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Abstract: We describe a statistical method to determine if a pair of
columns in a multiple alignment of a homologous family of RNA
sequences shows evidence of being base paired.  The method makes
explicit use of a given phylogenetic tree for the sequences in the
alignment.  It is tested on a multiple alignment of 16S rRNA
sequences with good results.

Introduction and Overview of Methods

Most present techniques for RNA secondary structure prediction are based
either on energy minimization or on comparative sequence analysis.  Energy
minimization methods have had less success on large RNA molecules [1 Jacobson-
93] [2 Zuker-91] [3 Zuker-84] [4 Tinoco-71], so comparative sequence analysis is
the method of choice here* [ 5 Han-93] [6 Le-91].  Until now, comparative
sequence methods have either required substantial manual intervention [7 James-
89] [8 Woese-83], or were more fully automated, but overlooked information about
the phylogenetic relationships among the sequences in the RNA multiple

                                                
*  Some hybrid methods involving both comparative sequence analysis and Energy
Minimization have been attempted [5 Han-93] [6 Le-91].



alignment†.  Among the many methods of the later type are RNA secondary
structure predictors based on statistical measures of dependency such as mutual
information.  These methods impute base pairing between two columns of a
multiple alignment  when the columns are found to have a high degree of statistical
dependency [9 Cary-95] [10 Klinger-93] [11 Gutell-92] [12 Waterman-89].  Some
recent algorithms in this family, based on stochastic context-free grammars, also
take into account information about neighboring columns in a multiple alignment
[13 Lefebvre-95] [14 Eddy-94] [15 Sakakibara-94] [16 Grate-94].  In order to
allow fully automated systems to make use of phylogenetic information, we
develop a statistical model of the evolutionary process embodied in the
phylogenetic tree.  This model, which we call the Tree Model is then applied to
pairs of columns of the multiple alignment.  The Tree Model is designed to be used
as a subroutine to determine if a pair of columns shows strong evidence of base-
pairing in the underlying secondary structure common to the sequences in a
multiple alignment.  To determine the entire common secondary structure, this
subroutine might be imbedded in a larger RNA structure discovery system such as
[17 Grate-95] [9 Cary-95].

To clarify the setting in which the tree model is applied, suppose that we
have constructed a multiple alignment of several homologous RNA sequences with
each sequence on a separate row.  We also have a classical phylogenetic tree (T)
describing the phylogenetic relationships among these sequences.  We now select
two columns in this multiple alignment (a column duo,  d).   Our goal is to
determine whether or not these columnar positions are base paired.  As we are not
merely examining a single molecule, the base pairing we are looking for is not the
classical Watson-Crick style pairing between two individual nucleic acid
molecules.  Rather, we are looking for some presumed common secondary (or
tertiary) pairing structure shared by all of the RNA molecules in our homologous
multiple alignment.  In other words, we must decide if the nucleotides in the
selected multiple alignment positions interact in such a way that they form part of
the common secondary structure of the family.  The presence of this secondary
structure is typically associated with the presence of a helix in the molecules of  a
homologous family of RNA.

                                                
† Some methods do use a heuristic sequence weighting to reduce bias in certain statistical
measures.



Two possible scenarios of this are illustrated in Figure 1.  To simplify this
example, we only allow the base pairs GC and AU. Both scenarios have the same
tree structure T, but have differing column duo data d.  For each case, the column
duo data is shown as labels in the leaves of the tree and in the Alignment Data on

the right.  In both cases the data (d) consists of two occurrences of the nucleotide
duo GC and two occurrences of the duo AU.  However, in Case 1, both organisms
(sequences) having GC as their contribution to d are related by a common parent,
as are both sequences contributing AU.  In Case 2, each sequence contributing GC
shares a common parent with a sequence contributing AU.   In both cases the
presence of GC and AU duos is evidence  that the duo may be base paired, but this
evidence is stronger in Case 2 than it is in Case 1.  This is because Case 2 requires
at least two mutations of the form AU→GC or GC→AU, while Case 1 requires
only one such mutation.  Such combined mutations that preserve Watson-Crick
base-pairing are referred to as compensatory mutations.  Using the Tree Model, we
can now quantify how much stronger the evidence for base-pairing is in Case 2
than in Case 1. The model may be applied to classify column duos as either base-
paired or not base paired.  We tested the model using column duos from an
alignment of 1375 16S rRNA sequences obtained from the ribosomal database
project [18 RDP-93] and found it to have a classification accuracy in excess of
90%.  Accuracy rises to more than 99% when highly conserved column duos are
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Figure 1:  Relationship Between Phylogenetic Tree and Multiple Alignment.

The above graphs show two multiple alignment column duos (4 columns) applied to the leaves of a
single phylogenetic tree.  The internal nodes of the tree do not correspond to organisms in the
multiple alignment, rather they are unseen genetic progenitors who’s genetic makeup’s are inferred
statistically from a those of their offspring, and a given mutation process. Each of the 4 organisms
represented in the multiple alignment is denoted by a separate ID number.



removed to reduce data degeneracies.  We show by direct comparison that the Tree
Model method performs better than the mutual information methods.  The results
we obtain also compare favorably with the 60%-80% accuracies reported in
previous work [19 Zuker-91] [20 Pieter-90] [21 Jaeger-90] through the use of
energy minimization, manual comparative sequence analysis any their hybrids‡.

Using the Tree Model

 The evidence that a column duo d is base-paired is calculated as the log-
likelihood ratio:

log (  P(d|Modelpair ∧ T)  /  P(d|Modelnopair ∧ T)  )

The likelihood P(d|Modelpair) represents the probability that the data d would be
generated at the leaves of phylogenetic tree T, assuming a particular mutation
model Modelpair that favors compensatory mutations [22 Felsenstein-81]. The
likelihood P(d|Modelnopair) is similar, except that mutation model Modelnopair does
not favor compensatory mutations. Modelnopair is constructed assuming that the
mutation processes for every column duo in a multiple alignment is independent,
and hence compensatory mutations are not favored.  In the simple case that
evolutionary times are the same on all branches of the phylogenetic tree, a
mutation model is comprised of two components, a 16 by 16 matrix ρ  and a 16
element vector  ϕ.  The matrix  ρ provides the probability that any of the 16
possible nucleotide duos will become another of the 16 possible nucleotide duos
over the span of time represented by one phylogenetic tree branch.  The diagonal
elements of this matrix represent the probabilities that a given nucleotide duo will
not mutate (i.e. AU→AU) while the off-diagonal elements hold the probabilities
that a nucleotide duo will mutate (i.e. AU→GC). The vector ϕ contains the prior
probabilities of observing a given nucleotide duo in a node of the phylogenetic
tree. An evolutionary reconstruction consists of the determination of a probability
distribution over each possible ancestral nucleotide duo in the tree T.  We assume
that the mutations from a given node of the phylogenetic tree are independent,
given that node’s nucleotide composition.  We also define an evolutionary
reconstruction (R) of d to be an initial nucleotide duo for the root node of the
phylogenetic tree coupled with a set of mutations leading from the root node to all
of the observed nucleotide duos (d) at the leaves of T.  Thus, the probability P(d ∧

                                                
‡ This latter comparison is not completely equitable as the prior distributions of Paired
versus NoPaired column duos my vary between methods.  For more information on the effects of
this asymmetry see the Comparison of Methods section of this paper, as well as Appendix B of [30
Gulko-95].



R|Modelpair ∧ T) of a specific evolutionary reconstruction for column duo d is just
the prior probability of finding the specified nucleotide duo of the root ancestral
node (from ϕ) multiplied by the product of the probabilities of each mutation in the
reconstruction (from ρ).  The probability that the observed data d is generated at
the leaves of the tree, P(d|Modelpair ∧ T), can be calculated by summing the
probabilities of all possible evolutionary reconstructions for d,

( )P d Model Tpair| ∧  = ( )P d R Model T
R

pair∧ ∧∑ | .

As the number of possible evolutionary reconstructions grows exponentially with
the size of T, this calculation is not directly feasible.  However, by exploiting
independence on the branches, this calculation can be done much more efficiently
by dynamic programming [22 Felsenstein-81]. The basis for this process is
explained below.

In the case that not all branch lengths in the evolutionary tree are the same,
it is reasonable to use different powers of a mutation matrix (ρ) to describe the
mutation process on each branch.  Given a mutation rate matrix ρ(1) for a unitary
span of time, the mutation matrix for a phylogenetic tree branch of length t could
be calculated as ρ(t) = ρ(1)t.  However, it appears difficult to construct an adequate
learning model for ρ(1) from a set of training data and a phylogenetic tree with
varying branch length.  As the Tree Model must automatically calculate its
parameters from a set of training data, we use a discrete approximation for t in the
continuous function ρ(t).  This approximation is accomplished by binning the
possible branch lengths (t) into 6 discrete ranges, and using a single 16 by 16
mutation matrix for all branch lengths within a single discrete range.  Thus, the
Modelpair actually includes six 16 by 16 matrices, rather than just one.  In the
remaining description of the method, we will not dwell on this technicality.
Rather, we consider only the simple case that all branch lengths in the tree are the
same.

One key issue is how to determine the parameters of the 16 by 16 matrix ρ
and the vector of 16 prior probabilities ϕ for the model Modelpair.  To accomplish
this, we have used maximum likelihood estimation.  We collected 472 column
duos that were labeled as base-paired in the multiple alignment obtained from
RDP§ [23 Macke-93].  This set of column duos (D) was filtered and split into
disjoint sets for cross validation purposes Dtrain and Dtest.  The column duos in Dtrain

were used as a training set to estimate the parameters of Modelpair.  Specifically, we
                                                
§ Actually, these were labeled as base-paired for the E. coli sequence in this alignment.
Thus, some of the recorded column duos might not actually be base-pairing positions for sequences
which differ substantially in structure from E. coli 16S rRNA.



calculated the parameters of Modelpair so as to maximize the joint likelihood of the
training data

 P( | )d Model Tpair
d Dtrain

∧
∈
∏ .

 While conceptually simple, this process is technically complex. This
complexity stems from the fact that we do not know the explicit evolutionary
histories for the training sequences.  If we did, we could merely count the number
of times each of the possible mutations occurred, and then set the parameters of the
mutation matrix accordingly.  To circumvent this lack of information, we apply the
general statistical method of Expectation Maximization (EM).  This method allows
us to calculate expectation values for the desired parameters in such cases where
there are critical unobserved (or latent) variables in the likelihood formula [24
Dempster-77].  In EM, initial parameter values are assumed.  This initial estimate
is then employed to collect sufficient statistics for the latent variables.  Finally, the
target parameter values are updated (or reestimated) to maximize the likelihood of
the data given the observed statistics.  This process is repeated until a local
optimum of the likelihood function is reached.  While EM is guaranteed to
converge to a locally maximal likelihood, it is not guaranteed to find a global
optimum.   In our case, the sufficient statistics are the expected number of times
each mutation occurs, calculated by considering (implicitly) all possible
evolutionary reconstructions for each column duo d∈Dtrain.  Again, this can only be
done efficiently using dynamic programming methods. These dynamic
programming methods are similar to, but somewhat more complex than the
d y n a m i c  p r o g r a m m i n g  m e t h o d s  u s e d  t o  c a l c u l a t e  t h e  l i k e l i h o o d
P(d |Modelpair ∧ T).  The mutation frequency calculation is analogous to the inside-
outside calculations done to estimate the parameters of a stochastic context-free
grammar [25 Lari-90],  which is in turn a generalization of the forward-backwards
calculations for hidden Markov models [26 Krogh-94].  Similar calculations are
also done using Bayesian inference nets [27 Heckerman-95] [28 Buntine-94] [29
Pearl-88].  Indeed, the Bayesian generalization of the Markov process used by the
Tree Model to represent the process of nucleotide duo evolution may be interpreted
as a form of Bayesian inference net.  In this interpretation, the Bayesian net is
given a structure parallel to that of the phylogenetic tree with hidden internal nodes
representing the internal nodes of the phylogenetic tree.  A detailed derivation and
discussion of these calculations is given in [30 Gulko-95]. Given a current estimate
of the parameters ρ and ϕ, we then estimate the frequency with which each type of
mutation occurs over the evolutionary reconstruction for each d∈Dtrain.   The
mutation probability matrix ρ is then reestimated by normalizing the mutation



frequencies**, thus providing a new estimate for ρ.  This process is iterated until no
significant changes in the parameters are observed [31 Thorne-91].  The process
may be started with any reasonable initial guess for the parameter values.

The parameters of the model Modelnopair were obtained in a manner similar
to Modelpair.  The only difference was in the selection of D.  For Modelnopair, D is a
set of column duos, selected at random, from a set of multiple alignment columns
which are believed not to contribute to the RNA secondary structure.  Once the
parameters for both of these models are obtained, they were tested on independent
test column duos (Dtest), not used in the training set.  Results of these tests are
described further below.

Calculating Likelihood’s Using Dynamic Programming

As described above, each Model consists of three parts, a classical
phylogenetic tree T, a mutation probability matrix ρ and an a-priori nucleotide
distribution ϕ.  For a given multiple alignment duo d, each leaf of the tree
corresponds to a particular nucleotide duo determined by that leaf’s organism’s
contribution to the column duo (Figure 1).  The nucleic makeup of the leaf nodes
serves to define the anchor step for a recursive calculation of a nucleotide duo
probability distribution for each internal node.  The inductive step of the recursion
also requires the conditional probability distribution P(child_node=m  |
parent_node=l), where l and m are nucleotide duos††.  This conditional probability
distribution (ρl  m) can be interpreted biologically as a mutation rate between
nucleotide duo l and nucleotide duo m over the time span of one phylogenetic tree
branch.  To make this induction computationally feasible, we additionally assume
the standard Markov independence property between a parent node and its
immediate descendants, namely,

P(child_1=m | parent=l ∧ child_2=n )   =   P(child_1=m | parent_node=l ).

This assumption allows us to define a recurrence relation over the nodes of the
binary phylogenetic tree as,

( )P d parent parent l( )| = = ‡‡

                                                
** Since our sample size was fairly large, we did not need to use Bayesian methods in the
reestimation of these parameters, as in [26 Krough-94].
†† Only the 16 nucleotide duos AA, AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU, UA,
UC, UG, UU are considered valid.  Other symbols including ambiguous nucleotides and delete
states are not.
‡‡ In the statement P(d(Node)|Node=l), d(Node) refers not to all of d, rather d(Node) refers to
that section of d which is descended from Node in the phylogenetic tree.  As the phylogenetic tree
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⎢

⎤
⎦
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⎢

⎤
⎦
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The probability P(d(parent) | parent =  l ) is analogous to the Inside probability
distribution in Lari & Young [25 Lari-90], except here it is applied to a tree shaped
Markov Model rather than a Stochastic Context Free Grammar.  For a given
nucleotide column duo d, we may use this formula to calculate by recursing the
calculation from the leaf nodes to the root node at which point we may calculate
P(d(root)|Model) = P(d|Model) as,

( )[ ]P P( | ) |d root l Model root l Model
l

= ∧ ⋅ = =∑

[ ]P( | )d root l Model l
l

= ∧ ⋅∑ ϕ

Where we have defined our final piece of model ϕl = P(parent=l|Model).  The
following example serves to show this process in action.

                                                                                                                                    
is a binary tree, d(parent) = d(child_1) ∪ d(child_2).  It also follows from this definition that d =
d(Root).

Paired Model
P( AU→AU ) = .954 P( AU→GC ) = .046 P( AU ) = .182
P( GC→AU ) = .011 P( GC→GC ) = .989 P( GC ) = .818

Nonpaired (Random) Model
P( AU→AU ) = .975 P( AU→GC ) = .025 P( AU ) = .361
P( GC→AU ) = .027 P( GC→GC ) = .973 P( GC ) = .639

Table 1: Mutation Model Parameters for Example

These numbers were taken from [30 Brad-95].  The probability of no mutation occurring was
maintained and the residual probability assigned to a mutation to the complimentary nucleotide
duo.  For the a priori state distribution, the relative proportions of AU and GC in Dtrain were
maintained and scaled up to total 100%.
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Figure 2: Calculation Tree for Example (Case 1, ModelPair)

This tree shows the calculation process used to compute the posterior data probability
P(d|Modelpair) for the column duo d described in Figure 1.  The leaf nodes are initialized from the
known nucleotide duo values from d.  Other probabilities are derived from descendants according
to the inference equation developed above.

P(d|Model) for Model Type
Data d TreePair TreeRand FreqPair FreqRand

Case 1 .02101 .02364 .05321 .02216
Case 2 .00073 .00066 .05321 .02216

NNLL(P(d|Model)) for Model Type, (bits/base)
Data d TreePair TreeRand FreqPair FreqRand

Case 1 0.697 0.675 0.529 0.687
Case 2 1.302 1.321 0.529 0.687

Table 2: Example Likelihood Result Summary

The NNLL is a Normalized Negative Log Likelihood.  Thus NNLL(P) is log2(P)/(2Z), where Z is
the number of valid nucleotide duos in the column duo.  In the present example, Z = 4.



Experimental Results

The discriminator described above is tested on data obtained from
Ribosomal Data Project [18 RDP-93]. This data contained a multiple alignment
[32 RDP-93] of 16S RNA from 1375 organisms, along with an associated
phylogenetic tree [33 RDP-93] [34 Olsen-94].  In addition, 472 column duos of
known secondary structure were obtained [23 Macke-93] as well as 3500 column
duos selected randomly from those known not to be paired.  These column duos
were then filtered so that at least 75% of the nucleotide duos in each column duo
were valid nucleotides duos††.  This left 317 paired column duos and 695
remaining nonpaired column duos. Each of these data sets was divided into
training and validation subsets according to a 4 fold cross validation scheme.  The
Models were trained and P(d|Model) was computed for each validation duo under
each model.  As P(d|Model) can be on the order of 10-1000, probabilities were
converted to a Normalized Negative Log Likelihood (NNLL) form where
NNLL(P(d|Model)) = -log2(P(d|Model)) / (2Z), and Z is the number of valid
nucleotide duos in column duo (d).  This method of representing probabilities also
has the information theoretic interpretation of bits of information per valid
nucleotide.  This may be convenient for comparison with mutual information based
secondary structure detectors.

NNLL Values
NNLL Training Data Validation Data

(bits/base) NoPair Data Pair Data NoPair Data Pair Data
Model(NoPair) 0.313 0.365 0.316 0.364

Model(Pair) 0.495 0.260 0.496 0.283

Table 3: Validation Set NNLL Value Summary

The following tables describe classification accuracy, the first represents
the accuracy of a simple comparison classifier.  For this classifier, if P(d|ModelPair)
> P(d|ModelNoPair) then multiple alignment column duo d is classified as paired
secondary structure (Table 4).  This accuracy is also reflected in Figure 3.



Linear Discriminator - Classification Accuracy
Training Data Validation Data

Predicted NoPair Pair NoPair Pair
NoPair 7443 153 2462 134

Pair 897 3651 318 1134
Accuracy 91.35% 88.83%

Table 4: Base Pairing Discrimination Accuracy for Linear Classifier

However, as there is a strong non-linearity of data points near the origin, a
non-linear (neural network) classifier was also constructed.  As this classifier was
trained solely on the Model training data, its validation results are reasonable
representations of an optimal classifier for the resultant probabilities, yielding a
classification accuracy of approximately 91% (Table 5).

Neural Net Discriminator - Classification Accuracy
Training Data Validation Data

Predicted NoPair Pair NoPair Pair
NoPair 7970 404 2626 224

Pair 370 3400 154 1044
Accuracy 93.63% 90.66%

Table 5: Base Pairing Discrimination Accuracy for Nonlinear Classifier

The chart in Figure 3 contains the validation data results in NNLL format.
Each d is represented by one point on the chart with P(d|ModelNopair) along the X
axis and P(d|ModelPair) along the Y axis.  As the data separation between paired
and nonpaired data seems to increase with increasing P(d|ModelNopair), an accuracy
line is provided to help quantify the change.  Mutation is a relatively rare event,
thus column duos with little change throughout their evolutionary history are given
relatively high probability.  These duos are difficult to classify because there is no
simple way to distinguish a highly conserved paired column from two
independently conserved columns.  The resolution of this problem is a primary
source of ongoing research.
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Figure 3:  NNLL Values for Validation Data

Each data point above represents a single column duo.  Data points noted as Pair Data are drawn
from known secondary structure.  Data points noted as NoPair Data are drawn from columns which
are known to not be paired.  For each data point, the X axis value is the likelihood of that column
duo, according to ModelPair, while the point’s Y axis value is its likelihood according to ModelNoPair.
The X=Y line represents the separating boundary for the simple classifier.  Points below this line
have a higher likelihood of being generated by ModelPair while points above the line have a higher
probability of being generated by ModelNoPair.  This discriminator is extremely effective for data
which has relatively low likelihood’s, but begins to suffer from nonlinearities near the origin.  By
compensating for the nonlinearities near the origin, the Neural-Network based classifier achieved
superior performance.  As mutation is a relatively rare occurrence, data with few mutations
generally have higher likelihood’s.  These column duos are more conserved through the
evolutionary process.  It is these data which are most difficult to classify as it is very difficult to
distinguish a highly conserved paired column duo from two highly conserved nonpaired columns.
To highlight this phenomena, the Accuracy line displays the increasing resolving power of the



simple classifier, as more and more of the conserved column duos are excluded.  Each point on the
accuracy line represents the cumulative accuracy of the simple classifier for all data to the right of
that point.  For example, at an X axis value of .2 bits, the simple classifier attains a discrimination
accuracy of approximately 98.5% over all data points with NNLL( P(d|ModelNoPair) ) > .2 bits.  For
ease in determining exactly how much data has been excluded at each point on the Accuracy line, a
hollow rectangle is placed on the accuracy line for each 10% of the total data points excluded.  For
example, at X = .2 bits the simple classifier’s accuracy is approximately 98.5%, with approximately
40% of the most conserved data excluded.

Comparison of Methods

Despite the relatively high accuracy of the Tree Model in separating the
Paired column duos from Nopaired column duos in our sample, two questions
remain unaddressed.  The first is how does the Tree Model compare with other
readily available models on the same population.  The second is how does this
performance on the sample generalize to the population of all column duos in a
multiple alignment?

To answer the first question, we developed a relatively simple mutual
information model (MI) to test for statistical dependence in the nucleotide duo
distribution of the two columns.  For each column duo MI calculates a normalized
negative log likelihood for the duo under two differing assumptions.  The first
assumption is that the column duos have a dependent nucleotide distribution.
Thus a joint 16 element (4x4) nucleotide duo distribution (ϕ) is calculated directly
from the nucleotide duos found in that column duo.  This distribution is then used
to calculate the NNLL as:

−∑ϕ ϕl l
l

log ( ) /2 2

This corresponds to P(d|ModelPair).  Under the second assumption we calculate ϕ
as the independent product of each column’s individual nucleotide distribution.
The NNLL for d is then calculated as before using the new ϕ.  This NNLL
corresponds to P(d|ModelNopair).  Apart from greater computational efficiency, this
method has two advantages over the Tree Model.  First, MI takes into account all
forms of dependency in nucleotide duo distributions (i.e. GG endcaps), and is not
limited to detecting those forms of dependency found in RNA secondary structure.
Second, MI uses only information from one column duo at a time, while IOM
averages mutation rates over all column duos.  It has been shown that multiple
alignment column duos evidence differing mutation rates based on their location in
an RNA molecule [35 Van de Peer-93] [36 Manske-87].  The inability of IOM to
conform to this variance may result in elevated NLL values, and lowered detection
sensitivity for the IOM model.  As MI calculates statistics separately for each
column duo, it can conform to differences between duos.



To characterize the second issue, we note that the test sample of 317 Paired
column duos and 695 Nopair column duos does not reflect the general problem of
searching for paired column duos in a multiple alignment.  In the 16S alignment
studied, there were 2688 columns and 472 known paired duos.  In a completely
general search, we would be looking not for 317 pairs elements from a set of 1,012
(317+695), rather, we would be looking for 472 pairs in a much larger set of
7,222,656 (2,688 × 2,687) column duos.  The scope of our domain is limited
somewhat by our data filtering requirement of 75% valid nucleotide duos per
column duo, to a search for 317 pairs in approximately 1,400,000 column duos.
We also have to contend with an asymmetric utility function, namely, that
accurately identifying a few column pairs with high certainty is much more
valuable than a marginally higher overall classification accuracy.  While we might
obtain 99.98% accuracy by merely identifying every column duo as not-paired,
such accuracy is of no practical value.  To contend with this issue, we use Bayes’
Rule to generate posterior model probabilities (P(Model|d)) from the likelihood’s
generated by the Tree Model (P(d|Model)) and the prior probabilities P(Model)
generated by our overall column duo distribution:

P(ModelPair) = 317 / (1,400,000+317) ≈ 0.000226 From 16S Mult. Align.
P(ModelNopair) = 1 - P(ModelPair) ≈ 0.999774 Definition.
P(Model|d) = P(d|Model) ⋅ P(Model) / P(d) Bayes’ Rule.
P(ModelNopair|d) + P(ModelPair|d) = 1 Definition.

P(ModelPair|d)
= P(ModelPair|d)/(P(ModelPair|d)+P(ModelNopair|d))
= P(d|ModelPair)⋅P(ModelPair) /

(P(d|ModelPair)⋅P(ModelPair)+P(d|ModelNopair)⋅P(ModelNopair)).

To maximize the expected number of correct classifications, a Bayes
Optimal classifier would classify d ∈ ModelPair i f f  P(ModelPair|d)  >  5 0 %  .
However, to account for the high cost of false positives in column pair
identification, we arbitrarily raise the 50% threshold and observe variations in the
percentage of all paired column duos which are correctly classified as the number
of incorrectly classified Nopair duos drops.  The following chart (Figure 4)
displays this result.

Here we also display preliminary results for a new model which we will call
IOM-2.  This model is currently under development by the authors, in conjunction
with Gary Stormo, Alan Lapedes and Chip Lawrence.  This model begins with a
trained IOM model and performs additional Expectation Maximization training of
ρ on each column duo, using the aggregate ρ as a prior.  This model allows for



variations in mutation rates between column duos, while utilizing aggregate
statistics over all column duos as a Bayesian prior to limit overfitting.

59% of Paired duos found. 
No Rand duos.

52% of Paired duos found. 
No Rand duos.

43%  of Paired duos found. 
No Rand duos.
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Figure 4:  Accuracy of Column Pair Detection Using Posterior Probability

Due to time constraints, our test sample of 695 column duos was randomly selected from the
population of 1.4 Million possible non-paired column duos.  In the above chart, the X-axis values
are scaled by a factor of approximately 2000 to extrapolated algorithmic performance on the entire
population of 1.4 Million.  All three discrimination methods show a decrease in the number of
correctly identified column pairs, as the posterior probability required for classification increases.
However, the number of random column duos misclassified as paired drops far more dramatically.
Clearly the IOM-2 and IOM methods are superior to the pure mutual information method over a
broad range of posterior probability classification thresholds.  Explicit classification thresholds are
not provided in this chart, though the upper right point of each line represents a 50% probability
threshold.  Horizontal data lines demark the asymptotic detection percentage of column pairs when
non-paired misclassification rates go to 0.



Clearly, the IOM model outperforms MI over a broad range of classification
accuracies with the more adaptable IOM-2 model showing even greater selection
capability.  As the number of random duos misclassified as paired drops
asymptotically to 0, the percentage of correctly identified paired duos goes to 59%,
52% and 43% respectively for the IOM-2, IOM and MI models.  As each Nopair
column duo in our sample represents hundreds of column duos in the population,
one might argue that an important subset of ‘hard to classify’ column duos might
be missed.  Thus, these precise classification accuracies may be open to argument.
Nonetheless, the IOM-2 and IOM models are shown to consistently surpass the
Mutual Information model over the sample data and are thus likely to be preferable
in practical applications.
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