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Abstract

A method is described for folding polymers to specific target conformations. The

approach uses a fast but approximate dynamics algorithm, coupled with a genetic

algorithm that is used to evolve the large number of free parameters needed. The

dynamics algorithm uses a state transition matrix  approach. At each time step, the

distances between pairs of atoms are adjusted by shifting them from Dij to Dij+Sij

where Sij  is an element of the state transition matrix S. Atom pairs that are

attractive have Sij <0 and pairs that are repulsive have Sij >0. The atomic

movement is carried out by gradient minimizing the molecular mechanics energy

of the molecule subject to harmonic distance constraints. The method is applied to

a simple test case, a 19 atom 2-D polymer. The paper also shows that the S

matrices can correctly fold a limited variety of initial conformations that differ

from the one used during the evolution phase.
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1. Introduction

Of all of the difficult approaches to  predicting protein structure, one of the

most difficult appears to be simulating the entire folding process using molecular

dynamics. Most of the currently practical or at least promising structure prediction

methods are instead based on finding homologies between a new sequence and

that of one or several proteins whose structure is already known.1-4 However,

predicting structure through the dynamical folding process has to  be necessary

ultimately. Folding happens on a scale so fast compared to the time needed to

fully search the protein's conformation space, that the folding process itself acts to

select the final state, and therefore carries useful information about the native

conformation.

However, the molecular dynamics approach suffers from at least two

major difficulties. The first of these is the time scale. Conventional molecular

dynamics algorithms take time steps on the order of 10-15 sec, while the complete

folding process takes between 10-3 and 10+3 sec. The longest molecular dynamics

runs performed to date, for protein sized ensembles, extend to a only a few nsec.

To overcome this hurdle, we either need to wait for several years until computer

power  increases sufficiently, or to devise new approximations that allow longer

time steps to be taken. The second problem, which is probably more difficult in

the long run, is that of accurately determining force field parameters. We know

that today's protein force fields would not predict the correct folding of a protein,

even given enough CPU time. This is known from trajectories that have been run

for short times starting from native protein conformations in which the proteins

tend to wander away from the native state.

In this paper, I present one approach to addressing these two problems and

apply it to a simple model polymer. Just as the problem has two parts, so does the

proposed solution. First, a simple rule-based dynamics algorithm is described,

similar to the method of Feldmann and Rawn5 which allows large steps to be

taken, and hence speeds up the computational folding process.
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In the approach used here, atoms feel two sets of forces. One is a standard

molecular mechanics (MM) force field that has bonded and short-range non-

bonded terms. Current short range force fields appear to be well enough

characterized to be valid in folding simulations. The long range interactions are

treated in a novel way. The folding process is carried out in a series of steps. At

each step, the current distances between pairs of atoms i and j, denoted Dij, are

calculated. All of the atoms are then moved in an attempt to adjust these distances

to be Dij+Sij where S  is the state transition matrix . For atom pairs that are

attracted to one another, Sij<0 and for pairs that repel one another, Sij>0. If Dij is

greater than some cutoff distance, the movement rule is not enforced. The move,

or transition under the influence of S is carried out by performing a gradient

minimization of the energy which is the sum of the internal and short range MM

force field and a set of harmonic distance constraints. The basic MM force field

prevents the long range force field from either tearing the molecule apart or

forcing atoms to come unphysically close to one another. Schematically, the

process proceeds as

D(0) → D(1) ≈ D(0) + S → D(2) ≈ D(1) + S →...→ D(T ) ≈ D(T − 1) + S    (1)

where the algorithm converges when D(T ) = D(T − 1), i.e. when the attractive

and repulsive pieces of the combined short and long ranges forces balance out.

The equalities in Eq. 1 are only approximate because the basic MM force field

acts alongside the constraints.

The novel addition presented here is a method for determining appropriate

values for elements of the state transition matrix S.  I use a genetic algorithm6

(GA) to evolve S matrices that cause the molecule to fold to a desired target

conformation. GAs are optimization methods based on Darwinian evolution.

Populations of individuals interact with one another through selection and mating

operations to produce individuals that have increasingly higher "fitness". The GA

creates many S matrices, and evaluates the difference between the target state and

the final state produced by the folding process. It then refines the set of S matrices

and repeats. Over a period of many generations the GA eventually finds one or
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more S matrices that correctly fold the molecule. The measure of fitness is the

RMS deviation between the internal distance matrices of the target conformation

and the conformation produced by the folding process, denoted

f (S) = DTarget − D(T,S) . GAs have been used for a wide variety of global

optimization  problems ranging from jet engine design7 to pulse optimization8 to

horse race handicapping9. Over the last several years, they have been widely used

in several fields of chemical modeling.10

A third issue that also arises when folding using a dynamics algorithm is

how sensitive the folding pathway is to the initial state. In an earlier paper11, I

demonstrated another method for evolving folding pathways, but that approach

failed when even reasonable variant starting conformations were chosen. The

approach presented here partially solves that problem. As I will show, a given S

matrix will correctly fold a limited variety of initial conformations so long as they

do not differ too much from the initial conformation used when evolving the S

matrix. Furthermore, if the target final state is subjected to the folding algorithm,

it is stable and will not unfold. This approach of using a GA to evolve a state

transition matrix and then testing it against a variety of initial conditions draws on

the work of Koza in Genetic Programming.12 In that paradigm, however, the

functional form of the interaction is evolved, and not simply a set of parameters.

To test this approach, I have applied it to a simple 2-D polymer, similar to

lattice models used elsewhere.13-16 The method was presented with an initial

conformation which had to fold into a specified target conformation  in 50 steps

of the folding process. Several S matrices were found that successfully folded the

polymer. Next, each of these S matrices was applied to several ensembles of

initial conformations to test for robustness with respect to initial conditions. For

families of conformations not too different from the one used during the evolution

process,  some fraction of initial states folded properly.
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The n-atom polymer folds via a series of discrete states or conformations, obeying

the following set of rules. At each step τ, the full n × n distance matrix D (τ) is

calculated, where Dij(τ) is the distance from atom i to atom j. To move to the next

state, a new constraint matrix C(τ) is formed where Cij =Dij +Sij. Sij  is an element

of the state transition matrix S, which is independent of τ.  The modified energy 

E = EMM + 1
2

kb (rij − Cij )
2

i, j
∑ (3)

is then gradient minimized to produce the new conformation. (Note that r ij  and

Dij  refer to the same distance.) The elements of S are constant during the folding

process and act as a surrogate for the long range force field. The parameters Sij  lie

in the range -0.5 Å<Sij <0.5 Å,  so that they can represent both attractive and

repulsive interactions. Cij  and Sij  are zero for j=i and j=i±1. Cij  is also set to

zero if Dij >rcut  where rcut  is 4 Å in this paper. The entire folding process uses T

iterations of this process, where T is 50 during the evolution phase.  The number

has to be large enough so that, most of the time, the polymer reaches a stable

conformation, i.e. further iterations do not cause any more conformational

changes. Once all 50 steps have been completed, a final gradient minimization is

performed using only EMM  (Eq. 2). Some test runs were performed that indicated

that most, but not all cases would converge in 50 steps, so all of the evolution was

done at this level. During the analysis phase, the initially successful S matrices

were also tested for 200 steps.

The quality of the fold, and hence of a particular state matrix S is judged

by how close the final conformation is to the target. This is measured by

calculating the RMS deviation between the final distance matrix, at step T ,  and

distance matrix of the target state.

f (S) = (n − 1)(n − 2)
2

Di, j (T,S) − Di, j (Target)( )2

i, j >i+1

n

∑ (4)
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where n is the number of atoms. Obviously, a perfect fold yields f(S)=0. A GA

was used to evolve state transition matrices that brought the final conformation

successively closer to the target.

For the evolution process, I use a modified version of a standard "simple"

GA described in Goldberg's book.6 As in all GAs we use populations comprised

of a number of individuals. Each individual is specified by a chromosome or bit

string which is decoded to give the elements of the S matrix. For the 19 atom

problem presented here, there are 153 non-zero, unique elements [(n-1)(n-2)/2]

each represented by 6 bits, yielding a 918 bit chromosome. The fitness is the RMS

deviation given in Eq. 3. The initial chromosomes for the population are chosen at

random and the fitness for each individual is calculated. The individuals in this

first generation then produce offspring who will be parents for the next

generation. Parents produce children under the action of the selection,

recombination and  mutation operators. Roulette wheel selection is used. In

crossover, two parents' chromosomes are cut at a random locus and the right and

left halves of the two chromosomes are interchanged and given to the two

children. Both children are placed into the population. Pairs of parents in the

selected group are chosen and children formed until the new population is full. (A

fixed-sized population is used.) The elitist strategy is also used, which means that

one copy of the current best individual is always passed directly from one

generation to the next. After recombination, each of the new chromosomes is

passed to the mutation operator which, with a probability given by the mutation

rate, randomly flips the bit at the chosen loci in the chromosome. Finally the

fitness value of each individual is calculated and the cycle begins again. Several

populations are evolved independently.

During the evolution phase, a single initial "denatured" conformation was

used, which was an almost  linear zig-zag with angles of ±6° . Once several S

matrices had been found that folded this conformation to the target state, four

different ensembles of initial conditions were folded to test the robustness of the S

matrix. Each ensemble contained 20 conformations. For each initial conformation

in an ensemble, a random increment was added to each angle in the standard
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initial conformation. The angles then lie in the range θ0 − δ < θ < θ0 + δ  where

θ0  is ±6° and δ for the four ensembles is 0.6°, 3°, 6° and 12°  respectively. The final

quality of a given S matrix was measured by what fraction of the initial

conformations  folded correctly. These tests were carried out for T=50 and T=200.

3. Numerical Results

The test problem consisted of folding a 19 atom polymer. The target

conformation is shown in Figure 1. This is one of a degenerate set of

conformations having the global energy minimum for EMM  given in Eq. 2. The

run used 10 populations  of 100 individuals each, run for 200 generations.  The

GA parameters for the evolution stage are given in Table 1. A folding sequence

took about 6 sec on an SGI R4000 Indigo, so the total evolution time was about

14 cpu days.

 

re 2  - An example conformation at the end of a succ
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Table 1 - Parameters for the GA run

Number of generations 200

Number of populations 10

Population size 100

Elements in S matrix 153

Bits per element 6

Range of S matrix elements -0.5 Å<Sij<0.5 Å

Mutation Rate 0.5

Crossover Rate 0.95

When these S  matches  were used to fold the ensembles of initial

conformations, the fraction of successful folds decreased with the amount of

deviation from the standard conformation. The ensemble of initial states are

shown in Figure 3 for the four ensembles. The standard initial conformation is

denoted by open circles. The success rates are given in Table 2 for T=50. The

same data for T=200 is given in Table 3. Figure 4 shows a typical misfolded

conformation. Folds that went wrong tended, as this case shows, to go very

wrong.
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Table 3 - Success Rates for the 3 state transition matrices - T=200

Range of Initial

Variation

S(1) S(2) S(3) S(4) S(5)

0.6°±6° 0/20 20/20 0/20 20/20 20/20

3°±6° 0/20 12/20 0/20 9/20 12/20

6°±6° 0/20 7/20 0/20 3/20 8/20

12°±6° 0/20 10/20 0/20 0/20 2/20

Table 2 - Success Rates for the 3 state transition matrices - T=50

Range of Initial

Variation

S(1) S(2) S(3) S(4) S(5)

0.6°±6° 18/20 20/20 14/20 6/20 17/20

3°±6° 6/20 12/20 5/20 0/20 6/20

6°±6° 1/20 5/20 4/20 1/20 5/20

12°±6° 0/20 6/20 1/20 0/20 1/20

Two of the S matrices (S(1) and S(3)) saw the target as a metastable state

at T=50, and pushed away from that for later times. The other three (S(2), S(4) and

S(5)) correctly fold all of the low deviation initial conditions after 200 steps. No

further change in the conformations were seen for T>200. Only S(2) correctly

folded a significant fraction of all the ensembles.  To see if S(2) could be further

refined, it was subjected to a simple Monte Carlo local optimization scheme. A

total of 1000 trials were taken in which the binary representation of S(2) was

changed by randomly flipping 3 bits, and another 10000 were taken in which a

single bit was flipped. If a move improved the number of initial conditions

correctly folded, it would be accepted, otherwise it would be rejected. No

improvement was seen, implying that the initial conformations fall into two

distinct classes.
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A few words need to be said about the efficiency of the GA search process. The

first correctly folding S matrix was found in generation 131, but a matrix that

folded to a state differing from the target by a single shift defect was found much

earlier, at generation 94. The approach presented here would probably benefit, as

have other GA applications, from a hybrid optimization algorithm where some

local search in parameter space accompanies the global search being carried out

by the GA. As it is, the later phase of the evolution proceeded largely through the

action of the mutation operator, which is performing an inefficient random walk

through parameter space.
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Feldmann and Rawn5 use a similar dynamics algorithm to that described

here. They have preliminary results for folding selected proteins, in a relatively

small number of hours on a parallel distributed network of workstations. Their

folding constraints (which play the role of the elements of S matrix used here) are

based principally on hydrophobic and hydrogen bonding contacts. Additionally

the constraints are divided into local (on-chain) and global (off-chain) sets. The

local constraints drive the construction of helices, strands and turns, while the

global constraints drive the organization of tertiary structure. DGEOM17 is the

principal tool used to enforce the folding constraints. The strengths of their

constraint parameters are tuned to give correct folding. A more general parameter

determination scheme could possibly be useful. However, their current folding

method is too expensive to place in the middle of the GA optimization loop

described here. Either a modification of the GA is needed that requires fewer

function evaluations, or a less expensive variant of the Feldmann-Rawn method

would be needed.  Note however, that the expensive evolution calculation needs

to be done only once in principle, because it is being used to derive the general

state transition matrix. Once that is available, folding a new protein is relatively

inexpensive.
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