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Electronic phenotyping is the task of ascertaining whether an individual has a medical
condition of interest by analyzing their medical record and is foundational in clinical in-
formatics. Increasingly, electronic phenotyping is performed via supervised learning. We
investigate the effectiveness of multitask learning for phenotyping using electronic health
records (EHR) data. Multitask learning aims to improve model performance on a target
task by jointly learning additional auxiliary tasks and has been used in disparate areas of
machine learning. However, its utility when applied to EHR data has not been established,
and prior work suggests that its benefits are inconsistent. We present experiments that
elucidate when multitask learning with neural nets improves performance for phenotyping
using EHR data relative to neural nets trained for a single phenotype and to well-tuned
baselines. We find that multitask neural nets consistently outperform single-task neural nets
for rare phenotypes but underperform for relatively more common phenotypes. The effect
size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the
sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify
phenotype complexity and find that neural nets trained with or without multitask learning
do not improve on simple baselines unless the phenotypes are sufficiently complex.

Keywords: Electronic Health Records; Electronic phenotyping algorithms; Deep learning;
Multi-task learning.

1. Introduction

The goal of electronic phenotyping is to identify patients with (or without) a specific disease
or medical condition using their electronic medical records. Identifying sets of such patients
(i.e. a patient cohort) is the first step in a wide range of applications such as comparative
effectiveness studies,1,2 clinical decision support,3,4 and translational research.5 Increasingly,
such phenotyping is done via supervised machine learning methods.6–8

Multitask learning (MTL) is a widely used technique in machine learning that seeks to im-
prove performance on a target task by jointly modeling the target task and additional auxiliary
tasks .9 MTL has been used to good effect in a wide variety of domains including computer vi-
sion,10 natural language processing,11,12 speech recognition,13 and even drug development.14,15

However, its effectiveness using EHR data is less well established, with prior work providing
contradictory evidence regarding its utility.16,17

In this work, we investigate the effectiveness of MTL for phenotyping using EHR. Our pre-

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1. The architecture of a multitask neural net for electronic phenotyping is shown on the right:
the target task (shown in yellow) and the auxiliary tasks (shown in blue) share hidden layers and
have distinct output layers; for comparison, we show the corresponding single-task neural net on the
left with a single output layer for the target phenotype.

liminary studies recapitulated the inconsistent benefits found in prior work.16,17 We thus aimed
to elucidate the properties of the phenotypes for which MTL helps versus harms performance.

In this paper, we present a systematic exploration of the factors that determine whether
or not MTL improves the performance of neural nets for phenotyping with EHR data. Our
experiments suggest the following conclusions:

• MTL helps performance for low prevalence (i.e. rare) phenotypes, but harms perfor-
mance for relatively high prevalence phenotypes. Consistent with some prior work, there
is a dose-response relationship with the number of auxiliary tasks, with the magnitude
of the benefit or harm generally increasing as auxiliary tasks are added.

• MTL reduces the sensitivity of neural nets to hyperparameter settings. This is of prac-
tical importance when one has a limited computational budget for model development.

• Neural nets trained with or without MTL do not improve on simple baselines unless
phenotypes are sufficiently complex. However, learning more complex models can be
problematic with complex but low prevalence phenotypes. We explore this phenomenon
by quantifying phenotype complexity using information theoretic metrics.

2. Background

2.1. Multitask nets

Multitask Learning MTL seeks to improve performance on a given target task by jointly
learning additional auxiliary tasks. For instance, if the target task is whether or not a patient
has type 2 diabetes, one might jointly learn auxiliary tasks such as whether or not the patient
has other diseases such as congestive heart failure or emphysema. MTL is most frequently
embodied as a neural net in which the earliest layers of the network are shared among the
target and auxiliary tasks, with separate outputs for each task (see Figure 1). MTL was
originally proposed to improve performance on risk stratification of pneumonia patients by
leveraging information in lab values as auxiliary tasks.9 It has since been used extensively
for health care problems such as predicting illness severity18 and mortality,17 and disease risk
and progression.19–23 However, the reported benefits of MTL are inconsistent across problems.
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Fig. 2. Rule-based definitions for Type 2 Diabetes Mellitus from PheKB.34

For example, Che et. al showed that MTL improved performance on identifying physiological
markers in clinical time series data,16 while Nori et. al concluded that MTL failed to improve
performance on predicting mortality in an acute care setting.17 Our aim in this study is to
clarify when one might expect MTL to help performance on problems using EHR data. We
focus specifically on the foundational problem of phenotyping, which we discuss next.

Electronic Phenotyping In this study, phenotyping is simply identifying whether or not a
patient has a given disease or disorder. The gold standard for phenotyping remains manual
chart review by trained clinicians, which is time-consuming and expensive.24–26

This has spurred work on electronic phenotyping, which aims to solve the same problem
using automated means and EHR data as input. The earliest electronic phenotyping algorithms
were rule-based decision criteria created by domain experts.24–28 Figure 2 shows an example
of a rule-based algorithm for type 2 diabetes mellitus. In this approach, identifying patients
with the phenotype can be automated once the algorithm is specified, but the latter process
is still time consuming and expensive.

More recent work has focused on using statistical learning6,29–33 to automate the process
of specifying the algorithm itself using the methods of machine learning (i.e. models such as
logistic regression, random forests, and neural nets). MTL is a particular method for doing
this better. Our goal in this work is not to maximize performance for some phenotype but
rather to gain insight into when MTL helps versus harms in this approach to phenotyping.

3. Methods

3.1. Dataset Construction and Design

Dataset Our data comprises de-identified patient data spanning 2010 through 2016 for
1,221,401 patients from the Stanford Translational Research Integrated Database Environ-
ment (STRIDE) database.35 Each patient’s data includes timestamped diagnosis (ICD-9),
procedure (CPT), drug (RxNorm) codes, along with demographic information (age, gender,
race, and ethnicity). We use a simple multi-hot feature representation whereby each ICD-9,
CPT, and RxNorm code is mapped to a binary indicator variable for whether the code occurs
in the patient’s medical history. We similarly encode gender, race, ethnicity, and each integer
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value of age. This process results in a sparse representation of 29,102 features.

Target Task Phenotypes Phenotyping with statistical classifiers is typically framed as a
binary classification task, which requires data labeled with whether or not the patient has
the phenotype. For this study, we derive the phenotypes using rule-based definitions from
PheKB,36 a compendium of phenotype definitions developed to support genome-wide associ-
ation studies. We focus on 4 phenotypes, chosen to span a range of prevalences. They are:
type 2 diabetes mellitus (T2DM), atrial fibrillation (AF), abdominal aneurysm (AA), and an-
gioedema (AE). The respective prevalences of these phenotypes in our data are 2.95%a, 2.89%,
0.12%, and 0.08%. We use these rule-based definitions to derive the phenotypes because they
are easy to implement, scalable and transparent – later we describe how we take advantage of
the rule-based definitions to gain insight into the effectiveness of MTL relative to baselines.

Auxiliary Tasks Our auxiliary tasks are to classify phecodes, manually curated groupings
of ICD-9 codes originally used to facilitate phenome-wide association studies.37 We randomly
select phecodes with prevalence between 0.08% and 2.95%, i.e. the lowest and the highest
target phenotype prevalences, as auxiliary tasks. We conduct binary classification on each
phecode and experiment with 5, 10, and 20 randomly selected phecodes as auxiliary tasks.

3.2. Experimental Design

We aim to investigate whether and under what circumstances MTL improves performance
upon baselines. Recent work suggests that we need to be careful in order to draw robust con-
clusions on the relative merits of machine learning, especially neural net based methods.38–41

First, one typically randomly partitions data into training, validation and test sets. We fit
models to the training set, select or tune models using the validation set, and estimate perfor-
mance on new data using the test set. All three steps use finite samples and are thus subject
to noise due to sampling. This is especially true when data exhibit extreme class imbalance, as
is the case with our phenotypes. Second, the performance of even simple feed-forward neural
nets is known to be sensitive to hyperparameters such as the number of hidden layers and their
sizes. Finally, fitting neural nets is inherently stochastic due to random initialization of model
parameters and training by some variation of stochastic gradient descent. This, combined with
the highly non-convex nature of neural nets, implies that different training runs of a neural net
with fixed hyperparameters and dataset splits can still result in widely varying performance.42

We thus designed our experiments to mitigate noise due to these factors. First, for each
phenotype, we perform ten random splits of the data into training (80%), validation (10%),
and test sets (10%). We use stratified sampling to fix the prevalence of the targets to the overall
sample prevalence in each of the training, validation and test sets. Second, for each of these
splits, we perform a grid search over these hyperparameters for the MTNN and STNN models:
we vary the number of hidden layers (1 or 2), their size (128, 256, 512, 1024, and 2048), and the
initial learning rate for the algorithm (1e-4 and 5e-5). Moreover, we performed experiments

aThe prevalence is low compared to the population prevalence of approximately 9% because the
rule-based definitions from PheKB are tuned for high precision at the cost of lower recall.
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varying the number of auxiliary tasks (in the form of 5, 10, and 20 nested, randomly selected
phecodes) for MTNNs by conducting the above grid search for each scenario. For each split,
we also fit an L1 regularized logistic regression model, tuned on the validation set. We use
the area under the Precision-Recall curve (AUPRC) as our evaluation metric since it can be
more informative than the area under the receiver operator characteristic curve (AUROC) in
problems with extreme class imbalance.43

Phenotype Complexity Our experiments suggested that the complexity of the phenotype
is important in whether MTNNs and STNNs outperform well-tuned logistic regression. We
quantified the phenotype complexity with regard to a subset of the features upon which the
classifiers are builtb. If we had access to an oracle that told us which features of the patient
representation are important in determining a patient’s phenotype, we could characterize the
complexity of the phenotype with regard to the observed combinations of these features in the
positive cases. We could also compare the distributions of the positive and negative cases to ex-
amine how difficult it is to discriminate positive and negative cases given the relevant features.

Our phenotypes are derived from the rule-based definitions, which we use as such an oracle:
for each phenotype, we extract the features involved in its rule-based definitions (the oracle
features) and count occurrences of each distinct combination of these features observed in
the positive and negative cases. Each unique combination is represented as a binary string
with each digit indicating the presence or absence of an oracle feature. Since some of the
phenotype definitions involve very many combinations, we hash the combinations into a lower-
dimensional space, i.e. a fixed number buckets. Specifically, we use a hash function to map
the combinations (the variable-length binary strings) to a fixed number of hash codes (the
buckets). We obtain the counts in each bucket for the positive and negative cases and analyze
the resulting histograms using two information theoretic metrics.

Let xi be the vector of oracle features for bucket i. We summarize the phenotype complexity
of positive cases by treating the histogram as a discrete probability distribution and calculate
its information entropy,44 defined as:

H(X) = Ex∼P [log(x)] =

n∑
i=1

p(xi) log(xi),

where n is the number of buckets. This metric summarizes the diversity of positive cases with
respect to the oracle features and is higher for more complex phenotypes.

We compare the distributions of the positive and negative cases using the Kullback-Leibler
(KL) divergence.45 For discrete probability distributions P+ and P−, the KL divergence from
P− to P+ is defined as:

DKL(P+ ‖ P−) =

n∑
i=1

P+(xi)
P−(xi)

P+(xi)
,

where n is the number of bucketsc. P+(xi) and P−(xi) are the normalized frequencies of bucket

bThere is no direct way to quantify the complexity of the rule-based definitions shown in Figure 2.
cKL divergence does not admit zero probabilities so we use Laplace smoothing on the distributions
to deal with combinations that do not have mutual support.
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i for cases and controls respectively. KL divergence measures the dissimilarity between the
case and control distributions and is lower for the phenotypes that are harder to discriminate.d

Neural Net Details All neural nets used ReLU activations46 for the hidden layers and
Xavier initialization47 and were trained using Adam48 with standard parameters (β1 = 0.9

and β2 = 0.99) for 6 epochse. We controlled overfitting with batch normalization and early
stopping on the validation set.

4. Experiments and Results

In this section, we present results that provide insight into the following questions:

• When does MTL improve performance relative to single-task models for phenotyping?
• How do the effects of MTL change with the number of phecodes as auxiliary tasks?
• How do the neural net methods compare with strong baseline methods, and what are

the characteristics of the tasks for which they provide some benefit?

4.1. When Does Multitask Learning Improve Performance?

We investigate the performance of MTNNs over a range of hyperparameter settings and over
multiple random splits of the data. MTNN performance is compared to the performance
of STNNs over the same hyperparameter settings and data splits. Figure 3 shows the op-
timal MTNN and STNN performance achieved on each split for the four phenotypes. We
find that MTNNs consistently outperform STNNs for the low prevalence phenotypes, i.e. an-
gioedema and abdominal aneurysm. In contrast, MTL harms performance for the relatively
high-prevalence phenotypes, i.e. T2DM and atrial fibrillation. The left plot in Figure 4 shows
the pairwise differences between MTNN and STNN optimal performance across the splits.

Moreover, the performance of STNNs is very sensitive to hyperparameter settings for the
low prevalence phenotypes, as illustrated by the large spread in AUPRC values (see Figure
3). In contrast, MTNNs are more robust to hyperparameter settings for these phenotypes. In
practice, tuning neural nets is time-consuming and finding an ideal model demands extensive
computation. MTL may increase our chance of finding a reasonable model, which is of practical
value when one has a limited computational budget on model space exploration.

4.2. Relationship Between Performance and Number of Tasks

We investigate how MTL is influenced by the number of auxiliary tasks as defined in the
form of phecodes. We trained MTNNs with nested sets of 5, 10, and 20 randomly selected
phecodes (i.e. the 5-phecode set is a subset of the 10-phecode set, and so on), and reported the
performance with the optimal hyperparameter setting for each split. The right plot in Figure
4 shows pairwise differences in AUPRC values between MTNNs and STNNs. For the low
prevalence phenotypes, more phecodes increases performance gains. Similarly, more phecodes

dPlease refer to https://arxiv.org/abs/1808.03331 for a more detailed description of our method.
eWe found 6 epochs was sufficient for all models to converge.
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Fig. 3. MTNN and STNN performance for Angioedema, Abdominal Aneurysm, Atrial Fibrillation,
and Type 2 Diabetes Mellitus with various hyperparameter settings across the ten splits; the best case
MTNN and STNN performance is emphasized by the solid dots: the blue and red dots correspond
to MTNNs and STNNs respectively.

Fig. 4. The left plot shows the pairwise differences in AUPRC values of the optimal MTNNs and
STNNs for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus
across the ten splits. The right plot shows the pairwise differences in AUPRC values of the optimal
STNNs and MTNNs with different number of phecodes as auxillary tasks.

for high prevalence phenotypes leads to more severe negative effects, though the scale of the
negative effects is smaller than the positive effects for low prevalence phenotypesf .

fThis dose-response relationship with the number of auxiliary tasks recapitulates the findings of
Ramsundar et al,14 but we find the relationship holds for both the benefit and harm of MTL.
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Fig. 5. MTNN, STNN, and LR optimal performance for Angioedema, Abdominal Aneurysm, Atrial
Fibrillation, and Type 2 Diabetes Mellitus across splits: the blue squares, the red triangles, and the
green dots correspond to MTNN, STNN, and LR respectively.

4.3. Comparison with Logistic Regression Baseline

In discussing the merits of MTL, it is important to also compare the performance against
simpler baseline methods in addition to single-task neural nets. We compare the performance
of the neural nets with L1 regularized logistic regression (LR), a consistently strong baseline for
EHR data49,50 (see Figure 5). LR is consistently outperformed by the neural nets for abdominal
aneurysm and type 2 diabetes mellitus, which are low and high prevalence respectively. For
angioedema, a low prevalence phenotype, performance relative to LR is inconsistent across the
splits, although MTNNs consistently beat STNNs. And for atrial fibrillation, a high prevalence
phenotype, MTNNs and STNNs provide little or no benefit over LR. Prevalence alone is
insufficient to account for the relative performance between both MTNN and STNN and LR.

4.4. Interaction between Phenotype Prevalence and Complexity

Our comparison of MTNNs and STNNs versus LR suggests that phenotype prevalence alone
cannot explain when neural nets outperform simpler linear models. We hypothesized that phe-
notype complexity also plays a role since neural nets with or without MTL can automatically
model non-linearities and interactions, while LR must have non-linearities and interactions
explicitly encoded in features. We leveraged the rule-based phenotype definitions to explore
this hypothesis and found evidence of an interaction between phenotype prevalence and com-
plexity.

Phenotype Complexity For each phenotype, we generated histograms of the observed com-
binations of the oracle features for the positive and negative cases (see Figure 6) and calculated
the information entropy of the positive cases and the KL divergence between the positive and
negative cases (see Table 1) as described in Methods 3.2.

We find that atrial fibrillation, a high-prevalence phenotype, has low entropy and high KL
divergence. With respect to the oracle features, all the positive cases are similar to each other,
while the positive and negative cases are very dissimilar to each other. A relatively simple
model should be able to capture this, explaining the observation that LR achieves comparable
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Fig. 6. Distributions of the combinations of the oracle features involved in the rule-based definitions
for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus. The yellow
and blue bars correspond to the positive and negative cases respectively. The x-axes represent the
buckets of unique combinations of the oracle features: in our study, we use 32 buckets. Note that the
choice of 32 buckets was arbitrary and not tuned in any way.

Table 1. Phenotype Complexity

Phenotype Prevalence Entropy KL Divergence

Angioedema 0.08 % 3.233 0.930
Abdominal Aneurysm 0.12% 1.396 2.414
Atrial Fibrillation 2.89% 0.709 5.383
Type 2 Diabetes Mellitus 2.95 % 3.012 3.806

performance to MTNNs and STNNs for this phenotype.
Abdominal aneurysm, a low prevalence phenotype, and T2DM, a high prevalence pheno-

type, have higher information entropy and lower KL divergence values than atrial fibrillation.
Thus, the positive cases are more diverse and discrimination is more difficult than atrial fib-
rillation with respect to each phenotype’s oracle features. For these phenotypes, both MTNNs
and STNNs outperform LR – we benefit from more expressive models. However, whether
MTNNs beat STNNs depends on prevalence.

Finally, angioedema has the highest entropy and lowest KL divergence – it is both the most
complex and hardest to discriminate of the four phenotypes. Complex phenotypes should
benefit from more expressive models. However, we observe that while MTNNs consistently
outperform STNNs, their performance relative to LR is inconsistent across splits. One possible
explanation for this behavior is that relative performance is sensitive to the assignment of
patients to training, validation and test sets: with such diverse cases and common support
with respect to the oracle features, it is much more likely for the test set to contain patients
unlike any seen in the training set.

5. Limitations

We have set out to investigate MTL and its effectiveness for electronic phenotyping. However,
our work has important limitations. First, we randomly select phecodes for auxiliary tasks,
but it has been argued that auxiliary tasks should be directly related to the target task.51 It
is possible that better auxiliary tasks would improve the benefit of MTL. Specifically, more
related phecodes might mitigate or eliminate the performance degradation observed for the
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high-prevalence phenotypes or inconsistent relative performance between MTNN and LR for
angioedema. However, the notion of task relatedness is underspecified so it is problematic to
compute in order to select auxiliary tasks. Indeed, in preliminary work we explored various
formulations of relatedness to select auxiliary tasks but found that none performed better than
random selection. One could ask domain experts to manually construct or pick auxiliary tasks
for specific phenotypes, but this is beyond the scope of this work. Moreover, it has also been
shown that the task relatedness is unnecessary for MTL to provide benefits.52 However, we
acknowledge that it is an interesting line of inquiry for future work to further explore how to
improve multitask learning for electronic phenotyping. Second, to address the unavailability
of large-scale ground truth phenotypes, we use rule-based definitions because they are trans-
parent and available, but we recognize that the phenomenon we observe may be artifacts of
the rule-based definitions. We also acknowledge the possibility that the observed phenomenon
might not generalize to other phenotypes; we focused on four phenotypes to conduct an in-
depth examination, sacrificing breadth. Finally, the rule-based phenotype definitions contain
predicates encoding temporal relationships, e.g., a drug code followed by a diagnosis code.
Our simple multi-hot feature representation does not encode temporal information. As a re-
sult, there is an upper bound on the performance of any statistical classifier using this feature
representation.

6. Conclusion

We have investigated the effectiveness of multitask learning on electronic phenotyping with
EHR data, aiming to elucidate the properties of situations for which MTL improves or harms
performance. We trained multitask neural networks to classify a target phenotype jointly with
auxiliary tasks drawn from phecodes. We found that MTL provided consistent performance
improvements over single-task neural networks on extremely rare phenotypes. However, for
relatively higher prevalence phenotypes, MTL actually reduced performance. In both cases,
the effect scaled with the number of auxiliary tasks as defined in the form of phecodes. More-
over, we found that MTL improved the robustness of neural networks to hyperparameter
settings for the extremely rare phenotypes, which is of practical value in situations when one
has a limited computational budget for model exploration. Finally, we analyzed phenotype
complexity to shed light on the relative performance of both MTNN and STNN versus well-
tuned L1 regularized logistic regression baselines and found evidence of an interaction between
phenotype prevalence and complexity. We showed that simple linear models are sufficient for
non-complex phenotyping tasks. More expressive models can substantially improve perfor-
mance for more complex phenotypes, but only if the data support learning them well, which
may be problematic for rare phenotypes.
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