
 

INTEGRATIVE ANALYSIS FOR LUNG ADENOCARCINOMA PREDICTS 
MORPHOLOGICAL FEATURES ASSOCIATED WITH GENETIC VARIATIONS* 

CHAO WANG 
Electrical and Computer Engineering, The Ohio State University 

Columbus, Ohio, 43210, USA 
Email: wang.2031@osu.edu 

HAI SU 
Biomedical Engineering, University of Florida 

Gainsville, Florida, 32611, USA 
Email: hai.su@bme.ufl.edu 

LIN YANG 
Biomedical Engineering, University of Florida 

Gainsville, Florida, 32611, USA 
Email: lin.yang@bme.ufl.edu 

KUN HUANG 
Biomedical Informatics, The Ohio State University 

Columbus, Ohio, 43210, US 
Email: kun.huang@osumc.edu 

Lung cancer is one of the most deadly cancers and lung adenocarcinoma (LUAD) is the most common 
histological type of lung cancer. However, LUAD is highly heterogeneous due to genetic difference as 
well as phenotypic differences such as cellular and tissue morphology. In this paper, we systematically 
examine the relationships between histological features and gene transcription. Specifically, we 
calculated 283 morphological features from histology images for 201 LUAD patients from TCGA 
project and identified the morphological feature with strong correlation with patient outcome. We then 
modeled the morphology feature using multiple co-expressed gene clusters using Lasso-regression. 
Many of the gene clusters are highly associated with genetic variations, specifically DNA copy number 
variations, implying that genetic variations play important roles in the development cancer 
morphology. As far as we know, our finding is the first to directly link the genetic variations and 
functional genomics to LUAD histology. These observations will lead to new insight on lung cancer 
development and potential new integrative biomarkers for prediction patient prognosis and response to 
treatments. 

1. Introduction 

Lung cancer is one the most deadly cancers in the world. Among lung cancers, lung 
adenocarcinoma (LUAD) is a subtype of the non-small cell lung cancer (NSCLC) and is the 
most common histological type of lung cancers (1). However, despite the fact that it is a sub-
classification of lung cancer, LUAD is a heterogeneous group of tumors with a highly 
variable prognosis and responses to treatment (2). 

The high-throughput sequencing technologies are making targeted therapies possible for 
LUAD (3). The advance of these technologies allows molecular diagnostic biomarkers for the 
detection of lung cancer in addition to computed tomography (CT) screening (4–7). For 
example, the utility of epidermal growth factor receptor (EGFR) mutation testing is strongly 
recommended (8) in clinical practice. However, although EGFR-mutant lung cancers are 
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sensitive to EGFR tyrosine kinase inhibitors (TKIs), they develop resistance (9). Therefore, 
novel biomarkers for for LUAD are needed for enhanced personalized treatment. 

Lung cancer diagnosis and classification have been traditionally based on imaging 
approaches, such as CT and histopathology (10, 11). For instance, five distinct histologic 
subtypes and radiologic patterns have been reported recently. Traditionally, histopathology 
images serve as a golden standard for lung cancer diagnosis. Cellular and inter-cellular level 
morphology are usually used by the pathologists for making diagnosis decisions. However, 
the current pathology diagnosis is commonly based on individual pathologists’ interpretations 
of the samples which are subject to large inter-observer variations and low throughput 
analysis. Unbiased quantitative pathology methods are showing promise by offering more 
cellular information (12–14). Recently, pathology informatics study on lung cancer has 
attracted more interests. In one study (15), the diagnostic significance of nuclear features in 
differentiating small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) was 
investigated. Edwards et.al.(16) showed that adenocarcinoma diagnosis is more challenging 
compared to squamous carcinoma. An early automatic pathology analysis system was 
proposed in (17). In the study by Mijović et al. (18), diagnostic values of seven Karyometric 
variables are examined for diagnosis of major histological types of lung carcinoma. In Zhang 
et al’s study (19), an image classification system is proposed to differentiate lung 
adenocarcinoma and squamous carcinoma. The work by Yao et al (20) developed topological 
features for lung cancer diagnosis. Compared to genomic biomarkers, advanced imaging may 
provide more clinically relevant information. 

In order to take advantage of both the richness of histopathological information and 
molecular profiles, we aim to develop an integrative computational pipeline that exploits 
diagnostic images and mRNA expression. A related work on lung cancer was recently 
published on integrating histopathologcal images with genetic data for outcome prediction 
(21). The pipeline allowed us to discover the associations between cellular level and 
molecular level phenotypes, and thus novel biomarkers can be unveiled. In this paper, we 
extracted 283 histopathological features from LUAD tissue slides and initially attempted to 
identify co-expression gene clusters that have high correlation with these image features. 
Such approach in other cancers has led to new insight on cancer biology and new potential 
biomarkers (22). However, as shown in this paper, the morphology of LUAD is much more 
complicated and it turned out that the morphological features have low correlations with gene 
expression profiles. Figure 1 shows a ‘highly-correlated’ pairs between the imaging features 
and gene clusters. It is thus plausible that the 
LUAD morphology is regulated by any 
particular group of genes; instead a specific 
morphological characteristic is a manifestation 
of a combined effect from multiple groups of 
genes. Based on these quantitative experiments, 
we assert that a multivariate model is needed.  

Therefore in this paper, we demonstrate that 
the morphological characteristics of LUAD can 
be explained by a combination of multiple gene 
clusters identified using sparse modeling based 
on the Lasso algorithm. In addition, we found 
that many of the gene clusters are associated 
with putative copy number variations, implying 
that genetic variations play important roles in 
the development cancer morphology. As far as 

 
Figure 1: The scatter plot between the 
eigengene 95 and the tfcm4, which 
have the highest SCC between all 
eigengenes with tfcm4 (SCC = 0.170).  
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we know, our finding is the first to directly link the genetic variations and functional 
genomics to LUAD histology. These observations will lead to new insight on lung cancer 
development and potential new integrative biomarkers for prediction patient outcome and 
response to treatments.  

2 Methods and 
Materials 

Our analysis 
involve molecular 
and histological 
analysis based on 
data from The 
Cancer Genome 
Atlas (TCGA) 
LUAD project. 
The data we use 
include mRNA 
profiling, 
histological images 
and clinical data 
including survival 
information. 

2.1 Integrated 
Analysis Pipeline 

We collected matched diagnostic images and gene expression data for a discovery 
dataset of 201 LUAD patients from the TCGA. The integrative analysis workflow is shown 
in Figure 2. Our automatic imaging processing pipeline detected cell nuclei and extracted 
predefined features evaluating staining variations. To select imaging features with clinical 
relevance, survival-related imaging features were identified. At molecular level, gene 
expression profiles (mRNA levels) were filtered and clustered using our co-expression 
network analysis algorithm. Strongly co-expressed gene clusters were represented by 
eigengenes. Then, we built a lasso regression model to select gene clusters that regulate the 
image feature that has the strongest association with survival times. By finding the co-
expression patterns that are associated with the selected imaging feature, we can discover 
biological processes and genetic variations associated with cancer histology.  
2.2 Image and Genomic Data Collection 

We focus on LUAD patients with clinical information, genomic information, and 
histopathologic whole slide images. The data were downloaded from TCGA (The Cancer 
Genome Atlas) Data Portal. Data for 201 LUAD patients with all the three data types are 
downloaded for the experiments in 2014. For each patient, a representative image patch of 
size 1712 x 952 without damage or artifact is cropped from the tumor region.  Expression 
profiles of 20,530 unique genes were investigated in the 201 patients (23).  

2.3 Data Preprocessing and Imaging Feature Extraction 
2.3.1 Imaging features 

We adopt the cell detection and segmentation methods proposed in (24). In the cell 

 

Figure 2: Schematic overview of constructing gene co-expression 
networks and analyzing the relationships between gene networks and 
morphological features. 
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detection stage, a radial voting scheme with Gaussian pyramid is employed (25). For each 
image, a Gaussian pyramid is created. A single–pass voting  is applied to each layer. The 
voting region receives scores weighted by a distance transform. Therefore, such weighted 
voting encourages the pixels closer to the cell center accumulates higher voting scores. The 
final voting score is obtained by summing up the voting scores from different layers. In the 
segmentation stage, a marker based active contour with a repulsive term is applied to the 
images using the detection results as the markers. An initial contour associated with each 
detected marker is created first. The contours evolve through an iterative procedure to reach 
the real boundaries of the cells. The repulsive term serves to prevent the contours from 
crossing and merging with each other.  

Group 1: Geometry Features. Based on the segmentation results, five geometry features are 
calculated for each lung cancer cell to capture the cell shape information, including cell area, 
contour perimeter, circularity, major-minor axis ratio, and contour solidity. Contour solidity 
is defined as the ratio of the area of a cell region over the convex hull defined by the 
segmentation boundary. 
Group 2: Pixel Intensity Statistics. Pixel intensity statistics features are used to capture the 
color of the segmented cells. This group of features are calculated based on the intensity of 
the pixels within the segmented cells, including intensity mean, standard deviation, skewness, 
kurtosis, entropy, and energy. Lab color space is used for a better color representation. 
Group 3: Texture Features: Texture is an important feature found to be closely related to 
cancer diagnosis in radiomics. This is rooted in the fact that texture patterns are linked to 
difference in protein expressions (26). This group of features consists of co-occurrence 
matrix (27), center symmetric auto-correlation (CSAC) (28), local binary pattern (LBP) (29), 
texture feature coding method (TFCM) (30). The co-occurrence matrix (27) computes an 
estimation of the joint probability distribution of the intensity of two neighboring pixels. 
CSAC is a measure of the local patterns with symmetrical structure. These patterns are 
characterized by a series of local auto-correlation and covariance introduced in (28), 
including symmetric texture covariance (SCOV), variance (SVR), and within-pair variance 
(WVAR), and between-pair variance (BVAR). 3×3 pixel unit of each channel is considered. 
LBP (29) feature measures the local textures by assigning a binary code to a pixel with 
respect to its intensity and those of its neighboring pixels. A histogram of the generated 
binary codes reveals the distribution of the present repeated local patterns. Similar to LBP, in 
TFCM (30), a texture feature number (TFN) is assigned to each pixel by comparing this pixel 
with its neighbors in four directions: 0°, 45°, 90°, and 135°. A histogram is calculated based 
on the TFNs of one image patch.  
2.3.2 Gene transcriptome data 

The expression profiles of 201 samples with primary lung cancer adenocarcinoma from 
TCGA LUAD project were downloaded from TCGA data portal in January 2014. 
Specifically, RNA-seq data for the tumor samples were obtained using Illumina sequencing 
and processed as described in (6). The mapping results were converted to RPKM (read per 
kilobase per million reads) values for 20,530 genes. Genes with low expression levels (with 
no data in the top 15 percentile) and low variance (in the lowest 10 percentile) were removed 
resulting in 9,179 genes.  
2.4 Gene co-expression network analysis and summarization 

While our goal is to establish the relationships between gene expression levels and the 
imaging features, we first carry out gene co-expression network analysis (GCNA) to cluster 

Pacific Symposium on Biocomputing 2017

85



 
 

 

genes into co-expressed clusters. There are multiple reasons for carrying out GCNA before 
associating them with the imaging features. First, there is a large number of genes. If the 
association between every pair of gene and imaging feature is calculated and tested for 
significance, then more than half a million tests will be carried out which leads to low 
statistical power. In addition, since we will explore the association beyond univariate 
relationships using sparse analysis, the large number of genes (which are not always 
independent), pose serious computing challenges to the sparse modeling algorithms such as 
Lasso. Thus we first group genes with highly correlated expression profiles into co-
expression clusters using GCNA then summarize the expression profiles within each cluster 
as an “eigengene” using the protocol described in (31). Essentially the expression profiles of 
each gene are first centralized (by subtracting the mean for each gene) and then standardized 
to have norm one. After the processing steps, singular value decomposition is applied to 
obtain the eigengene as the principal vector in the direction with the largest variance among 
the samples. Another advantage of the GCNA approach is that the highly co-expressed gene 
clusters are usually highly enriched in specific biological processes, regulatory factors or 
structural variations (e.g., copy number variations) (32), making the interpretation of the 
results straightforward. 

While there are many algorithms for performing GCNA including the well known 
WGCNA package, we use a weighted network mining algorithm called local maximum 
quasi-clique merging (lmQCM) algorithm we recently developed (32). Unlike WGCNA 
which uses hierarchical clustering and does not allow overlaps between clusters, our 
algorithm is a greedy approach allowing genes to be shared among multiple clusters, in 
consistent with the fact the genes often participate in multiple biological processes. In 
addition, we have shown that lmQCM can find smaller co-expressed gene clusters which are 
often associated structual mutations such as copy number variations in cancers. The lmQCM 
algorithm has four parameters γ, α, t, and β. Among these parameters, γ is the most 
influencial, it decides if a new cluster can be initiated by setting the weight threshold for the 
first edge of the cluster as a subnetwork. In our GCN analysis, we directly use the absolute 
values of the Spearman correlation coefficients between expression profiles of genes as 
weights for which we have shown to be effective in previous studies.  
2.4 Associations between Morphology and Transcriptomes  

2.4.1 Correlation analysis 
We first examined the correlation between the imaging features and the eigengenes for 

the gene clusters identified using lmQCM by calculating the Spearman correlation 
coefficients between them. However, as shown in the Results, the correlations between 
imaging features and eigengenes are not strong (none of them is significant if Bonferroni 
correction is applied for multiple test compensation). While this is different from the case in 
breast cancer, it suggests that the tissue morphology development is a complicated process 
involving in multiple processes and genetic factors. Thus in order to explain the morphology 
development, we need to resort to multi-variate modeling methods such as lasso regression. 
2.4.2 Sparse modeling using Lasso regression 

We model imaging features as manifestations of gene expression. Given the data 
availability, we focus on transcriptome data. Lasso regression model minimizes the residual 
sum of squares while at the same time enforcing sparsity of the model by adding a penalty 
term of the L1-norm of the model coefficients.  

Consider the linear regression model: we have (𝑥! ,𝑦!) , 𝑖 = 1,2,… ,𝑁 , where 𝑥! =
(𝑥!!,… , 𝑥!")!  and 𝑦!  are eigen-gene expression and image feature value for the 𝑖 th 
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observation(patient sample), respectively. With regular regression model, the least square 
estimates are obtained by minimizing the residual squared error. However, in feature 
selection models to predict biomarkers, only imperative transcriptomes contribute to 
biological functions and processes, requiring more stringent and interpretable features. With 
large number of features, we would like to determine a small subset of them that can predict 
strong correlations. Let 𝛽 = (𝛽!,… ,𝛽!)! and 𝛽! to be a scalar. The lasso model estimate 
(𝛽,𝛽!) by solving the following problem 

min
𝛽,𝛽!

( !
!!

(𝑦! − 𝛽! −   𝑥!!𝛽)! +   𝜆!
!!! 𝛽!

!
!!! ),                                   (1) 

where 𝜆 is nonnegative regularization parameter giving the weight for the model complexity 
term. As 𝜆 increases, the number of nonzero components of 𝛽 decreases, leading to smaller 
numbers of predictors.  
2.5 Identification of Survival-Related Image Features 

Univariate Cox Proportional Hazard models are used to identify morphological features 
and genes that have expression related significantly to survival. Morphological features that 
have p-values less than 0.05 are recorded. 
Table 1: Prognostic values of various image features in discover dataset. The features are 

listed by their significance in 
the survival model. 
2.6 Validating the Identified 
Genes in Other Data Set 

For genes associated with 
the imaging features with the 
highest potential for predicting 
patient survival, we also test 
them on another publicly 
available dataset obtained 
from the NCBI Gene 

Expression Omnibus. The dataset GSExxxx contains transcriptome data of 149 non-small cell 
lung cancer patients, among which 90 are unique lung adenocarcinoma patients with clinical 
outcome (survival time and status). We use the genes to be tested as features to separate the 
90 patients into two groups using K-means algorithms (K=2, Euclidean distance, average 
linkage, and 10 replicates). The survival times of the two groups are then visualized using 
Kaplan-Meier curves and compared using Cox Proportional Hazard regression. 

2.7 Enrichment analysis of gene clusters 
To interpret the biological meaning of the identified gene clusters, enrichment analysis 

tools such as TOPPGene (https://toppgene.cchmc.org/enrichment.jsp) are used. In addition, 
information about the genes are extracted from cBioPortal (http://www.cbioportal.org/).  

3 Results 
3.1 Image Feature Calculation 

As shown in Figure 3 Left, the images reveal clear heterogeneity of the tumors among 
the patients. We calculated 283 image features from the images. As described in Section 
2.3.1, there are multiple types of features and many features are strongly correlated (Figure 3 
Right) such as part of the TCFM family (the block of 211 to 222). In this paper, we analyze 

Feature 
Names p-value  Feature 

Names p-value 

tfcm4 0.00456904  contrast1 0.01210092 
tfcm9 0.00532429  tfcm12 0.01247155 
tfcm3 0.00563955  tfcm11 0.01361604 
tfcm1 0.0064998  csac23 0.01754474 
tfcm2 0.00657692  tfcm7 0.0178572 

tfcm10 0.00685436  fourier15 0.0178766 
contrast2 0.0082282  csac5 0.01896244 

tfcm8 0.0093341  entry4 0.01995154 
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each feature individually, but some of the highly features can be combined in future analysis.  
3.2 Survival-related Image Features and Gene Cluster 

Using a univariate Cox proportional hazards regression model, we assessed the image 
features related risk score in the prediction of the LUAD patient survival. Significant 

morphological features are listed in Table 1. Among the six categories of imaging features, 
the tfcm category shows the most significant prognostic power, indicating texture features in 
lung adenocarcinoma have a strong potential for predicting patients’ outcomes. In fact, all of 
the top six survival-related imaging features are in the tfcm category. Other features that 
capture prognosis are contrast2, contrast, csac23, fourier15, csac5 and entry4.  
3.2 Gene Co-Expression Network Analysis 

As mentioned in Section 2.3.2, 9,179 genes were kept for analysis. The absolute value of 
the Spearman rank correlation coefficients were used for cluster detection using lmQCM 
algorithm. We allow the smallest gene clusters to have five genes. Then we found with γ = 
0.75, t = 1, α = 1, and β = 0.4 the algoirthm yielded co-expressed gene clusters with balanced 
sizes. Specifically, it led to 95 clusters ranging from 5 to 120 genes. Many of the gene 
clusters are consistent to the ones frequently found in cancers. Most of these clusters involved 
in hallmark cancer biological processes such as cell cycle/genome stability (cluster 1), 
immune respones (cluster 2), translation / protein synthesis (cluster 3), and extracellular 
matrix development (cluster 7). However, some of them are more associated with specific 
cytobands (e.g., chr19p13), implying potential CNV sites.  
3.3 Correlations between Image Features and Gene Clusters 

The image analysis pipeline allowed us to quantify tumor characteristics on cellular level 
and associate these tumor characteristics with patient outcomes. In this study, we calculated 
283 imaging features for the 201 patients and correlated with the 95 eigengenes. The 
correlation coefficient with the large absolute value is -0.2990 (p=1.7728e-05). In Table 2, 
we list the strongest correlation between eigengenes and the top five imaging features (in 

 
Figure 3. Left: Examples of the image patches from different patients. Right: Heatmap 
of the correlation (Spearman) matrix for the 283 image features.  
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Table 1) with the most significant power for predicting patient outcome. It is clear from the 
table that none of such correlations is statistically significant (after multiple test 
compensation), suggesting that complex phenomena such as cell and tissue morphology in 
lung cancers can only be explained by multiple molecular and genetic factors.  

Table 2. Imaging features and the eigengenes with the strongest correlations with them.  

Imaging feature Eigengene 
(cluster) SCC/p-value Enrichment 

tfcm4 95 0.1710/0.0153 18q12.1 (p=1.175e-9), all five 
genes on 18q12 

tfcm9 59 0.1677/0.0174 
16p11.2 (p=1.364e-10), all seven 

genes on 16p11 
tfcm3 59 -0.1658/0.0188 
tfcm1 59 0.1704/0.0157 
tfcm2 59 0.1508/0.0327 

3.4 Lasso Regression Model for Imaging Features Using Eigengenes 
Since the imaging features with prognostic power do not have strongly correlated gene 

clusters, we resort to multivariate models to explain the cell and tissue morphology using 
molecular data. Specifically, we built a lasso regression model. The lasso model selects a 
sparse set of eigengenes to explain the selected imaging feature. We rank the importance of 
image features by their significance in survival analysis. The top 10 image features in Table 1 
belong to only two categories – TFCM and Contrast. Features within each category are 
highly correlated (for the eight TFCM features, the smallest of the absolute value of the SCC 
is 0.6840, the two SCC between the two Contrast features is 0.9923). Since eight out of 10 
top image features are from the TFCM family, we chose one feature from for our modeling, 
namely tfcm4.    

For tfcm4, it is found that the 
lowest MSE is found at λ = 
0.0371 for the cost function in 
Eq.(1). Figure 4 shows the values 
of the coefficients β. Among the 
95 eigengenes, 28 have non-zero 
coefficients among which 18 are 
larger than 0.5 and 12 are larger 
than 1. For the analysis of genes, we collected 185 genes from the 18 clusters with absolute 
value of coefficients larger than 0.5. In 
addition, Figure 5 shows the correlation 
between the combined eigengenes using the 
calculated β values with the tfcm4 values in 
contrast to the correlation between the 95th 
eigengene (as listed in Table 2) and tfcm4 
(Figure 1).  
3.5 Functional and Genetic Analysis of 
Gene Clusters Associated with Imaging 
Features  

In order to understand the functional 
roles of the gene clusters associated with 
tfcm4, enrichment analysis was carried out 

 
Figure 5. The scatter plot between the 
combined eigengenes using the lasso 
coefficients and the tfcm4 (SCC = 0.4791).  

 
Figure 4. Coefficients (β values) of the lasso 
regression for tfcm4. 
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using TOPPGene and the results for the 18 gene clusters are shown in Table 2.  Among the 
gene clusters whose eigengenes are associated with tfcm4, the largest cluster is the cluster #4, 
consisting of 59 genes and is highly enriched with ribosomal genes and thus protein 
translation function. Other related biological processes including immune response (response 
to virus, cluster #18), response to steroid hormone, negative regulation of epithelial cell 
proliferation, and mitochondrial ATP synthesis.  

Interestingly, 14 out of the 18 gene clusters are highly enriched on specific cytobands.  It 
has been previously noticed that many of the co-expressed clusters in cancers are associated 
with copy number variations (CNVs) in specific cytobands (32). CNVs are common genetic 
variations playing important roles cancer initiation and development. Functional CNVs 
usually lead to changes in expression levels of genes on that region due to the “dose effect”, 
which also leads to co-expression of the transcribed genes. Figure 6 Left shows an example 
of the RPRD1A gene in cluster #95, whose mRNA level has a strong correlation with its 
copy number measurement and it shows a strong co-expression relationship with the ELP2 
genes on the same cytoband.  
Table 2: Gene clusters showing strong correlation with texture image feature tfcm, and their 
Gene Ontology terms and enriched cytobands. 

Gene 
Cluster 
(size) 

beta GO Biological 
Process/p-values 

Cytobands/p-
values Notes: 

4  
(59) 

-1.1558 GO:0006614 SRP-
dependent 
cotranslational protein 
targeting to membrane 
/ 9.105E-98 

  

18 
(14) 

0.6328 GO:0009615 response 
to virus  / 9.965E-15 

  

31 
(10) 

1.3894   Genes down-regulated in 
nsopharyngeal carcinoma 
relative to the normal tissue 
(p = 5.074e-19, all 10 genes) 

33 (10) -1.7213  19q13.42/5.525e-6 All 10 genes on 19q13.3-4 

40 
(8) 

1.2977  8q24.13/3.263e-5 Seven genes on 8q21-24, 
one on 8q13 

50 (8) -0.8343 GO:0048545 response 
to steroid hormone  /
 2.290E-8 

  

52 (8) 0.7075  7q33/  4.800E-5 All eight genes on 7q21-36 
54  
(7) 

0.5669 GO:0006413
 translational initiation  
/ 1.096E-5 

Yq11  /2.305E-6, 
Xq13.2/  2.856E-5  

Four genes on Yq11, two on 
Xq13.2, one on Yp11.3 

58 (7) 0.6952  8p21.1  / 6.631E-6  Five genes on 8p21, two on 
8p12 

59 (7) -1.5729  16p11.2/1.364e-10 All seven genes on 16p11 
60  
(7) 

1.2103  Xq28/1.982e-13 All seven genes on Xq27-28 

61 
(7) 

-1.6639  6p21.1/4.436e-7 Six genes on 6p21-22, one 
on 6p12 

70 (6) 2.1783  17q21.31/5.532e- All six genes are on 17q21 
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10 
74 
(6) 

-2.0544  8p11.2/1.048e-9 All six genes are on 8p11.2 

75 
(6) 

-1.0093 GO:0050680  negative 
regulation of epithelial 
cell proliferation  / 
 3.290E-6  

17q11.2/6.880e-7 All six genes are on 17q11-
12 

85 (5) -0.6095 GO:0042776
 mitochondrial ATP 
synthesis coupled 
proton transport  /
 6.311E-9 

21q22.11/  3.344E-
5 

Four genes on 21q21-22 

87 (5) 1.9569  19q13.2/1.131e-6 All five genes on 19q13 
95 (5) 2.5783  18q12.1/1.175e-9 All five genes on 18q12 

 

3.4 Prognostic Validation  
Validation on heterogeneous 
external data sets allows for 
evaluation of the 
generalizability. To test the 
importance of cilium-related 
genes, we further performed 
survival analysis on a 
publicly available dataset 
with 90 LUAD patients. 
Among the 185 genes 
correlated with the image 
feature category tfcm, 118 of 
the gene symbols can be 
matched exactly to the 
external dataset. In the 
validation dataset, lung adenocarcinoma patients were stratified into two groups using K-
means based on their 
expression levels of the 118 
genes. In both datasets, a 
statistically significant group 
of patients with worse 
outcomes were differentiated 
(n = 44 and n = 46, 
respectively). The difference 
between the two groups is 
significant (Cox hazard 
proportional model p-value 
2.1285e-6). Figure 7 shows 
the Kaplan-Meier curves of 
the two patient cohorts. 
4 Discussion and Conclusion 

Our integrative analysis 

 
Figure 6. Left: Gene RPRD1A shows strong correlation 
between mRNA level and copy number values. Right: 
RPRD1A and ELP2 (both in cluster #95) are strongly co-
expressed. 

 
Figure 7: Kaplan–Meier survival curves of prognostic 
model on two clusters from the lung adenocarcinoma 
dataset. Survival curves of two groups (group 1 with 44 
patients on the left and group 2 with 46 patients on the 
right). The difference of survival time between the two 
groups is significant (Cox hazard proportional model p-
value 2.1285e-6). 
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pipeline allows us to find survival related textural features of lung adenocarcinoma. In 
addition to the image features, we also demonstrated that modeling of the histology at 
cellular and tissue levels using “omics” data may involve multiple groups of genes. 
Interestingly, our results showed that that the histological phenotype may be manifestations 
of multiple genetic variations, especially copy number variations. Specifically, many of the 
enriched cytobands we identified have been previously associated with lung cancer 
development including 19q13 (33, 34) , 8q24 (33), 7q21-36 (35), 8p21 (33), 16p11 (36), 
Xq27-28, 6p21 (34), 17q21 (34), 21q22 (35), and 18q12 (33). While there is no report on the 
association of Xq27-28 with lung cancer, Xq26 has been shown to be associated with lung 
cancers (36), suggesting that the genetic variations should be further explored to identify 
potential “driver” genes for lung cancer. We also showed that the genes in the clusters can 
indeed predict patient prognosis, which leads to discovery of potential biomarkers. While our 
study is focused on patient prognosis, the process can be repeated for patient treatment 
response prediction with appropriate data. Overall we demonstrated that the morphology is a 
complex phenomenon and its development may involve multiple groups of genes. In cancers, 
this process is even more complex as the genetic variations also contribute significantly to 
this process. Our findings indeed support this notion.  
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