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A major goal of precision medicine is to stratify patients based on their genetic risk for a disease to 
inform future screening and intervention strategies. For conditions like primary open-angle glaucoma 
(POAG), the genetic risk architecture is complicated with multiple variants contributing small effects 
on risk. Following the tepid success of genome-wide association studies for high-effect disease risk 
variant discovery, genetic risk scores (GRS), which collate effects from multiple genetic variants 
into a single measure, have shown promise for disease risk stratification. We assessed the application 
of GRS for POAG risk stratification in Hispanic-descent (HIS) and European-descent (EUR) 
Veterans in the Million Veteran Program. Unweighted and cross-ancestry meta-weighted GRS were 
calculated based on 127 genomic variants identified in the most recent report of cross-ancestry 
POAG meta-analyses. We found that both GRS types were associated with POAG case-control status 
and performed similarly in HIS and EUR Veterans. This trend was also seen in our subset analysis 
of HIS Veterans with less than 50% EUR global genetic ancestry. Our findings highlight the 
importance of evaluating GRS based on known POAG risk variants in different ancestry groups and 
emphasize the need for more multi-ancestry POAG genetic studies.  
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1.  Introduction 

Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness globally (1,2). 
To mitigate severe POAG outcomes, early intervention is essential (3). POAG is a complex disease 
with a substantial genetic component (4,5). Comprehensively evaluating individual genetic profiles 
via genetic risk scores (GRS) may enable POAG risk stratification (6). Specifically, in the era of 
precision medicine, it is possible that individuals with high genetic risk for developing POAG and 
experiencing more aggressive disease course could be eligible for earlier and more frequent 
comprehensive eye examinations and be prioritized for early intervention.  

While showing promising clinical utility for diseases with complex disease etiology, GRS are 
not without limitations (7–9). Historically, studies that inform which variants are included in GRS 
have been predominantly performed on data from individuals of European descent (EUR), 
regardless of whether disease burden is highest in EUR or other ancestries (10). GRS also lack cross-
ancestry generalizability (9). Although POAG burden is higher in Hispanic (HIS) and African-
descent (AFR) individuals (11), most POAG genetic studies have been reported in EUR individuals. 
Additionally, HIS individuals have a high degree of genetic admixture shaped by Native American, 
EUR, and AFR ancestries (12), which presents a possible limitation for the clinical use of GRS. We 
previously found that performance of a POAG GRS was significantly diminished in AFR Veterans 
compared to EUR Veterans in the Million Veteran Program (MVP) (13). To overcome limitations 
of contemporary GRS, representation of ancestral diversity in genetic studies must increase. The 
most recent genome-wide POAG analysis was a cross-ancestry meta-analysis of over 34,000 cases 
and nearly 350,000 controls that identified 127 POAG-associated loci (14). While this dataset 
predominantly included EUR individuals, it also included individuals of Asian and African descent 
(14), representing an important step towards increasing ancestral diversity in POAG genetic studies.  

Large-scale, multi-ancestry biobanks linked to electronic health records (EHR) offer another 
way to increase diversity in genetic studies. We accessed the MVP, which is an ongoing US-based 
observational research program and mega-biobank funded by the Department of Veterans Affairs 
(VA) Office of Research and Development (15). To date, over 800,000 Veterans with linked genetic, 
EHR, health survey, and other clinical data have been enrolled in the MVP (15,16).  Representation 
of diverse ancestral populations (16) is prominent in the MVP; about 29% of participants are from 
ancestries that have been historically underrepresented in genetic studies, including HIS (16).  

In this study, we sought to assess the cross-ancestry transferability of a POAG GRS in HIS and 
EUR Veterans in the MVP. Among POAG cases and controls in the MVP, we calculated GRS based 
on 127 variants identified in the 2021 cross-ancestry POAG meta-analysis (14). Finally, we 
evaluated the GRS performance for POAG case classification in HIS and EUR Veterans. 

2.  Methods 

2.1.  Study demographics 

We classified POAG cases and controls with a previously published algorithm developed in the VA 
(17) and applied to the MVP as previously described (13). Ancestry groups were defined using the 
Harmonized Ancestry and Race/Ethnicity (HARE) algorithm (18), which classifies an individual’s 
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HARE group based on the correspondence of their self-identified race/ethnicity and genetically 
inferred ancestry.  

2.2.   GRS calculations and association tests 

We calculated 127-variant GRS for HIS and EUR Veterans in the MVP. GRS were either 
unweighted or weighted by published cross-ancestry effect estimates (14) as shown in Equations 1 
and 2, respectively. Risk alleles were defined by having odds ratios greater than 1 in the cross-
ancestry analysis (14).  

 𝐺𝐺𝐺𝐺𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑢𝑢𝑡𝑡(𝑢𝑢) = ∑ 𝑀𝑀𝑢𝑢𝑖𝑖
𝑘𝑘
𝑖𝑖=1  (1) 

where M = risk allele dosage, i = individual, k = 127 variants 

 𝐺𝐺𝐺𝐺𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑢𝑢𝑡𝑡(𝑢𝑢) = ∑ 𝛽𝛽𝑖𝑖𝑀𝑀𝑢𝑢𝑖𝑖
𝑘𝑘
𝑖𝑖=1  (2) 

where M = risk allele dosage, i = individual, k = 127 variants, β=log(odds ratio) 
 

We tested for association between the GRS and POAG via logistic regression-based analyses 
using unadjusted models as well as models adjusting for age, sex, and 10 sample-specific principal 
components (PCs). 

2.3.  GRS performance for POAG risk stratification in the MVP 

We compared POAG case classification across GRS deciles and evaluated GRS model performance 
with area under the curve (AUC) estimates from receiver operating characteristic (ROC) curves, as 
previously described (13). To elucidate the contributions of each model variable, we estimated the 
proportion of POAG variance explained by: (i) age, (ii) age and sex, (iii) age, sex, and 10 PCs, and 
(iv) age, sex, 10 PCs, and each GRS (unweighted and weighted). Coefficients of determination (R2) 
were calculated on the observed scale (Nagelkerke’s) and the liability scale using a fixed disease 
prevalence of 2.4% (19) as well as increases in R2 with the addition of each variable to the model. 

2.4.  Subset analyses based on global genetic ancestry 

HIS Veterans are more genetically admixed than EUR Veterans (18); thus, we evaluated GRS 
performance in a subset of HIS Veterans with less than 50% EUR global genetic ancestry (GGA) 
as determined via the ADMIXTURE software program (20). We compared these subset results to 
the full MVP HIS POAG case-control dataset. 

3.  Results 

3.1.  POAG cases and controls in the MVP 

Applying the above-described phenotype and ancestry group definitions to the MVP, our dataset 
included 3,347 HIS Veterans (382 cases; 2,965 controls) and 62,193 EUR Veterans (3,382 cases; 
58,811 controls) (Table 1). Nearly all the study participants were male (Table 1). Among EUR 
Veterans, 96.48% of POAG cases and 97.76% of controls were male (p < 0.05; Table 1); whereas, 
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among HIS Veterans, 97.12% of POAG cases and 98.01% of controls were male (p > 0.05; Table 
1). Although the average ages of EUR POAG cases and controls were not significantly different, 
HIS POAG cases were about 2 years younger, on average, than HIS controls (p < 0.05; Table 1). 
 

 

3.2.  GRS calculations and association tests 

We detected association between the 127-variant GRS and POAG case-control status in HIS and 
EUR Veterans in the MVP. Unweighted and weighted GRS were significantly associated with 
POAG status in both EUR and HIS Veterans (p < 0.05) (Table 2). Although effect estimates were 
comparable between both datasets for each GRS type, the association signals were more pronounced 
in the analyses of EUR Veterans compared to HIS Veterans (Table 2).  
 

 

3.3.  GRS performance for POAG risk stratification in the MVP 

POAG case proportions generally increased across GRS deciles for both EUR and HIS Veterans 
(Figure 1). In the top deciles, a higher proportion of EUR POAG cases were consistently categorized 
compared to HIS POAG cases (Figure 1). 
 

Table 1. POAG case-control demographics in the MVP. The p-values shown were from Welch’s t-test for 
age and chi-square test for sex. SD: Standard deviation. 
 

HIS EUR 
Cases Controls Total p-value Cases Controls Total p-value 

N  
(% total) 

382 
(11.41) 

2,965 
(88.59) 

3,347 
(100)  3,382 

(5.44) 
58,811 
(94.56) 

62,193 
(100)  

Age  
(SD) 

70.24 
(9.70) 

72.16 
(7.23) 

71.94 
(7.57) 0.0002 73.32 

(9.55) 
73.11 
(7.3) 

73.12 
(7.44) 0.2021 

N Males  
(% total) 

371 
(97.12) 

2,906 
(98.01) 

3,277 
(97.91) 0.3402 3,263 

(96.48) 
57,496 
(97.76) 

60,759 
(97.69) 1.8 x 10-6 

 

Table 2. Association test results for unadjusted and adjusted models for unweighted and weighted GRS in 
HIS and EUR Veterans in the MVP. Effect estimates are calculated as log(odds ratio) for a 1 standard 
deviation increase in the GRS. 

Population Model GRS Type Effect Estimate Standard Error z value p-value 

HIS 
Unadjusted Unweighted 0.55 0.057 9.56 1.18 x 10-21 

Weighted 0.61 0.058 10.54 5.37 x 10-26 

Adjusted Unweighted 0.54 0.059 9.20 3.54 x 10-20 
Weighted 0.61 0.060 10.16 3.13 x 10-24 

EUR 
Unadjusted Unweighted 0.56 0.018 30.63 5.65 x 10-206 

Weighted 0.61 0.018 34.43 7.62 x 10-260 

Adjusted Unweighted 0.56 0.018 30.64 3.36 x 10-206 
Weighted 0.61 0.018 34.40 2.28 x 10-259 
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Fig. 1. Case proportions for EUR and HIS Veterans in the MVP for the unweighted and weighted GRS. 

 
For both weighted and unweighted approaches, when we specifically compared the top GRS 

decile to the bottom 90%, we observed ~3-fold higher odds of POAG case classification for both 
GRS types in the top decile for both EUR and HIS Veterans (Table 3; Figure 2).  

 

 
 

 
Fig. 2. Comparison of the top GRS decile versus the bottom 90% of the GRS distribution for unweighted 

and weighted GRS in EUR and HIS Veterans in the MVP. 
 
We found no statistically significant difference in GRS performance based on ROC curve 

comparisons between HIS and EUR Veterans (AUC range: 0.65-0.69) (Figure 3). This trend was 
observed for both unadjusted (Figure 3A) and adjusted models (Figure 3B).  

Table 3. Odds ratios (OR) comparing the top GRS decile to bottom 90% in HIS and EUR Veterans. 

Population GRS Type OR  
(95% CI) p-value 

HIS 
Unweighted 2.70  

(2.03-3.56) 3.20 x 10-12 

Weighted 3.11  
(2.35-4.07) 4.63 x 10-16 

EUR 
Unweighted 2.74  

(2.51-2.98) 2.26 x 10-116 

Weighted 3.03  
(2.78-3.29) 9.05 x 10-147 
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Fig. 3. ROC curve comparisons for (A) unadjusted and (B) adjusted models for unweighted and weighted GRS in HIS 

and EUR Veterans in the MVP. The p-values shown were calculated from DeLong’s comparison of ROC curves. 

3.4.  Proportion of variance explained by model variables 

We found that coefficients of determination (R2) on the observed (Nagelkerke’s) and liability scales 
were less than 0.1 for all the model variable combinations that we evaluated in our adjusted analyses 
(Table 4). Covariates alone (age, sex, and 10 PCs) explained a higher proportion of POAG variance 
in HIS Veterans (Nagelkerke’s R2 = 0.034; liability R2 = 0.030) than in EUR Veterans (Nagelkerke’s 
R2 = 0.002; liability R2 = 0.0023) (Table 4). Adding the GRS (unweighted and weighted) to the 
model resulted in similar increases in R2 in HIS and EUR Veterans (Table 4). 
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3.5.  Subset analyses based on global genetic ancestry 

Among the 382 HIS POAG cases and 2,965 HIS controls in the MVP, a subset (220 POAG cases 
and 1,486 controls) had less than 50% EUR GGA (Figure 4). On average, cases in the GGA-based 
HIS subset were about 70 years old, while controls were about 72 years old (p = 0.0018). ROC 
curves for the GGA-based subset were comparable to those for the full HIS POAG case-control 
dataset (Table 5). 
 

 
Fig. 4. Admixture proportions for EUR and HIS Veterans in the MVP. Five-way admixture was computed with 

ADMIXTURE using five 1000 Genomes reference groups (GBR: British in England and Scotland; PEL: Peruvian in 
Lima, Peru; YRI: Yoruba in Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya; CHB: Han Chinese in Beijing, China). 
The vertical black line denotes 50% GBR; HIS Veterans to the right of the line were included in the subset analyses. 

 

 

Table 4. Coefficients of determination (R2) on the observed scale (Nagelkerke’s) and the liability scale for model 
variables in our adjusted GRS models for HIS and EUR Veterans in the MVP.   

HIS EUR 

Model Variables 
Nagelkerke's R2 

(Observed Scale) 
Liability R2 

Nagelkerke's R2 

(Observed Scale) 
Liability R2 

Age 0.013 0.012 0.0001 0.0001 
Age+Sex 0.014 0.012 0.0011 0.0013 
Age+Sex+10PCs 0.034 0.030 0.0020 0.0023 
Age+Sex+10PCs+Unweighted GRS 0.085 0.076 0.047 0.054 
Age+Sex+10PCs+Weighted GRS 0.096 0.086 0.058 0.067 
R2 Increase     

Unweighted GRS 0.051 0.046 0.045 0.052 
Weighted GRS 0.062 0.056 0.056 0.065 

 

Table 5. Comparison of ROC curves for full HIS case-control dataset and GGA-based HIS subset. 

GRS Type 
Area Under the Curve 

(95% CI) 
DeLong’s Comparison of 

ROC curves 
HIS HIS Subset p-value 

Unweighted 0.65 
(0.62-0.67) 

0.63 
(0.59-0.67) 0.61 

Weighted 0.66 
(0.63-0.69) 

0.65 
(0.61-0.69) 0.84 
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4.  Discussion  

In this study, we confirmed that GRS based on 127 POAG risk variants identified through cross-
ancestry meta-analysis performed similarly in HIS and EUR Veterans in the MVP. We also observed 
this trend in our subset analyses based on GGA. However, it is important to note that across the 
highest GRS deciles, a higher proportion of EUR POAG cases were categorized compared to HIS 
POAG cases in the MVP. This emphasizes the need for more inclusive POAG genetics studies to 
improve the development of equitable risk prediction models based on genetic data.  

The genetic etiology of POAG is complex with heritability estimates from twin studies and 
GWAS ranging from 0.26 to 0.93 (21–27). To date, over 125 genomic variants have been implicated 
in the genetic architecture of POAG, but these individual variants only moderately influence disease 
risk and only account for about 10% of the additive genetic variance of POAG (5,14). Rather than 
investigating single genetic variant associations, we performed logistic regression-based association 
analyses on unweighted and weighted GRS in HIS and EUR Veterans and found that both GRS 
types strongly associated with POAG case-control status in these groups (Table 2). However, when 
we examined the proportion of POAG variance explained by model variables, we observed varied 
effects of the addition of covariates alone compared to the combination of covariates and GRS in 
HIS and EUR Veterans (Table 4). This trend was also observed in our prior study, where covariates 
were more informative for POAG variance in AFR Veterans while GRS were more informative for 
EUR Veterans in the MVP (13). We hypothesize that this could be partially explained by the 
significant difference in the average ages of the AFR (13) and HIS POAG cases and controls (Table 
1). Additionally, while the variants included in the 127-variant GRS were identified from a cross-
ancestry meta-analysis (14), the variants may still be more informative for EUR individuals than 
individuals of other ancestries due to the high proportion of EUR individuals included in that study.  

Based on our ROC curve comparisons and case classification evaluations, the performance of 
the 127-variant GRS was not significantly different between HIS and EUR Veterans (Figures 1 and 
3). This is in stark contrast to our prior work, which found that GRS performance was significantly 
reduced when applied to AFR Veterans compared to EUR Veterans (13).  Similar trends have been 
observed in the application of polygenic risk scores (PRS) for coronary heart disease in EUR, HIS, 
and AFR individuals (28,29) as well as for breast cancer in HIS individuals with varying proportions 
of EUR and Native American ancestry (30). It was hypothesized that the similar PRS performance 
in HIS and EUR individuals was attributable to the masking of the breadth of diversity in the HIS 
group (31), which is more genetically admixed (32).  To interrogate this in our study, we evaluated 
GRS performance in a subset of HIS Veterans with less than 50% EUR GGA and did not detect a 
significant difference between the full and subset analyses (Table 5). Because AFR and HIS 
Veterans have a higher admixture proportion than EUR Veterans in the MVP (18), future work 
should consider the contributions of local genetic ancestry in POAG GRS performance.  

While this study describes the application of GRS to a large multi-ancestry POAG case-control 
dataset, it has limitations. Nearly all the MVP-enrolled Veterans in this study were male due to 
demographic trends in the US military (15). While previous studies have estimated higher POAG 
prevalence in males than females (19), future work should evaluate GRS performance in a sex-
balanced dataset to ensure that their application is equitable. Also, although this study examined 
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GRS in both EUR and HIS Veterans, there are substantially more EUR Veterans than HIS Veterans 
in our analyses. We also limited our GRS to 127 risk variants identified in the largest-to-date multi-
ancestry POAG GWAS (14), and we were unable to assess GRS weighted by ancestry-specific 
effect estimates because the previously published meta-analysis did not include HIS individuals 
(14). Future studies examining a larger portion of the genetic architecture of POAG in multi-ancestry 
datasets should be prioritized to facilitate the construction of more informative GRS.  

In summary, based on our knowledge of the current GRS limitations (e.g., dearth of diversity in 
GWAS and lack of transferability of GRS across different ancestries) and what we learned from this 
study, it is clear that POAG genomics studies need to increase the inclusion of diverse ancestral 
groups, especially those who have been historically underrepresented in research. This will 
hopefully improve understanding of the complex genetic architecture of POAG and ensure that GRS 
can be equitably introduced to the clinic for POAG risk stratification, especially for HIS and AFR 
individuals for whom POAG burden is higher. 
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