
Packaging Biocomputing Software to Maximize Distribution and Reuse

William S. Bush, Nicholas Wheeler
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health

Sciences, Case Western Reserve University
Cleveland, OH, 44106, USA

Email: wsb36@case.edu; nrw16@case.edu

Christian Darabos
Biomedical Data Science Department, Information Technology and Consulting, Dartmouth College

Hanover, NH, 03755, USA
Email: Christian.Darabos@dartmouth.edu

Brett Beaulieu-Jones
Department of Biomedical Informatics, Harvard Medical School,

Boston, MA, 02115, USA
Email: Brett_Beaulieu-Jones@hms.harvard.edu

The majority of publications in computational biology and biocomputing develop or apply software
approaches to relevant biological problems to some degree. While journals and conferences often
prompt authors to make their source code available, these are often only basic requirements.
Investigators often wish their software and tools were widely usable to the scientific community, but
there are limited resources available to maximize the distribution and provide easy use of developed
software. Even when authors adhere to standards of source code availability, the growing problem
of system configuration issues, language and library version conflicts, and other implementation
issues often impede the broad distribution, availability of software tools, and reproducibility of
research. There are a variety of solutions to these implementation issues, but the learning curve for
applying these solutions can be steep. This tutorial demonstrates tools and approaches for packaging
and distribution of published code, and provides methodological practices for the broad and open
sharing of new biocomputing software.

1. Rationale for Tutorial

A cornerstone of biocomputing and computational biology is the release of new algorithms for
data analysis, often in the form of an author-developed software implementation. With the ever-
increasing need for algorithmic processing of experimental data in scientific studies, the
reproducibility of individual studies has declined (Baker and Penny 2016; Monya and Dan 2016).
The lack of reproducibility and open sharing of methods has had downstream impacts into more
expensive clinical research, leading to an estimated $200 billion of wasted research funds (Chalmers
and Glasziou 2009). Despite improvements in certain aspects of reproducibility in recent years
(Wallach, Boyack, and Ioannidis 2018), there are still opportunities for improvement. In their Ten
simple rules for reproducible computational research, Sandve and colleagues enumerate the need
for archiving exact versions of external programs, version controlling all custom scripts, storing

© 2021 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.

Pacific Symposium on Biocomputing 27:412-416(2022)

412

intermediate data and raw output, and providing public access to scripts, runs and results(Sandve et
al. 2013).

The traditionally accepted approach for standardization, distribution, and version control of
software is the use of package repositories. The Comprehensive R Archive Network (CRAN) is an
extensively mirrored repository of distributions, extensions, and documentation for the R statistical
package (Hornik 2018). Similarly, Bioconductor serves as an extension of the R environment for
computational biology and bioinformatics packages (Gentleman et al. 2004). These are both
reminders that there is an “R” in “reproducible” (Ochs 2020), and that R packages may serve as a
useful framework for managing and organizing research projects (Vuorre and Crump 2020).
Analogs of these repositories in the conda framework have also been developed for the Python
language (Dale et al. 2018), and custom software and version control is now routinely stored and
managed using Git and GitHub (Chacon and Straub 2014).

While package management systems have dramatically improved version control and
accessibility of software, duplicating the precise software environment used to process experimental
data in a publication has long remained a major challenge, as reviewed in a recent challenge to run
ten-year-old code (Perkel 2020). Within the last few years, the dramatic rise of containerization
technologies like Docker (Merkel 2014) have for the first time allowed seamless distribution of data,
software, and its native processing environment together as a single entity. As a result, Docker is
now a commonly used tool for reproducible research in multiple fields (Boettiger 2014; Cito, Jurgen;
Gall 2016; Wiebels and Moreau 2021). Containerization technology has been adapted for
bioinformatics tasks (Belmann et al. 2015), deployed into custom bioinformatics registries
(Moreews et al. 2015), and specifically adapted to high-performance computing environments
(Kurtzer, Sochat, and Bauer 2017). Containers have been especially useful in the distribution of
complex workflows with dependencies on multiple software tools, such as the processing of next-
generation sequencing data (Kim et al. 2017; Schulz et al. 2016). The BioContainers Community
has produced a list of recommendations for standardizing bioinformatics packages and containers
(Gruening et al. 2019).

Even with software version control and entire software environments available for download,
specific analysis steps within a publication may not be documented with sufficient detail to
reproduce an analysis. While package management systems have dramatically improved version
control and accessibility of software, and containerization allows duplication of the precise software
environment, the exact process for analyzing experimental data may still prove difficult to reproduce
without detailed documentation. To address these challenges, Jupyter notebooks have emerged as
a composite digital document that seamlessly blends code (from a variety of languages),
documentation, and data visualization in an easy-to-follow format (Kluyver et al. 2016; Perkel
2021). They have been specifically touted for improving research reproducibility (Beg et al. 2021;
Rule et al. 2019), and Jupyter notebooks themselves have been researched to identify practices that
can improve reproducibility (Pimentel et al. 2021). Jupyter notebooks have gained popularity in
other computation-heavy fields like astronomy (Wofford et al. 2019), however their stability and
accessibility is not always persistent after publication. While there are also repositories for storing
Jupyter notebooks, specific practices are needed to ensure long-term availability of accessed
documents (Bouquin et al. 2018).

Pacific Symposium on Biocomputing 27:412-416(2022)

413

In a second iteration of this tutorial, we outline a technology stack that ensures high availability
and easy distribution of software, encapsulated data, software environment, and analysis
approaches. Docker containers are proposed as a foundational layer, providing a stable, version-
controlled operating system along with its associated programming languages and packages, and
data files that can be cached within the environment. R and Python packages are the distribution
method for custom software implementations, and are accessible within distributable containers.
Jupyter notebooks provide detailed documentation of all analysis steps in an interactive fashion.
Altogether, the collection of approaches outlined in this tutorial will ensure maximal distribution,
ease of use, and reproducibility of biocomputing research projects (Beaulieu-Jones and Greene
2017). In recent years, methods built upon this process have emerged to reduce technical hurdles
and fit specific domains (Krafczyk et al. 2021; Kwon, Kim, and Ahn 2018; Nüst et al. 2020; Peikert
and Brandmaier 2021; Sheffield 2019; Yenni et al. 2019).

2. Tutorial Speakers

William S. Bush, Ph.D. is an Associate Professor in the Department of Epidemiology and
Biostatistics and Assistant Director for Computational Methods in the Cleveland Institute for
Computational Biology at Case Western Reserve University. Dr. Bush received his Ph.D. at
Vanderbilt University in Human Genetics in 2008 and then continued as a post-doctoral fellow in
the Neurogenomics Training Program at Vanderbilt. As a human geneticist and bioinformatician,
Dr. Bush’s research interests include understanding the functional impact of genetic variation,
developing statistical and bioinformatics approaches for integrating functional genomics
knowledge into genetic analysis, and the use of electronic medical records for translational
research.

Nicholas Wheeler, Ph.D. is a Research Scientist in the Cleveland Institute for Computational
Biology at Case Western Reserve University. Dr. Wheeler is a macromolecular scientist and
engineer by training with extensive expertise in the use of “big data” technologies for large scale
data aggregation and analysis. Dr. Wheeler manages genomic datasets and their associated meta-
data within a Spark/Hadoop cluster, with extensions to the open-source HAIL platform for
genomic analysis, which ensures standardization and reproducibility of experimental analyses.
Over the course of his career, Dr. Wheeler has created, validated, and submitted multiple R and
Python packages into public repositories.

Brett Beaulieu-Jones, Ph.D. is an Instructor of Biomedical Informatics in the Kohane lab at
Harvard University. He received his PhD from the Perelman School of Medicine at the University
of Pennsylvania under the supervision of Dr. Jason Moore and Dr. Casey Greene. Dr. Beaulieu-
Jones’ doctoral research focused on using machine learning-based methods to more precisely
define phenotypes from large-scale biomedical data repositories, e.g. those contained in clinical
records. He is currently performing large-scale data integration (genomic, therapeutic, imaging) to
both better understand the etiology of complex diseases and conditions.

Pacific Symposium on Biocomputing 27:412-416(2022)

414

Christian Darabos, Ph.D. is an Instructor in Quantitative Biomedical Sciences at the Geisel
School of Medicine and the Interim Sr. Director for Research Computing at Dartmouth College.
He co-leads the Reproducible Research initiatives at Dartmouth College and supports a series of
workshops and tutorials which are designed to educate and support the entire research community
on best computational and data practices, informatics and analytics tools, and high-performance
computing.

3. Acknowledgements

This work is partially supported by the National Institute on Aging of the National Institutes of
Health (NIH) Grants U01 AG058654 and U54 AG052427.

4. References
Baker, Monya, and Dan Penny. 2016. “Is There a Reproducibility Crisis?” Nature 533(7604): 452–54.
Beaulieu-Jones, Brett, and Casey Greene. 2017. “Reproducibility of Computational Workflows Is Automated Using

Continuous Analysis.” Nature biotechnology 35(4): 342–46. https://pubmed.ncbi.nlm.nih.gov/28288103/
(October 4, 2021).

Beg, Marijan et al. 2021. “Using Jupyter for Reproducible Scientific Workflows.” Computing in Science &
Engineering 23(02): 36–46.

Belmann, Peter et al. 2015. “Bioboxes: Standardised Containers for Interchangeable Bioinformatics Software.”
GigaScience 4(1).

Boettiger, Carl. 2014. “An Introduction to Docker for Reproducible Research, with Examples from the R
Environment.” http://arxiv.org/abs/1410.0846 (October 4, 2021).

Bouquin, Daina, Sophie Hou, Matthew Benzing, and Lee Wilson. 2018. Jupyter Notebooks: A Primer for Data
Curators Link w/ Release Notes. http://datacurationnetwork.org.

Chacon, Scott, and Ben Straub. 2014. Pro Git. 2nd ed. Berkely, CA, USA: Apress.
Chalmers, Iain, and Paul Glasziou. 2009. “Avoidable Waste in the Production and Reporting of Research Evidence.”

Lancet (London, England) 374(9683): 86–89. http://www.ncbi.nlm.nih.gov/pubmed/19525005 (October 7,
2019).

Cito, Jurgen; Gall, Harald C. 2016. “Using Docker Containers to Improve Reproducibility in Software Engineering
Research | IEEE Conference Publication | IEEE Xplore.” IEEE/ACM 28th International Conference on Software
Engineering Companion (ICSE-C): 906–7. https://ieeexplore.ieee.org/document/7883438 (October 4, 2021).

Dale, Ryan et al. 2018. “Bioconda: Sustainable and Comprehensive Software Distribution for the Life Sciences.”
Nature Methods 15(7): 475–76.

Gentleman, Robert C et al. 2004. “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome biology 5(10): R80. http://www.ncbi.nlm.nih.gov/pubmed/15461798 (October 7,
2019).

Gruening, Bjorn et al. 2019. “Recommendations for the Packaging and Containerizing of Bioinformatics Software.”
F1000Research 7: 742.

Hornik, Kurt. 2018. “R FAQ.” https://cran.r-project.org/doc/FAQ/R-FAQ.html.
Kim, Baekdoo et al. 2017. “Bio-Docklets: Virtualization Containers for Single-Step Execution of NGS Pipelines.”

GigaScience 6(8).
Kluyver, Thomas et al. 2016. “Jupyter Notebooks-a Publishing Format for Reproducible Computational Workflows.”

https://nbviewer.jupyter.org/,.
Krafczyk, M. S. et al. 2021. “Learning from Reproducing Computational Results: Introducing Three Principles and

the Reproduction Package.” Philosophical Transactions of the Royal Society A 379(2197).
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0069 (October 4, 2021).

Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer. 2017. “Singularity: Scientific Containers for Mobility

Pacific Symposium on Biocomputing 27:412-416(2022)

415

of Compute.” PLoS ONE 12(5).
Kwon, ChangHyuk, Jason Kim, and Jaegyoon Ahn. 2018. “DockerBIO: Web Application for Efficient Use of

Bioinformatics Docker Images.” PeerJ 6(11). /pmc/articles/PMC6266945/ (October 4, 2021).
Merkel, Dirk. 2014. “Docker: Lightweight Linux Containers for Consistent Development and Deployment.” Linux J.

2014(239). http://dl.acm.org/citation.cfm?id=2600239.2600241.
Monya, Baker, and Penny Dan. 2016. “Reproducibility Crisis (Nature).” Nature 533: 452–54.
Moreews, François et al. 2015. “BioShaDock: A Community Driven Bioinformatics Shared Docker-Based Tools

Registry.” F1000Research 4.
Nüst, Daniel et al. 2020. “Ten Simple Rules for Writing Dockerfiles for Reproducible Data Science.” PLoS

Computational Biology 16(11). /pmc/articles/PMC7654784/ (October 4, 2021).
Ochs, Andreas. 2020. “There Is an R in Reproducible. Make Your next R Project Reproducible… | by Dr Andreas

Ochs | Towards Data Science.” https://towardsdatascience.com/there-is-an-r-in-reproducibility-b9120712742f
(October 4, 2021).

Peikert, Aaron, and Andreas M. Brandmaier. 2021. “A Reproducible Data Analysis Workflow.” Quantitative and
Computational Methods in Behavioral Sciences 1.

Perkel, Jeffrey M. 2020. “Challenge to Scientists: Does Your Ten-Year-Old Code Still Run?” Nature 584(7822): 656–
58.

Perkel, Jeffery M. 2021. “Reactive, Reproducible, Collaborative: Computational Notebooks Evolve.” Nature
593(7857): 156–57.
Pimentel, João Felipe, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2021. “Understanding and

Improving the Quality and Reproducibility of Jupyter Notebooks.” Empirical Software Engineering 2021 26:4
26(4): 1–55. https://link.springer.com/article/10.1007/s10664-021-09961-9 (October 4, 2021).

Rule, Adam et al. 2019. “Ten Simple Rules for Writing and Sharing Computational Analyses in Jupyter Notebooks.”
PLOS Computational Biology 15(7): e1007007.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007 (October 4, 2021).

Sandve, Geir Kjetil, Anton Nekrutenko, James Taylor, and Eivind Hovig. 2013. “Ten Simple Rules for Reproducible
Computational Research.” PLoS computational biology 9(10): e1003285.
http://www.ncbi.nlm.nih.gov/pubmed/24204232 (October 7, 2019).

Schulz, Wade L., Thomas J.S. Durant, Alexa J. Siddon, and Richard Torres. 2016. “Use of Application Containers and
Workflows for Genomic Data Analysis.” Journal of Pathology Informatics 7(1).

Sheffield, Nathan C. 2019. “Bulker: A Multi-Container Environment Manager.” https://osf.io/natsj/ (October 4, 2021).
Vuorre, Matti, and Matthew J. C. Crump. 2020. “Sharing and Organizing Research Products as R Packages.”

Behavior Research Methods 2020 53:2 53(2): 792–802. https://link.springer.com/article/10.3758/s13428-020-
01436-x (October 4, 2021).

Wallach, Joshua D., Kevin W. Boyack, and John P. A. Ioannidis. 2018. “Reproducible Research Practices,
Transparency, and Open Access Data in the Biomedical Literature, 2015–2017.” PLOS Biology 16(11):
e2006930. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006930 (October 4, 2021).

Wiebels, Kristina, and David Moreau. 2021. “Leveraging Containers for Reproducible Psychological Research:”
https://doi.org/10.1177/25152459211017853 4(2): 1–18.
https://journals.sagepub.com/doi/full/10.1177/25152459211017853 (October 4, 2021).

Wofford, Morgan et al. 2019. “Jupyter Notebooks as Discovery Mechanisms for Open Science: Citation Practices in
the Astronomy Community.” Computing in Science & Engineering: 1–1.

Yenni, Glenda M. et al. 2019. “Developing a Modern Data Workflow for Regularly Updated Data.” PLOS Biology
17(1): e3000125. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000125 (October 4,
2021).

Pacific Symposium on Biocomputing 27:412-416(2022)

416

