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The continued generation of large amounts of data within healthcare—from imaging to electronic 
medical health records to genomics and multi-omics —necessitates tools and methods to parse and 
interpret these data to improve healthcare outcomes. Artificial intelligence, and in particular deep 
learning, has enabled researchers to gain new insights from large scale and multimodal data. At the 2022 
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Pacific Symposium on Biocomputing (PSB) session entitled “Precision Medicine: Using Artificial 
Intelligence to Improve Diagnostics and Healthcare”, we showcase the latest research, influenced and 
inspired by the idea of using technology to build a more fair, tailored, and cost-effective healthcare 
system after the COVID-19 pandemic. 
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1.  Introduction 

The COVID-19 pandemic has highlighted the longstanding inequities and fractures within the 
healthcare system.(Bambra et al., 2020) Based on insights from the pandemic, the future of 
healthcare must be more fair, more tailored, and more cost-effective. At the same time, rapid 
advances in technology across multiple domains has led to the generation of large amounts of 
data—from medical imaging to sequencing and genomics technologies to electronic health records 
(EHRs). The ultimate goal of precision medicine is to leverage these large datasets in order to 
improve healthcare delivery; however, this requires the development of methods and tools for 
parsing large-scale, multi-modal data.  
 
Here, we review some of the research aimed at addressing these needs with examples from the 
accepted submissions for the Precision Medicine: Using Artificial Intelligence to Improve 
Diagnostics and Healthcare session at the Pacific Symposium on Biocomputing (PSB) 2022. 
Recent trends from this research indicate a growing body of work leveraging artificial intelligence 
(AI) for analyzing complex medical data, such as interpreting medical imaging or forecasting 
infectious diseases, and the development of more sophisticated tools for gaining insight into 
genomics and multi-omics data. 
 

2.  AI-driven tools for addressing problems in healthcare 

In the last two years, there has been a rapid increase in the number of FDA approved AI tools for 
medical applications.(FDA, 2021; Wu et al., 2021) While AI is a broad term, we are referring to 
methods that allow machines to simulate ‘intelligent’ behavior; this term encompasses machine 
learning and deep learning.(Stone et al., 2016) 
 
Deep learning methods have dominated automated analysis of medical images, and they are 
routinely used for research on X-ray, CT, and MRI image data.(Esteva et al., 2019) For cardiac 
imaging, assessing the function of the left ventricle is important for diagnosing patients with 
cardiovascular disease and assessing their level of cardiac risk.(Duffy et al.) Duffy et al. (2022) 
developed a method that predicts a 3D depth-map from 2D videos of echocardiograms, which 
allows the evaluation of left ventricular function and leads to better performance than previous 
2D-based methods.(Duffy et al.) Additionally, their method is more interpretable, and allows for 
human input and fine-tuning.(Duffy et al.)  
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Advancements of computational techniques not only allow us to analyze more complex data 
modalities, but also enable use of sensors that previously had limited role in healthcare research 
and practice. Vodrahalli et al. (2022) showed that machine learning allows commodity devices 
like smart-phones to track gaze and near clinical-quality resolution.(Vodrahalli et al., 2022) They 
developed a set of tasks for assessing visuo-motor diseases and identified a set of tasks most 
predictive for dysfunction.(Vodrahalli et al., 2022) They showed that the system can discriminate 
among many common movement-related diseases such as Parkinson's disease, nystagmus, 
cerebellar ataxia and others., which opens up new opportunities for neuroscience.(Vodrahalli et 
al., 2022) 
 
Chao et al. (2022) demonstrates the potential for advancing methods to unpack increasingly high-
dimensional, heterogeneous biological data.(Chao et al., 2022) They specifically study single-cell 
sequencing of tissue transcripts, generating data for thousands of cells and tens of thousands of 
genes.(Chao et al., 2022) This plethora of data opens the possibility for discovery and personalized 
care, but precision medicine requires respective analytic tools to digest this into interpretable 
results. In this case, the authors extend beyond traditional machine learning classifiers with signal-
extractive neural network architectures with axiomatic feature attribution to produce robust and 
interpretable means to distinguish signal from noise.(Chao et al., 2022) Specifically they 
demonstrate in the setting of predicting response of immune checkpoint inhibitors in multiple 
tissue types and classifying DNA mismatch repair in colorectal cancer.(Chao et al., 2022) Their 
resulting attribution scores not only validate known biology, but suggest new hypotheses and 
mechanisms, which may be extended to other hierarchically-structured data.(Chao et al., 2022) 
 
Predicting how a disease will progress in time is one of the key challenges in precision medicine. 
Cui et al. (2022) analyzed data from over 2000 COVID-19 patients.(Cui et al., 2022) They used 
Hierarchical Gaussian Processes and Mixture of Experts models to fit trajectories of markers 
related to disease progression.(Cui et al., 2022) They illustrated predictive performance of 
temporal models in a case study for albumin, a protein known to be correlated with outcomes in 
COVID-19 patients.(Cui et al., 2022) Such computational methods open up new opportunities for 
developing biomarkers, since temporal information is hard to process manually by doctors using 
EHR data. 
 
To analyze the effect of a treatment on disease progression, Ren et al. (2022) proposed a new 
regularized matrix factorization method for understanding response to drugs.(Ren et al., 2022) The 
key problem in this setting is how to combine multiple sources and modalities of information such 
as chemical structure of drugs, their impact on cellular signaling systems, and cancer cell cellular 
systems, to predict drug response. Ren et al. (2022) introduced a method that embeds drugs in a 
latent space and cells in a separate latent space, to find a mapping between the two potentially 
revealing previously unknown relations.(Ren et al., 2022) They showed the effectiveness of their 
method in prediction of outcome of chemotherapy in lung cancer patients.(Ren et al., 2022) 
 
Noshad et al (2022) illustrate the potential for AI applications to disrupt medical specialty 
consultation processes.(Noshad et al., 2022) The authors note the overwhelming decision space 
and complexity of modern medicine, where patients increasingly depend on consultations with 
medical specialists.(Noshad et al., 2022) They found patient outcomes are easily compromised as 
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when they often await months for an in-person consultation visit, and even then, half of those 
visits do not even have appropriate initial diagnostic tests completed.(Noshad et al., 2022) In this 
study, they illustrated the capacity for data-driven AI recommender algorithms to predict what a 
specialist would do for a patient, with greater accuracy and personalization than standard 
checklists, opening the pathway towards digital consultation systems for artificial intelligence 
systems to augment human systems.(Noshad et al., 2022) 
 
With the COVID-19 pandemic, infectious disease surveillance has become one of the most 
important public health tasks. Poonawala-Lohani et al. (2022) developed a novel time series 
forecasting method, Randomized Ensembles of Auto-regression chains (Reach).(Poonawala-
Lohani et al., 2022) They evaluated Reach and previously described methods on influenza-like 
illness case counts from 2015-2018 in Auckland, New Zealand and found Reach performed better 
at forecasting influenza-like illnesses.(Poonawala-Lohani et al., 2022)  Such tools, if further 
validated, will be integral to forecasting and monitoring future pandemics. 

3.  Genomics and multi-omics for improving healthcare 

The COVID-19 pandemic highlighted a need for precision medicine, particularly new processes 
for tailored care and drug discovery. With the continued large scale generation of genomics and 
multi-omics data, there is an opportunity for the development of tools that can parse this 
information to discover new insights that improve patient care. 

The human reference genome does not reflect human diversity, leading to unmapped non-
reference reads with short-read sequencing.(Chrisman et al., 2022) Population-scale whole 
genome sequencing is becoming more common as costs become more reasonable, highlighting the 
need for the development of methods to more efficiently map as many reads as possible to 
maximize the data’s potential for equitable downstream research or clinical 
applications.(Chrisman et al., 2022) To address this need, Chrisman et al. (2022) present a method 
that maps short read sequences (100 base pairs) to the reference genome using family-based 
data.(Chrisman et al., 2022) Using a multiplex dataset of ~1,000 families consisting of ~4,000 
individuals with 30x whole genome sequencing data, Chrisman et al. (2022) leverage the genetic 
variation data and inheritance patterns to then match the distribution of the unmapped short reads 
to determine the most likely location of these reads in the human genome.(Chrisman et al., 2022) 
The localization is performed with a Hidden Markov Model coupled to a Maximum Likelihood 
estimator, and an assessment of its performance suggests that the algorithm successfully maps 
most alternative haplotypes to the genome (96% unmapped short reads mapped with 90% 
accuracy).(Chrisman et al., 2022) Coupling linkage analysis with newer artificial intelligence 
methods, the algorithm offers a practical near-term solution for orphaned short reads as the field 
slowly transitions from short to long-read sequencing at scale.(Chrisman et al., 2022) 

After nearly 15 years of genome-wide association studies (GWAS), thousands of single nucleotide 
variants have been identified as associated with hundreds of human phenotypes and traits.(Nam et 
al., 2022) A major challenge is using this genotype-phenotype knowledge to clinically predict 
disease susceptibility.(Nam et al., 2022) In recognition that a single variant only contributes a 
fraction of risk, methods have been developed to summarize the genetic variants and their 
associated effect sizes for specific human outcomes of interest.(Nam et al., 2022) Known as 
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polygenic risk scores (PRSs), these genetic risk summaries have been developed for and applied to 
patient populations to identify those at greatest risk who could possibly benefit from early 
intervention strategies.(Nam et al., 2022) PRSs have many known limitations.(Nam et al., 2022) A 
limitation addressed here is that PRSs are developed for a single outcome of interest and do not 
account for the complexity of known and unknown co-morbidities.(Nam et al., 2022) Nam et al. 
(2022) draw parallels between GWAS and today’s PRSs and offer a common solution: phenome-
wide association studies (PheWAS).(Nam et al., 2022) In PheWAS, the entire phenome or set of 
phenotypes is interrogated for genotype-phenotype associations as opposed to a single outcome or 
trait.(Nam et al., 2022) Here, Nam et al. (2022) calculate network-based comorbidity risk scores 
using the UK Biobank PheWAS summary statistics to first construct the disease-variant 
heterogeneous multi-layered network and then applied graph-based semi-supervised learning to 
predict possible patient co-morbidity scores that are then combined using logistic regression.(Nam 
et al., 2022) With access to individual level genotype data from the Penn Medicine Biobank, Nam 
et al. (2022) provide proof-of-concept data for myocardial infarction that demonstrate more 
efficient risk stratification compared with now conventional PRSs.(Nam et al., 2022)  
 
Clinical target, whole exome, and whole genome sequencing are becoming standard diagnostic 
tools for patients presenting with specific phenotypes. Not yet adopted but becoming widely 
available in research settings is the use of bulk or single cell RNA-sequencing (scRNA-seq) data 
that provide variation data at the cell population level.(He et al., 2022) In anticipation of their 
eventual use in clinical settings, He et al. (2022) have developed a method named CloudPred that 
uses scRNA-seq data to predict patient phenotypes.(He et al., 2022) CloudPred’s input is scRNA-
seq data from multiple patients and each patient’s data is modeled as a mixture of Gaussians.(He 
et al., 2022) The modeling provides a set of features that can be used to predict patient 
phenotypes.(He et al., 2022) CloudPred’s performance was evaluated using simulations and actual 
scRNA-seq data generated on patients with (n=120) and without (n=22) lupus.(He et al., 2022) 
CloudPred performed as well in predicting binary patient status for lupus compared with other 
tested methods and outperformed the same methods for predicting the quantitative phenotype of 
monocyte composition.(He et al., 2022) As might be expected, CloudPred and other comparative 
methods’ performances improve with an increase in patient and cell sample size.(He et al., 2022) 
This biologically motivated mixture model is available https://github.com/bryanhe/CloudPred.(He 
et al., 2022) 
 
In “Nonlinear post-selection inference for genome-wide association studies (GWAS)”, Slim et al 
presents a new method for GWAS, kernelPSI, to improve statistical performance and 
interpretability of GWAS.(Slim et al., 2022) Single nucleotide polymorphism (SNP) based 
analyses of GWAS can lack statistical power due to the low effect sizes of each individual 
SNP.(Daneshjou et al., 2013; Slim et al., 2022) Gene-based methods that aggregate SNPs across a 
gene have been proposed as a way to mitigate this issue.(Slim et al., 2022) Slim et al proposes a 
methodology for SNP selection using an adaptation of kerenelPSI, which uses kernel-based post-
selection inference; their method models epistatic interactions between SNPs and uses post 
selection inference to identify regions that can help predict a phenotype.(Slim et al., 2022)  

Tissue-specific gene expression data coupled with genome-wide single nucleotide variation data 
such as GTEx have become the reference dataset to infer gene expression in genome-wide datasets 
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that are sans expression data.(Mahoney et al., 2022) Most inference approaches such as PrediXcan 
do not offer sex-specific models despite evidence that gene expression may differ by 
sex.(Mahoney et al., 2022) Mahoney et al. (2022) explore the possible value added when sex-
specific models are considered using PrediXcan.(Mahoney et al., 2022) Although sex-specific 
gene expression effects were observed in GTEx, these effects were relatively small and could not 
be replicated using a gene expression dataset from the 1000 Genomes Project.(Mahoney et al., 
2022) Mahoney et al. (2022) suggest that larger gene expression datasets linked to genome-wide 
data are needed to better characterize and leverage sex-specific effects that underlie tissue-specific 
gene expression patterns that may ultimately impact human outcomes relevant to precision 
medicine.(Mahoney et al., 2022)  

Kaczmarek et al. (2022) tackled a different aspect of data integration, presenting a novel cancer 
classifier that uses a multi-omic graph transformer to directly leverage known miRNA-mRNA 
interactions.(Kaczmarek et al., 2022) The authors first constructed a knowledge graph encoding 
biological communication and cellular interactions between miRNAs and mRNAs, which served 
as the backbone for a graph neural network.(Kaczmarek et al., 2022) Their machine learning 
algorithm then took in patient cancer samples as input, and applied message-passing and attention 
mechanisms over the above knowledge graph to make new predictions.(Kaczmarek et al., 2022) In 
addition to achieving impressive accuracy, the method’s use of the knowledge graph also allowed 
for explainability studies that identify important targeting pathways and molecular 
biomarkers.(Kaczmarek et al., 2022) While applied to mRNA-miRNA datasets, the method can be 
easily extended to other multi-omic data problems.(Kaczmarek et al., 2022) 
 
Li et al’s (2022) work notes the disconnect in precision medicine between pharmacogenetics and 
disease genetics.(Li et al., 2022) To address this, they analyzed pharmacogenetic and clinical 
genetics databases (e.g., PharmGKB, Clinvar) to identify overlaps between genes and variants 
responsible for disease and those responsible for affecting drug response.(Li et al., 2022) They 
found 26 genes associated with disease that also have a strong pharmacogenetic association, 
demonstrating the importance of joint analysis between disease and pharmacogenetic domains.(Li 
et al., 2022) 

4.  Conclusion 

In submissions to the Precision Medicine: Using Artificial Intelligence to Improve Diagnostics 
and Healthcare session in PSB 2022, we observed the adaptation and development of new 
computational methods towards a healthcare system that is more streamlined, tailored, and 
fair. This body of research covers a wide range of topics from novel methods for forecasting 
influenza-like illnesses to new tools for predicting disease outcomes to methods for 
discovering new insights from multi-omics data.  
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