i) General
— normal users or existing patients who wish to track their mental health and/or become
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aware of any dormant neuropsychiatric conditions, and ii) Health care providers — physicians
and other providers who can gain summarized access to their patients’ data.

While developing the platform, we were concerned with four main concepts — privacy,
connectivity, longevity and storage. Since we are dealing with personal data, it was imperative
to store this information in a secure database in an anonymized format. To ensure HIPAA
compliance,19 we do not store any patient identifiers, such as personal information (name, date
of birth, mobile or email) and GPS location information. To ensure that the data collection is
not affected by the connectivity of the wearable, all the data is first written to a local file and
a separate backend service stores it in our secure database using a Bluetooth-paired mobile
device or a WiFi connection. The battery life of the wearable can be a rate-limiting factor to
our continuous data collection process. By excluding GPS information and giving preference
to Bluetooth over WiFi connections, we extended the battery life of our wearable to multiple
days. To ensure further longevity, no data analysis is itself carried out on the wearable and the
sole purpose is just to record the data. Because sensor and interactions data is voluminous,
we implemented gap encoding and stored data as text blocks for disjoint periods of times to
achieve efficient space utilization.

2.2. Data Collection

As the second phase of our project, we conducted a pilot study with anonymized participants
between the ages of 19–37 years. The study protocol was approved by the Institutional Review
Board at Stanford University. As the participant engaged in his/her daily activities, the watch
passively collected the following data with one second granularity:

(1) Environmental: Light intensity levels
(2) Physiological: Heart rate (beats per minute and R-R intervals)
(3) Activity: Device acceleration and rotation in all three axes, cumulative distance walked,

total number of walk and run steps, speed, cumulative calories burnt, and walk frequency.

Using our web application, the participants entered free form text entries about how they were
feeling and reported three outcomes - happiness, energy and relaxation - on a scale of 1 to 10
(Fig. 2C). These were collected at approximately three hour time intervals. As the participant
typed and navigated our interface, we collected the following user interaction patterns:

(1) Keystroke patterns: Typing speed, number of spelling errors, key press down times,
interkey latencies (time taken between typing two keys), number of times ‘Enter’, ‘Delete’
(backspace), ‘Ctrl+Y’ (redo) and ‘Ctrl+Z’ (undo) are pressed.

(2) Mouse interaction patterns: Total number and locations of mouse clicks, mouse hover
and drag positions and times, screen width and height.

All the participants were made aware of the types of data that we were collecting before
registering in this pilot study, and the days they participated in our study were selected
randomly. We also asked participants to complete a post-study survey to evaluate the usability
of PRISM. We used a standard 10-question system usability scale (SUS) questionnaire.20
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2.3. Text mining

We generated string tokens by parsing the subjective text entries. We assigned each word
with mean valence, arousal and dominance scores (VAD) retrieved from a database of VAD
norms (1-10) for nearly 14,000 English lemmas.21 We generated stemmed representation of
words that did not have a VAD score using Snowball Stemmer22 and assigned VAD scores
for associated similar words, e.g. VAD score of annoy instead of annoyance. We calculated
average VAD scores for each text entry.

Table 1. This table summarizes all of the features extracted from both the smart watch and user
interaction data.

Data Type(s) Feature(s) used

all smart watch data mean, standard deviation, dominant frequency
pedometer data cumulative sums
key press times, interkey latencies mean, standard deviation
undo/redo, spelling errors, enters, backspaces raw counts
mouse moves and drags average distance & velocity, proportion of total time
number of clicks total counts scaled by total time

2.4. Feature engineering

All features used are described in Table 1. All data was grouped into 1 hour-long time periods
and each period was treated as a separate training example for our analysis, resulting in
347 training examples for all 13 users. For each period, each smart watch data type was
composed into a time series with appropriate timestamps. Accelerometer data was converted
into spherical coordinates for this analysis in order to capture more natural descriptors of the
movements. For each time series, three summary statistics — mean, standard deviation, and
dominant frequency — were computed. The dominant frequency was derived from a discrete
Fourier Transform of the time series. For user interaction data types, each hour-long time
period was associated with the keystroke and mouse dynamics data from the most recent
blog entry. The majority of data types, including counts of typing errors and mouse move
and drag information, were used directly as features. Key press times and interkey latencies
were stratified by unigrams and bigrams, respectively, and the distribution of times for each
unigram or bigram was represented by its mean and standard deviation in the feature set.
This resulted in a total of 1658 features, 1591 of which are key press and latency statistics.

2.5. Machine learning

For unsupervised learning, data was scaled and centered for each feature. Hierarchical clus-
tering of both features and training examples was performed using complete linkage with a
Euclidean distance metric.

For supervised learning analysis, all missing data, composed mostly of keystroke dynamics
data types, filled in by median imputation. Model selection, including tuning of model pa-
rameters, was performed using cross validation, stratified by the text entry associated with
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Table 2. This table summarizes all of the models tested, along with the param-
eters tuned for each.

Model Parameters

random forest number of trees, number of features considered
gradient boosted regressor tree learning rate, number of boosting stages
lasso, ridge, elastic net regularization parameter
support vector machine kernel type
k nearest neighbors number of neighbors

the training example. For example, if the 8-9am, 9-10am, and 10-11am training examples for
one participant all contain user interaction data from the 8am text entry, they are grouped
together in cross validation. This ensures that training and testing are not performed on re-
dundant datasets. Model types and parameters altered are described in Table 2. Performance
was evaluated using an independent 20% evaluation dataset to avoid bias in model selection.

2.6. Resources

Fig. 2. PRISM data collection: (A) The Sam-
sung Gear S wearable application welcome screen
for username input. (B) The light, heart rate,
accelerometer and pedometer data collected pas-
sively at every second. (C) The subjective text
entry and marked tokens.

The PRISM platform can be accessed at http:
//54.200.211.229/BrainHealth/. The wear-
able application can be downloaded from the
platform. Source code for the platform can be
found at https://github.com/wuami/PRISM.

3. Results

3.1. PRISM Platform

Users can register with the PRISM platform, by
providing a username, year of birth and a de-
sired password. After installation of our appli-
cation on the Samsung Gear S smart watch, the
username can be entered in the GUI of the ap-
plication screen (Fig. 2A). The application then
starts to collect light, heart rate, accelerometer
and pedometer data passively (Fig. 2B). Users
have the option to stop data collection anytime
by clicking on the ’Stop Collecting’ button. If a
Bluetooth-paired mobile device or a WiFi net-
work is available, the wearable data is automat-
ically uploaded to our database. They can authenticate with our web application and report
their mood in free text format and their happiness, energy and relaxation on a quantitative
scale (Fig. 2C, 3A). A log of users’ past entries is accessible through the web application.

User data can be visualized by clicking on the ‘Explore’ tab in the navigation toolbar.
For a selected day, the heart rate, light intensity, net device acceleration and rotation can
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be viewed as line charts and walking and running steps per minute as stacked area charts.
These plots are aligned to an interactive scrollable timeline (Fig. 3D). Keystroke patterns
are shown as a heatmap superimposed on the actual keys pressed. The radius indicates the
number of times a key is pressed and the color scale indicates the average time on the key.
Interkey latencies can be visualized as a network chart where the nodes represent the keys and
thickness of the edges represent the average time (Fig. 3B). A similar heatmap, superimposed
over the user screen, is generated for the mouse interaction patterns, where a single dot, a
blurred region or a line indicates mouse click, move or drag patterns respectively (Fig. 3A).
An ‘Emotion Cuboid’ visualizes the average VAD scores for each text entry as a scatter plot
in a 3D space (Fig. 3C). Hovering over any point shows the associated text entry and average
VAD scores. VAD scores are comparable to the happiness, energy and anxiety, hence such a
spatial visualization can help easily separate the text entries and time period based on a VAD
estimate of the sentiment in that text entry.

3.2. Pilot study

We conducted a pilot study with 13 healthy participants between 19 and 37 years of age. Each
participant wore the smart watch for at least 6 hours and entered at least three text entries
over the course of a single day. In addition, one participant wore the watch for 10 days in order
to collect longitudinal data. Participants walked an average of 6800 steps per day and were
exposed to an average of 1050 lux. Reported happiness levels ranged from 2 to 10, forming a
roughly normal distribution with a mean of 6.6 out of 10. Reported energy and relaxation levels
spanned the full range from 1 to 10, in a roughly uniform distribution with means of 6.8 and
4.5, respectively. Energy levels were skewed to the left, while relaxation levels were slightly
skewed to the right. VAD analysis revealed that the content of the text was indicative of
reported outcomes, suggesting that mining of passive sources of text data, like Twitter feeds,
could replace the self-reported outcome measures. Happiness levels and estimated valence
were correlated with a Pearson’s correlation of 0.48. Energy level and estimated arousal had
a correlation of 0.23.

The SUS questionnaire revealed a generally positive reaction to PRISM, with an average
score of 74 out of 100. Participants reported that they found the system generally easy to use,
without require much knowledge or training, but reported a lack of desire to use the system
frequently. This may be a result of our study population consisting of healthy individuals who
do not have a strong incentive to understand their mental health.

3.3. Model development

We began with unsupervised learning analysis in order to gain an understanding of any struc-
ture present within our data. For this analysis, we used only the 22 features where there was
no missing data. As shown in Figure 4A, the data points seem to cluster somewhat according
to the associated relaxation level. The top section of the heatmap shows the most variation
in relaxation levels, but this is consistent with the longer branch lengths in the dendrogram,
suggesting that the training examples are not as similar as in the other clusters. Watch ac-
celeration and rotation data as well as keyboard data seemed to be the most variable across
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Fig. 3. PRISM Web Application: (A) The private blog-based workflow for users to input subjective free-text
descriptions of their mood. A mouse interactions heatmap is superimposed over this screen. (B) Keystroke
interactions heatmap and network visualizations. (C) A 3D-scatter plot (Emotion Cuboid) for visualization of
average VAD scores of text entries. (D) Timeline-scrollable, exploratory interface for visualization of wearable
data — [1] heart rate (beats per minute), [2] light intensity values, [3] net device acceleration, and [4] rotation,
as line charts, and [5] walk steps per minute and [6] run steps per minute, as stacked area charts.

users and are the most informative for this clustering. This may have to do with the relatively
high reliability of these data compared to most of the watch data types.

In the supervised learning phase, we used machine learning techniques to develop models
for predicting the user-reported response variables from the smart watch and user interaction
data. We evaluated a variety of methods, including decision tree-based models, generalized
linear models and non-parametric models. We found that tree-based models, including random
forests and gradient boosted regressor trees, resulted in the highest performance. A random
forest model explained about 51% of the variance in our data, resulting in a p-value of 8.8×10−8,
as shown in Figure 4B. This suggests that while we are unable to accurately predict the
reported relaxation levels, our data does capture information about the user’s emotional state.
Top features were derived primarily from user interactions and included interkey latency mean
values, number of backspaces and number of mouse clicks. The selection of the interkey latency
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features may be an artifact of the sparsity of those features, as some bigrams may be present
only in a single text entry. However, the number of backspaces and mouse clicks are more
likely to reflect true changes in the user’s style of interaction with their computer when they
are more anxious or more relaxed.

In order to understand person-to-person variation, we also trained a user-specific model
for the participant for which we collected longitudinal data. However, we found that this did
not result in a significant improvement over the generalized model (data not shown). This
suggests that the variation across time points in a single individual are comparable than that
between individuals.

Fig. 4. Our results from machine learning analysis are shown here. (A) This heatmap shows hierarchical
clustering of a subset of features, where labels beginning with ”freq” indicate major frequencies and labels
ending in ”diff” indicate differences between time points. The associated relaxation levels, shown in purple, do
cluster with the data. (B) A random forest model explains 51% of the variance in reported relaxation levels
on a withheld evaluation dataset, with a p-value of 8.8 × 10−8.

4. Discussion

We have designed, created, and tested the PRISM platform for the collection and analysis of
smart watch and user interaction data. Based on our pilot study, we have shown that it is
effective from both a usability and data analysis perspective.

4.1. Usability and User Experience

A mental health monitoring system can achieve maximum usability only if it can seamlessly
integrate into the user’s and physician’s daily workflow. Developing an application for a smart
watch wearable allows us to achieve passive, non-invasive data collection without the need

Pacific Symposium on Biocomputing 2016

341



for any manual intervention. While a new blog-based feature might not be appealing to the
users at first, the methods developed here can easily be combined with a Wordpress-based
blog or a Twitter plugin. Both of these networks have been established for user engagement
and have also been used as a data source of free text for early diagnosis of neuropsychiatric
conditions.23 As it is cumbersome to enter the username in the wearable screen without a
stylus, we wish to remove that requirement in the subsequent versions of the wearable appli-
cation. As each Samsung Gear S smart watch can be identified with a unique International
Mobile Station Equipment Identity (IMEI) key, we can ask the user to provide the IMEI key
during registration with our platform to link the watch to a specific user. Providing interactive
visualizations to the user for exploring the data that we collect helps increase user engagement
and build trust. In the future, we will also provide a panel to present our inferred insights and
map mental activity to a 3D Brain Browser visualization. We plan to extend our platform
to provide feedback and recommendations to our users through the visualization panels or
as notifications in the smart watch. In light of the rapid advances in this domain with the
introduction of Apple Research Kit and Samsung Simband wearables, it will be interesting to
develop solutions that are interoperable across different wearable platforms.

4.2. Data Quality

In the process of testing our watch and web applications, we observed several factors contribut-
ing to poor data quality. Many of the watch sensors are extremely sensitive to the tightness
of the strap and the placement on the wrist. In particular, heart rate data is not collected
properly when the sensor is not directly in contact with the skin. Further, even when the
watch was fastened tightly, the measurement varied by 10 bpm or more as compared to a
direct pulse measurement and was not consistent when placed on different wrists. The heart
rate is derived using photoplethysmography, or optical measurements of blood volume changes
at the surface of the skin. While this has been shown to be effective for heart rate monitoring
in wearables,24 it is clear that either the Gear S hardware or the algorithms used by the Tizen
API are failing to capture the true signal. Similarly, pedometer data is very sensitive to hand
placement. Activities like cycling or treadmill walking, where hands are often gripping a stable
handle, are omitted. Additionally, pedometer data was observed to update sporadically rather
than continuously, affecting our time series analysis. These factors are introducing significant
noise into our data and significantly impacting our ability to create predictive models.

While there is potential for upgrading to more advanced wearables like the Samsung Sim-
band, we will no doubt need to develop smarter ways to handle noisy data and to distinguish
between true and artifactual features of the data. This will require the collection of larger
datasets that will give us the power to identify predictive variation over chance variation in
the data. Bigger data would also allow us to take advantage of tools like softImpute,25 which
take advantage of low rank structure in data to impute missing values. Similar methods, like
generalized low rank models,26 could also use this structure to smooth over noise in the data.
In the future, we also plan to carry out sentiment analysis by generating a VAD-weighted
term frequency matrix and using a Naive Bayes or an SVM classifier.
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4.3. Future Work

We believe that PRISM has the potential to dramatically change the way that mental health
is diagnosed, monitored and treated. While our analyses are currently severely limited by
the size of the pilot study, the power of the data will increase dramatically as more data is
collected. In order to fully realize this potential, further studies with neuropsychiatric patients
will be necessary to validate the utility of the data. This will allow us to extract meaningful
relationships between our quantitative metrics and patient condition as well as treatment
outcomes. More longitudinal data will also allow us to infer user-specific patterns that can
enable personalized analyses of users’ data. Our system can be seamlessly integrated into a
patient’s daily life; however, introduction into a physician’s workflow may require integration
with existing EMR systems. Visualizations will enable clinicians to process both raw data
and analytics rapidly in order to assist decision making, while our models will allow for the
triggering of alerts to the physician when their patients are in an unstable mental state. In
addition, the patient studies will enable us to link our data with actual outcomes, allowing
both physicians and analytic models to learn how physiology affects treatment response.

5. Conclusions

Physiological and exogenous data (behavioral, social, environmental) is overwhelming to cap-
ture and analyze, but makes up a large portion of health determinants. In this work, we have
developed the PRISM platform that can leverage heterogeneous, continuous streams of data,
collected in a passive, non-invasive fashion, with the hopes of making mental health diagnosis
more quantitative. We have shown the potential of such a platform by developing models that
can recapitulate users’ reported emotional states. While developing the platform, we have
ensured that the privacy and anonymity of our users is maintained, and that data collection
is not hindered by the rate-limiting factors of device connectivity and longevity. We have also
developed interactive visualization panels that allow users to explore and understand their
own data, and can also serve as mechanisms through which feedback can be provided.
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