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Biological data is inherently heterogeneous and high-dimensional. Single-cell sequencing
of transcripts in a tissue sample generates data for thousands of cells, each of which is
characterized by upwards of tens of thousands of genes. How to identify the subsets of cells
and genes that are associated with a label of interest remains an open question. In this
paper, we integrate a signal-extractive neural network architecture with axiomatic feature
attribution to classify tissue samples based on single-cell gene expression profiles. This
approach is not only interpretable but also robust to noise, requiring just 5% of genes and
23% of cells in an in silico tissue sample to encode signal in order to distinguish signal
from noise with greater than 70% accuracy. We demonstrate its applicability in two real-
world settings for discovering cell type-specific chemokine correlates: predicting response to
immune checkpoint inhibitors in multiple tissue types and classifying DNA mismatch repair
status in colorectal cancer. Our approach not only significantly outperforms traditional
machine learning classifiers but also presents actionable biological hypotheses of chemokine-
mediated tumor immunogenicity.

Keywords: Interpretable machine learning; Translational cancer research; Single-cell RNA-
sequencing; Chemokines.

1. Introduction

The advent of technologies to sequence tissue samples at single-cell resolution has ushered in
a new era of biological learning.1 The ability to characterize intercellular variability with high
granularity not only furthers our understanding of complex living systems but also necessitates
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Fig. 1. Model overview. The signal extractor takes in a single sample c, comprised of the gene
expression profiles of multiple cells, and generates per-cell masks z. The classifier takes in a masked
version of the input to generate a label prediction y. Finally, the trained model is interrogated using
Integrated Gradients with respect to the original input of gene expression profiles.

novel computational approaches to effectively utilize these additional layers of information.
This necessity is amplified in cancer, where tumor cells manipulate their microenvironment
by harnessing the plasticity of the cells around them. For instance, while the immune system
normally protects the host, tumor cells can cajole certain immune cells into allowing the
tumor to not only proliferate but also metastasize.2 Because tumor cells co-opt immune cell
plasticity, heterogeneity in the tumor is greater than that in normal tissue.3 Understanding
cellular heterogeneity via high-dimensional single-cell RNA-sequencing (scRNA-seq) and its
implications for the interplay between malignant cells and immune cells is key to treating
complicated diseases such as cancer.4,5

From a machine learning perspective, the task of classifying tissue samples based on single-
cell transcriptomics is a weakly-supervised learning problem. Each data point (tissue sample)
consists of a bag of observations (cells), where each observation is characterized by a set of
features (genes). The label of interest is assigned to the tissue sample instead of the cell.
Therefore, every cell may not contain evidence of the label of interest, but when pooled,
observations of many cells together reveal compelling correlations with the label. Standard
pooling mechanisms, such as mean-pooling and max-pooling, obfuscate biologically-relevant
information. For example, a cell can be characterized by a number of discrete cell types, each
of which is capable of existing along a continuum of cell states. Given cells have different types
and states, how does the model learn to identify signal? In biology, in particular, the problem
is a hierarchical one, since once the cells (and their associated types/states) of interest are
identified, we need to find a way to extract the cell-specific genes that reveal associations with
the label of interest and ultimately produce accurate classifications.

To address these questions, we present a novel framework for extracting hierarchical in-
formation from a neural network classifier that optimizes for both strong classification per-
formance and accurate signal extraction (Figure 1). The signal extraction task is directly
incorporated into both the design decisions around model architecture and the model train-
ing decisions for downstream feature attribution. The model, a Single-Cell Immuno-Oncology
Neural Network (SCIONN), enables accurate classification and signal extraction from struc-
tured biological data by identifying a subset of cells of importance and the subset of genes of
importance from the aforementioned subset of cells. We employ a learning scheme to quantify
the importance of each cell and each cell-specific gene, drawing inspiration from rationale
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generation and gradient integration, respectively.6,7 The benefit of this approach lies in being
agnostic to cell type and invariant to the ordering of observations. Unlike with standard ma-
chine learning classifiers, such as logistic regression, we do not need to know the cell types a
priori or prearrange the order in which the cells are fed into the model.

When applied to binary classification on a simulated scRNA-seq dataset and two real-world
problems in oncology, the SCIONN classifier outperforms not only logistic regression but also
more complex neural network classifiers, such as variants of recurrent neural networks. On the
simulated dataset, the SCIONN classifier is far better able to identify the signal-carrying cells
and genes. When varying the signal-to-noise, this approach is robust to the number of genes
and cells, requiring only 23% of cells in a positive-labeled tissue sample to encode the signal
to be highly discriminative, even if just 5% of genes encode the signal. Moreover, performance
persists not only when signal is present in multiple cell types but also when signal is present
in mutually exclusive gene sets from each of the signal-carrying cell types. We demonstrate
the applicability of this approach to two real-world tasks: (1) predicting response to immune
checkpoint inhibitors in multiple tissue types and (2) classifying the DNA mismatch repair
status of colorectal cancers for determining prognosis and treatment. Using multiple publicly-
available datasets for each task, we show compelling evidence for cells and genes associated
with these labels, thereby facilitating mechanistically-relevant, clinically-actionable learning.

2. Method

2.1. Objective

Let dataset D consist of N sequenced tissue samples, each of which is represented by the gene
expression profiles of a set of Ni cells ci ∈ RNi×G and a binary label yi. Each cell cij ∈ RG, j ∈
{1, . . . , Ni}, is represented by a vector of gene expression values for G genes. Our objective
is to maximize the likelihood function p(Y | C, θ) with respect to parameters θ, where the
predictive distribution p(y | c) is parameterized by a neural network.

2.2. Model

2.2.1. SCIONN

SCIONN is a deep neural network consisting of a signal extractor and a classifier (Figure 1).
The signal extractor comprises two convolutional layers followed by two recurrent layers and a
final fully-connected layer. The classifier comprises two two-dimensional convolutional layers
(kernel size (1, 1) and filter size (256, 128)) followed by three fully-connected layers. The input
to the signal extractor is the gene expression profiles of cells from a given tissue sample. The
input to the classifier is a masked version of the input to the signal extractor, as determined by
the signal extractor output z, where z is an Ni-dimensional vector and each element is either
zero or one. The signal extractor output masks, or zeroes out, the gene expression profiles of
a subset of input cells and retains the rest, as given by (zvT ) ◦ ci, where v is a G-dimensional
vector of ones. The signal extractor finds the cells of interest, and the classifier finds the genes
of interest from the cells of interest.
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2.2.2. Benchmarks

We compare the classification performance of SCIONN to traditional machine learning clas-
sifiers, which do not perform any masking, namely logistic regression (LogReg) and three
variants of two-layer recurrent neural networks - a vanilla recurrent neural network (RNN),
a long short term memory network (LSTM), and a gated recurrent unit network (GRU). For
logistic regression, the gene expression profiles of C cells are concatenated along the existing
axis to form the model input; for all other models, the gene expression profiles are shaped into
a C ×G matrix. Unless otherwise specified, the size of all hidden layers is 64.

2.3. Inputs

Weakly-supervised learning on scRNA-seq data suffers from two problems: (1) there is no
guaranteed signal from single cells, and (2) the number of labeled samples n is typically small
(n < 100), while the number of features k is large (k > 100,000, e.g., 1,000 cells × 100 genes).
To address these problems, we process the input data by creating pseudo-samples of randomly
sampled sets of 100 cells from the same tissue sample, where each set of 100 cells is a pseudo-
sample. Cells are sampled without replacement unless there are less than 100 cells from a
particular tissue sample. This sampling structure assumes that the proportion of different cell
types in the pseudo-sample mimics the proportion of different cell types in the tissue sample in
expectation. With pseudo-samples, we increase the effective diversity of the dataset – akin to
data augmentation – in order to help the model learn with greater robustness and efficiency.

2.4. Training

We randomly split the dataset into train (80%), validation (10%), and test (10%) sets and
standardize the features of each set to the train set. The splits are made at the patient level
to prevent information leakage, and model inputs are constructed at the tissue sample level,
as there can be multiple tissue samples for the same patient. Models are trained end-to-end
for 200 epochs with a batch size of 200, learning rate of 0.0001, and 50% dropout at every
intermediate fully-connected layer. We employ an Adam optimizer to minimize the binary
cross entropy loss.8 We reduce the learning rate by a factor of 0.1 if the loss does not improve
after ten consecutive epochs. In order to enable efficient learning during SCIONN training,
we sample from a gumbel-softmax distribution parameterized by the signal extractor outputs
and a temperature of 3.0.9,10 We regularize the number of cells selected by the signal extractor
with a lambda of 0.0001 to enforce sparsity. Beginning at training epoch 50, the temperature
is reduced by 0.01 and lambda is increased by 0.1 if the loss does not improve after ten
consecutive epochs. The weights of the model with the lowest binary cross entropy loss on the
validation set are saved and subsequently evaluated on the held-out test set. We repeat this
process for 50 random train/validation/test splits for all classifiers.

2.5. Attribution

Achieving good classification with SCIONN ensures the model has found a correlation struc-
ture of the data with respect to the label. To probe this correlation structure and identify
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Fig. 2. Simulated data overview. The simulated data comprises seven cell types, of which two
encode signal. Samples containing cells belonging to cluster 7 or 8 (i.e., having non-zero gene program
assignment) are assigned a positive label.

important cell type-specific genes, we compute the attribution scores using integrated gradi-
ents, a method that is both feature sensitive and implementation invariant.7 The integrated
gradients method integrates over the gradients with respect to the label from a baseline to the
input. For our purposes, the baseline across all genes is zero, standardized to the train set.

2.5.1. Baseline Training

To ensure the baseline is not biased for or against either label in binary classification, during
training, half of the inputs the model “sees” are a baseline of zeroes standardized to the train
set. Half of these baseline examples are given the label 0, and the remaining half are given
the label 1. This strategy ensures that the model achieves a classification AUC of 0.50 on the
baseline examples alone, thereby rendering the model unbiased to the chosen baseline.11

2.6. Experiments

We apply our framework under three settings:

(1) Binary classification with simulated scRNA-seq data where positive-labeled samples are
determined by two cell types expressing either the same or different signal-specific genes.

(2) Immune checkpoint inhibitor response prediction from the chemokine expression profiles
of single cells from three publicly-available scRNA-seq datasets.

(3) DNA mismatch repair status classification from the chemokine expression profiles of single
cells from three publicly-available scRNA-seq datasets.

3. Results

3.1. Simulated Data

We sought to determine whether SCIONN could accurately identify the features contributing
to the label of interest by simulating a scRNA-seq dataset of 20,000 cells and 464 genes.12 Un-
der the splat generative process, single-cell gene expression is modeled according to a Gamma-
Poisson model, accounting for factors that influence gene expression in real-world scRNA-seq
datasets: highly-expressed outliers, library size, mean-variance trends, and dropout. The splat
model outperformed five models on three real-world datasets on seven evaluation metrics.
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Table 1. Simulated data results. Performance mean ± 1SD on held-out test set. ‘*’, ‘+’, and
‘?’ signify SCIONN outperforms LogReg, RNN, and CNN, respectively, at the 0.05 level (Wilcoxon
one-sided signed-rank test).

Number of Correct Genes as Fraction of
Gene Set Model Loss AUC Top 120 Genes Genes > µ+ 2σ

Same

LogReg 0.2470 ± 0.1415 0.9813 ± 0.0720 0.8137 ± 0.1251 0.9257 ± 0.1523
RNN 0.1331 ± 0.1891 0.9863 ± 0.0399 0.2210 ± 0.0700 0.2518 ± 0.0850
CNN 0.1516 ± 0.0132 1.0000 ± 0.0000 0.5820 ± 0.0666 0.6302 ± 0.0876
SCIONN 0.1858 ± 0.0325 * 1.0000 ± 0.0000 * + 0.8160 ± 0.0215 + ? 0.9067 ± 0.0303 + ?

Different

LogReg 0.3812 ± 0.1560 0.9436 ± 0.1272 0.6812 ± 0.1477 0.8121 ± 0.1965
RNN 0.2822 ± 0.3654 0.9539 ± 0.0862 0.1983 ± 0.0590 0.2193 ± 0.0687
CNN 0.1710 ± 0.0209 1.0000 ± 0.0000 0.6103 ± 0.0407 0.7065 ± 0.0871
SCIONN 0.2261 ± 0.0382 * 1.0000 ± 0.0000 * + 0.7740 ± 0.0321 * + ? 0.8976 ± 0.0340 * + ?

In our simulated dataset, each cell belongs to one of seven cell types. While all samples
contain cells from every cell type, only two cell types determine the label of interest (cell types
1 and 2, Figure 2). Namely, the presence of cells from clusters 7 and 8 (subsets of cell types 1
and 2, respectively) in a given sample signifies that the sample is a positive-labeled example;
otherwise, the absence of cells from these clusters signifies that the sample is a negative-labeled
example. Our objective is to evaluate whether SCIONN is able to (1) find the correct cells
(i.e., clusters 7 and 8) via the signal extractor, and (2) find the correct genes that distinguish
clusters 7 and 8, thereby enabling accurate binary classification.

We tested two scenarios of signal-specific genes (programs), of which there are 60 from
cluster 7 and 60 from cluster 8. In one scenario, the signal-specific genes of clusters 7 and 8
are the same. The differentially expressed genes from these two clusters are partially cell type-
specific (characteristic of cell types 1 and 2, respectively) and partially signal-specific, where
clusters 7 and 8 share the same signal-specific genes. In the second scenario, the signal-specific
genes of clusters 7 and 8 are different. The differentially expressed genes from these clusters
are partially cell type-specific (characteristic of cell types 1 and 2, respectively) and partially
signal-specific, but the signal-specific genes differ between clusters 7 and 8 (programs 1 and
2, Figure 2). In the second scenario, we are introducing the added challenge of identifying
not only the subsets of cells of interest but also their mutually exclusive genes of interest.
This setup is important because oftentimes different cell types have different transcriptional
responses to the same stimuli, and we want to correctly capture the knowledge that these
different responses are associated with the same label of interest.

We trained SCIONN on this simulated dataset under both gene set scenarios and com-
pared its performance against a logistic regression classifier and an RNN classifier (Table 1).
On the basis of binary cross entropy loss, SCIONN significantly outperformed the logistic
regression classifier while exhibiting performance on par with that of the RNN classifier (same
gene set: 0.1858 vs. 0.2470 and 0.1331, respectively; different gene set: 0.2261 vs 0.3812 and
0.2822, respectively). This result suggests that choice of architecture is important; here, the
architecture needs to be agnostic to the order of cells, which is true for SCIONN and the RNN
classifier but not for the logistic regression classifier. On the basis of AUC, SCIONN signif-
icantly outperformed both the logistic regression classifier and the RNN classifier, achieving
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Fig. 3. Sensitivity analysis. Signal extraction accuracy as a function of the number of signal-
specific genes (as a fraction of total genes) and the number of signal-specific cells (as a fraction of
total cells from positive-labeled samples).

perfect average AUC (Same gene set: 1.000 vs 0.9813 and 0.9863, respectively; different gene
set: 1.000 vs 0.9436 and 0.9539, respectively).

After establishing that SCIONN yields strong classification performance, we next turned to
the task of assessing whether the model learned the 60 signal-specific genes from cluster 7 and
the 60 signal-specific genes from cluster 8. Using the integrated gradients method to compute
the attribution scores, we subsequently average over the attribution scores for a given cell type
and gene and rank the cell type-gene tuples across the positive-labeled samples by descending
average attribution. If the model finds the correct cells (cells from clusters 7 and 8 from cell
types 1 and 2, respectively) and the correct genes from these correct cells, then we expect
these to be 120 signal-specific cell type-gene tuples populating the top attributions. Indeed,
we find that SCIONN significantly outperforms the RNN classifier when the between-cluster
ground truth genes are the same set of genes, identifying 81.60% of the correct cell type-
gene tuples in the top 120 cell type-gene tuples (vs. 22.10% for the RNN classifier). SCIONN
performs on par with the logistic regression classifier, which identifies 81.37% of the correct
cell type-gene tuples, because logistic regression only cares about the genes of interest. Since
the signal-specific genes are the same in clusters 7 and 8, it is able to attribute its classification
to those genes irrespective of cell type.

In contrast, when the between-cluster ground truth genes are different sets of genes,
SCIONN significantly outperforms both the logistic regression classifier and the RNN classifier
(68.12% and 19.83%, respectively), identifying 77.40% of the correct cell type-gene tuples in
the top 120 cell type-genes pairs (Table 1). Logistic regression breaks down under this sce-
nario because it does not know how to differentiate between cell types, whereas SCIONN does.
Thus, under our more complex gene set scenario, SCIONN retains its ability to successfully
identify not only the cells of interest but also the cell-specific genes of interest. Under normal
conditions, we do not know a priori which are the cells and genes of interest. Therefore, we
also assess the extent to which the signal-specific cell type-gene tuples populate the top at-
tributions, defined as the set of cell type-gene tuples whose attribution exceeds two standard
deviations above the mean attribution across all tuples. Again we find the same pattern as
before. SCIONN performs on par with the logistic regression classifier and significantly out-
performs the RNN classifier when the between-cluster ground truth genes are the same set of
genes (90.67% vs 92.57% and 25.18%, respectively). SCIONN significantly outperforms both
the logistic regression classifier and the RNN classifier when the between-cluster ground truth
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Table 2. PD-1 response prediction results.
Performance mean ± 1SD on held-out test set.
‘∗’, ‘�’, ‘?’, and ‘◦’ signify SCIONN outperforms
LogReg, RNN, LSTM, and GRU, respectively, at
0.05 level (Wilcoxon one-sided signed-rank test).

Model Loss AUC

LogReg 0.6322 ± 0.0652 0.7119 ± 0.1116
RNN 0.6484 ± 0.0643 0.6443 ± 0.1340
LSTM 0.6362 ± 0.1063 0.6889 ± 0.1662
GRU 0.6292 ± 0.0900 0.7028 ± 0.1387
SCIONN 0.6144 ± 0.0884 ∗ � ?◦ 0.7583 ± 0.1588 ∗ � ?◦

Table 3. MMR classification results. Per-
formance mean ± 1SD on held-out test set. ‘∗’,
‘�’, ‘?’, and ‘◦’ signify SCIONN outperforms Lo-
gReg, RNN, LSTM, and GRU, respectively, at
0.05 level (Wilcoxon one-sided signed-rank test).

Model Loss AUC

LogReg 0.6849 ± 0.1173 0.6040 ± 0.2477
RNN 0.6878 ± 0.0204 0.5408 ± 0.0782
LSTM 0.6250 ± 0.0795 0.7573 ± 0.1292
GRU 0.6406 ± 0.0732 0.7023 ± 0.1258
SCIONN 0.5320 ± 0.0679 ∗ � ?◦ 0.8701 ± 0.0954 ∗ � ?◦

genes are different sets of genes (89.76% vs 81.21% and 21.93%, respectively).
Finally, we run a sensitivity analysis on the fraction of signal-specific cells and genes needed

to achieve certain levels of detection. Under the scenario where the between-cluster ground
truth genes are the same set of genes, we find that if approximately 20% of positive-labeled
cells are signal-specific cells, then SCIONN is able to accurately identify at least 70% of signal-
specific cell type-gene tuples when less than 30% of genes are signal-specific genes (Figure 3,
left panel). Under the scenario where the between-cluster ground truth genes are different sets
of genes, we find that if approximately 25% of positive-labeled cells are signal-specific cells,
then SCIONN is able to accurately identify at least 70% of signal-specific cell type-gene tuples
when less than 20% of genes are signal-specific genes (Figure 3, right panel). These results are
encouraging, as there is often a far greater fraction of signal-specific cells than genes in any
given sample given the sheer number of profiled genes.

3.2. Real-World Data

3.2.1. Background

Chemokines are chemotactic cytokines that mediate cell migration and positioning in both
tissue and lymph nodes, particularly with respect to immune cells.13,14 Once a chemokine
receptor is activated by its cognate chemokine ligand, the chemokine receptor-expressing cell
migrates up the associated chemokine concentration gradient.13,15 In the context of cancer,
chemokines can promote pro-tumorigenic activity, such as tumor proliferation, anti-apoptosis,
and metastasis.15,16 Furthermore, chemokines can mediate immune evasion by influencing
T cell sequestration in stroma or by cultivating a microenvironment of high-density non-
activating immune cells, leading to inefficient T cell search of malignant cells. The importance
of chemokines to tumorigenicity warrants further study of these molecules, their role in the
tumor-immune microenvironment, and their role in response to immunotherapy.

3.2.2. PD-1 Response Prediction

To study the role of chemokines in response to immune checkpoint inhibitors, we integrated
the chemokine expression profiles from three scRNA-seq datasets.17–19 We corrected for batch
effects associated with individual studies for the 64 chemokines and chemokines receptors.20

We trained on immune checkpoint inhibitor response prediction based on chemokine expres-
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Fig. 4. PD-1 response prediction top ranked attribution scorers by (gene, cell type).

sion profiles from all available timepoints. The binary response label was defined based on
RECIST; a responder (R) has a complete or partial response, and a non-responder (NR) has
stable or progressive disease.21 We compared five model architectures - a logistic regression
classifier, vanilla RNN classifier, LSTM classifier, GRU classifier, and SCIONN. On the basis
of both binary cross entropy loss and AUC, SCIONN significantly outperformed the four other
classifiers (mean loss: 0.6144 vs. 0.6322, 0.6484, 0.6362, and 0.6292, respectively; mean AUC:
0.7583 vs. 0.7119, 0.6443, 0.6889, and 0.7028, respectively) (Table 2).

Using the trained SCIONN model, we subsequently explored the attribution scores of all
cell type-gene tuples. T cell subtypes for GSE123813 and GSE144469 were mapped to the sub-
types annotated by Ref 18, while all other immune subtype labels were retained as-is.22 We
excluded epithelial cells for consistency across the datasets, as some datasets sorted for CD45+
cells prior to performing single-cell sequencing. Based on the attribution scores, we found the
majority of attribution was assigned to chemokines, consistent with the view that chemokines
exhibit greater variability of expression compared to their receptor counterparts.23 Further-
more, expression of the chemokine CCL5 in the memory T cell (Tmem) and regulatory T cell
(Treg) compartments consistently scored high on attribution for immune checkpoint inhibitor
responders (Figure 4). This finding is consistent with recent findings from in vivo models
demonstrating that intratumorally-administered CCL5 enhanced cytotoxic lymphocytes and
the anti-tumor activity of anti-PD-L1.24 The association with Tmem and Treg subpopulations
in particular suggest that the immune system is not only mounting a recurrent response (via
activated Tmem) but also a new response (via activated Treg) to the ever-evolving tumor.
In addition, we identified a novel feature associated with response, namely CCR6 expression
in Tregs, which warrants further study. Given CCR6 is a receptor and receptor expression is
typically stable, this particular finding in favor of CCR6 in the Treg subpopulation suggests
active migration of these cells towards the tumor.

3.2.3. Mismatch Repair Classification

Next, we studied the implications of DNA mismatch repair status on chemokine activity. DNA
mismatch repair deficiency (MMRd) is a notable cancer phenotype due to its association with
response to immune checkpoint inhibitors, but the mechanism of response is unclear.5 We
trained SCIONN on DNA mismatch repair status classification using the chemokine expres-
sion profiles of a 60-patient colorectal cancer cell atlas dataset.3 We compared SCIONN’s
performance to that of four other classifiers - a logistic regression classifier, vanilla RNN clas-
sifier, LSTM classifier, GRU classifier. On the basis of both binary cross entropy loss and
AUC, SCIONN significantly outperformed the four other classifiers (mean loss: 0.5320 vs.
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Table 4. MMR classification results on independent datasets.
Performance mean ± 1SD. ‘∗’, ‘�’, ‘?’, and ‘◦’ signify SCIONN outper-
forms LogReg, RNN, LSTM, and GRU, respectively, at the 0.05 level
(Wilcoxon one-sided signed-rank test).

Independent Dataset Model Loss AUC

GSE146771 colon10x

LogReg 1.3730 ± 0.6203 0.4934 ± 0.1323
RNN 0.7004 ± 0.0555 0.4993 ± 0.1495
LSTM 0.6425 ± 0.1082 0.6194 ± 0.2475
GRU 0.5878 ± 0.1222 0.6419 ± 0.1914
SCIONN 0.3920 ± 0.1021 ∗ � ?◦ 0.8691 ± 0.2201 ∗ � ?◦

GSE146771 colonSS2

LogReg 0.7878 ± 0.1469 0.5328 ± 0.0842
RNN 0.6967 ± 0.0313 0.5302 ± 0.0859
LSTM 0.6623 ± 0.0811 0.7197 ± 0.1864
GRU 0.6431 ± 0.1001 0.6848 ± 0.1603
SCIONN 0.5030 ± 0.0897 ∗ � ?◦ 0.9041 ± 0.0843 ∗ � ?◦

GSE132465 colon10x

LogReg 0.8509 ± 0.1503 0.5469 ± 0.0541
RNN 0.6974 ± 0.0346 0.5074 ± 0.0676
LSTM 0.7574 ± 0.1474 0.6333 ± 0.0821
GRU 0.6915 ± 0.0823 0.5950 ± 0.0964
SCIONN 0.6711 ± 0.0960 ∗ � ? 0.7275 ± 0.0321 ∗ � ?◦

Fig. 5. MMR classification top ranked attribution scorers by (gene, cell type).

0.6849, 0.6878, 0.6250, and 0.6406, respectively; mean AUC: 0.8701 vs. 0.6040, 0.5408, 0.7573,
and 0.7023, respectively) (Table 3). We validated the models on two independent colorectal
cancer scRNA-seq datasets (GSE146771 and GSE132465).25,26 SCIONN’s classification perfor-
mance persisted on these held-out independent datasets, significantly outperforming the other
four models. When we evaluated the trained SCIONN classifier on these datasets, SCIONN
achieved an average binary cross entropy loss range of 0.3920-0.6711 compared to 0.5878-
1.3730 across the other four models and an average AUC range of 0.7275-0.9041 compared to
0.4934-0.7197 across the other four models (Table 4).

Using the trained SCIONN model, we subsequently explored the attribution scores of all
cell type-gene tuples. Immune and stromal subtypes for GSE146771 and GSE132465 were
mapped to the subtypes annotated by Ref 3 for the colorectal cancer cell atlas.22 We excluded
epithelial cells during training for consistency across the datasets. Based on the attribution
scores, we found that the majority of attribution for MMRd was attributable to T cells, which
is consistent with the view that MMRd induces greater immunogenicity given its propensity
for mutated neoantigens.4 CXCL13 in activated CD4+ and CD8+ T cell subpopulations
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were assigned the highest attribution, which persisted even in the held-out external datasets,
consistent with findings from Ref 3 (Figure 5). Furthermore, CCL5 in GZMHhi CD8+ T
and γδT cell populations were also assigned high attributions, particularly in the colorectal
cancer cell atlas dataset. Interestingly, CCL5 in T cell subpopulations was also highlighted
in immune checkpoint inhibitor response prediction, suggesting that CCL5 is associated with
an immunogenic tumor microenvironment, regardless of whether immunogenicity arose from
immunotherapy or MMRd. Finally, subsets of tissue samples exhibited high attribution for
CXCL8 in granulocytes, which has yet to be explored.

4. Discussion

In this paper, we introduce a framework for identifying cell type-specific chemokine correlates
of response to immune checkpoint inhibitors in multiple tissues and DNA mismatch repair
status in colorectal cancers. By employing a deep neural network that couples signal extraction
with label classification, we are able to successfully identify signals derived from cell type-gene
tuples that would otherwise have been overlooked under poorer-performing neural network
architectures. Notably, we find this approach to be superior for PD-1 immune checkpoint
inhibitor response prediction and DNA mismatch repair status classification based on single-
cell chemokine expression profiles. The resulting attribution scores not only validate known
biology (e.g., CXCL13 expression in activated T cells in MMRd tumors) but also present new
biological hypotheses (e.g., CCR6 expression in Tregs in PD-1 inhibitor responders and CXCL8
expression in granulocytes in MMRd tumors) and suggest a shared chemotactic mechanism
of immunogenicity in both PD-1 inhibitor responders and MMRd tumors (CCL5 expression
in T cells). We foresee this framework extending to other classification problems where the
correlation structure is learned from hierarchically-structured data and are currently working
to extend it to spatially-resolved single-cell transcriptomics.

Software and Data

The scRNA-seq datasets were downloaded from GEO with accession numbers: GSE178341,3

GSE123814,17 GSE120575,18 GSE144469,19 GSE146771,25 and GSE132465.26 The code for
reproducing all results is publicly available: https://www.github.com/chsher/SCIONN.
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