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Abstract: This paper describes a hybrid ab initio quantum mechanical/molecular

mechanics (QM/MM) method for calculating activation free energies of chemical

reactions in solution, using molecular mechanics force fields for the solvent and an

ab initio technique that incorporates the potential from the solvent in its Hamiltonian

for the solute. The empirical valence bond (EVB) method is used as a reference

potential for the ab initio free energy calculation, and drives the reaction along the

proper coordinate, thus overcoming problems encountered by direct attempts to use

molecular orbital methods in calculations of activation free energies. The utility of our

method is illustrated by calculating the activation free energy for proton transfer

between fluoride ions in the [FHF]- system, in both polar and nonpolar solution.

I. Introduction
Quantum mechanical calculations of chemical processes in solution present a

major challenge to theoretical chemistry because of the enormous number of solvent

atoms that interact with the reacting fragments. In order to make such calculations

practical, it is necessary to divide the system into a reacting subsystem that is treated

quantum mechanically and a solvent subsystem that is treated classically. Attaining

reliable results with such a partitioning requires that the reacting region be described

by an accurate quantum mechanical wave function, that the solvent or protein region

be described by a suitable classical force field, and that the interaction potential

between the two sub-regions provides a realistic description of the actual potential

surface there. A further difficulty arises when experimentally measurable quantities



such as the reaction rate are desired; these quantities require free energies rather than

enthalpies, and the application of free energy perturbation theory to calculations of

activation barriers is far from trivial. This combination of requirements presents a

significant challenge to theoretical chemists studying reactions in proteins or

solvents.

A promising option involves the use of hybrid molecular orbital/molecular

mechanics methods, which date back to  Warshel and Levitt1 and have been extended

by others.2-9 Related techniques that treat the solvent as a dielectric continuum are

also quite effective.10-12 For some reactions one may also obtain reliable results by

solvating the gas phase solute charges without allowing them to be polarized by the

solvent.13 Another powerful option is offered by the Empirical Valence Bond (EVB)

method.14-16 At present most hybrid QM/MM approaches that include the solvent in

the solute Hamiltonian use semi-empirical QM techniques, and, at least in principle,

ab initio approaches can be more accurate.

The present work describes a hybrid quantum mechanics/molecular

mechanics method using a classical molecular dynamics description of the solvent

region and an ab initio quantum mechanical description of the solute region. These

calculations use free energy perturbation (FEP) theory methods along an EVB

reference potential to compute the free energy curves for the reaction studied. We

present results for the proton transfer in the [FHF]- model system to demonstrate the

utility of our method.

II. Methods
A. Molecular Mechanics and EVB Potential Surfaces

Molecular mechanics methods17-22 use empirical potential surfaces that

represent the energetics of a molecule as a set of functions composed of bonded and

non-bonded potentials. Although suitable for describing a large amount of important

chemical effects, standard molecular mechanics potential surfaces are generally not

capable of describing bond breaking and bond making processes. Such shortcomings

may be circumvented with the EVB method,14 which is capable of describing the

breaking and reforming of chemical bonds, and, consequently, may realistically

simulate chemical reactions of large molecules in solution or proteins. Other



parameterized VB techniques have been developed in recent years23 that also provide

the ability to describe bond breaking and bond making processes.

The EVB method describes reacting potential surfaces using a separate

potential surface to describe each of the important valence bond structures. For

example, in a proton transfer reaction from molecule A to molecule B,

A—H     +     B–     →     A–     +     H—B. (1)

there are three important resonance configurations:
ψ1 = A—H          B-

ψ2 = A-          H—B (2)
ψ3 = A-      H+     B-

The EVB method describes the energetics of this system with an effective

Hamiltonian that represents the actual VB integrals scaled by the proper overlap

matrix elements. The ground state energy may be obtained by diagonalizing the EVB

Hamiltonian,15,16

Hevb =
H11 δ12 H13
δ12 H22 H23
H31 H32 H33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (3)

The diagonal elements are determined by potential functions that describe the proper

asymptotic behavior for that particular resonance configuration:

Hii = εi = Ui
SS + Ui

Ss + Uss. (4)

Here S and s designate the solute and solvent, respectively. USS represents the solute

gas phase energy and USs represents the electrostatic and van der Waals interaction

between the solute and solvent molecules.15,16 The off-diagonal elements are

represented by analytical functions that are assumed to be independent of the solvent;

that is, Hij = Hij
SS. The actual functions used for the diagonal and off-diagonal matrix

elements are described in detail in reference 16. The most important feature of the

EVB method is that it is always possible to find a set of functions that reproduce to a

good approximation the ab initio energies and charges in the gas phase, and that the

addition of the solvent terms in equation (4) provides a convenient way of

transferring such an effective Hamiltonian to solution. The EVB Hamiltonian may

also be used with umbrella sampling methods, described below, to provide a

reference function for the evaluation of the activation free energy of chemical

reactions in solution.



B. Hybrid Ab Initio—Molecular Mechanics Techniques
Precise investigations of chemical phenomena often require at least a certain

part of the calculation to include quantum mechanical effects, and to determine the

electronic wave function of the molecule by solving the time-independent

Schrödinger equation.24,25 Even the most efficient quantum mechanical methods26-

28 are still computationally intensive for large molecular systems, and, consequently,

our aim is to develop methods where a small solute region is described using

quantum mechanical methods, and a larger solvent region is described using the

classical mechanics methods described in the previous section.

Excellent reviews of ab initio techniques exist elsewhere,25 and so the

discussion in this section will only mention the points of particular importance to the

current work. We use 6-31G** basis sets with Hartree-Fock (HF) wave functions

with second-order Møller-Plesset (MP2) perturbative corrections to describe the

molecular electronic wave function. The GAMESS program suite29 has been used

for all of the ab initio calculations reported in this paper. With an accurate quantum

mechanical method representing the solute region, our main challenge is the reliable

and efficient incorporation of the surrounding solvent in the solute Hamiltonian. In

implementing our hybrid QM/MM approach use the classical surface constrained all

atom solvent (SCAAS) model,30,31 as implemented in the program Enzymix,21 to

describe the solvent region. There are many ways to incorporate an external field into

the Hamiltonian.6,10 We have found that a simple and rigorous method is obtained

by representing the solvent atoms as point charges, and to add the external potential

field produced by the point charges to the other one-electron terms in the

Hamiltonian. The only additional integrals required due to these terms in the

evaluation and optimization of the quantum mechanical wave function are of the form

Vext = φi
Zk

r−rk
φi

k=1

Nch

∑
i=1

Norb

∑ (5)

for a field of Nch point charges with charge Zk and location rk, and where φi is a

molecular orbital on the solute. The integrals in equation (5) are calculated using the

same techniques as nuclear attraction integrals, and are added to the other one-

electron integrals (and thus automatically included in single-point electronic energy

calculations, geometry optimizations, and MP2 perturbative corrections). The non-



electrostatic solute-solvent interactions are included via the standard SCAAS solute-

solvent van der Waals terms.

C. Calculations of Ab Initio Free Energy Surfaces

1. General Considerations of Free Energy Surfaces

In general one may define a free energy function Δga(X) that expresses the

probability of finding the system at a specified value, Xn, of a given reaction

coordinate, X, for a potential surface Ea, as

exp −βΔga Xn( ){ } =
za Xn( )

Za
(6)

where β=1/kBT and kB is the Boltzmann constant. The partition functions za and Za

are defined as

za (Xn ) = exp −βEa (Xn ){ }dγ n∫
Za = za (X)dX∫

(7)

where γn represents the coordinates perpendicular to X at Xn. It is useful to write

za(Xn) as

za (Xn ) = δ(X − Xn )exp −βEa (X){ }∫ dΓ (8)

where dΓ = dγdX. The probability za(Xn)/Za may in principle be determined by

running very long trajectories and evaluating the ratio between the time the system is

at Xn to the total time. Such an approach is very inefficient when Xn corresponds to a

high energy region of the potential surface, and it is advantageous to rewrite equation

(6) as (see reference 31)

exp −βΔga (Xn ){ } = Zm

Za

⎛
⎝⎜

⎞
⎠⎟

za (Xn )

Zm

⎛
⎝⎜

⎞
⎠⎟

=
exp −β(Em − Ea ) − βEa{ }∫ dΓ

exp −βEa{ }∫ dΓ

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

za (Xn )

Zm

⎛
⎝⎜

⎞
⎠⎟

= exp −β(Em − Ea ){ } Ea

za (Xn )

Zm

⎛
⎝⎜

⎞
⎠⎟

(9)



where Ea
 denotes a MD average over the potential surface Ea, using the standard

approach32 of replacing a configuration integral by an average over a trajectory. We

may further rewrite this expression using (see also reference 31)
exp −βΔga (Xn ){ } = exp −β(Em − Ea ){ } Ea

×
δ(X − Xn )exp −β Ea − Em + Em( ){ }dΓ∫

exp −βEm{ }dΓ∫

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(10)

to finally obtain

exp −βΔga (Xn ){ } = exp −β(Em − Ea ){ } Ea

× δ(X − Xn )exp −β Ea − Em( ){ }
Em

= exp −βΔGa→m{ }
× δ(X − Xn )exp −β Ea − Em( ){ }

Em

. (11)

This expression33 is particularly effective when Em is chosen as the potential that

forces X to spend most of its time at Xn. The Ea
 average is evaluated by standard

free energy perturbation approaches using a series of mapping potentials (see below).

The proper coordinate X should reflect both solute and solvent reaction

coordinates. X may be obtained from the difference in energy (ε1-ε2) between the

two valence bond states (ψ1) and (ψ2) in equation (2). This energy difference is

negative when the system is in state (ψ1), goes through zero at the transition state,

and is positive when the system is in state (ψ2), and, consequently, the progress of

the reaction in equation (1) may be monitored via the energy difference (ε1-ε2). What

is most significant about the definition X=(ε1-ε2) is that it not only incorporates the

solute contribution to the reaction coordinate, but it also includes contributions from

the solvent reaction path, as the electrostatic part of X is a function of the interaction

between the reaction field from the solvent and the solute dipole moment.15 Because

solvent fluctuations, and the corresponding changes of X, play a major role in

chemical processes in solution, it is crucial to be able to sample these fluctuations.

Unfortunately, the solvent component of the reaction coordinate involves a concerted

motion of many coordinates and one cannot simply force all water molecules to rotate

in a given direction in the same way that a single bond in a gas phase calculation is



forced to stretch. Thus it is important to use an effective mapping procedure that will

use some parametric representation of the change in the solute charges during the

reaction to map the solvent coordinates. Such a mapping approach is conveniently

provided by the EVB mapping approach as described below.

2. Using the EVB Method as a Reference Potential

It is essential to force the system to spend significant time at the transition

state to obtain reasonable convergence of free energy calculations. An ideal way to

bring the system to the transition state is to use a mapping potential that can polarize

the solvent to the desired configuration, such as a valence bond mapping

potential15,34

εref
m = (1− λm )ε1 + λmε2 (12)

where λm is a variable that changes from 0 to 1 to control the progress of the reaction

from state ε1 to state ε2. Unlike the ground state EVB potential, obtained by

diagonalizing Hevb in equation (3), the EVB mapping potential evaluates the energy

using a fixed ratio of the two valence bond resonance structures, ε1 and ε2. The

potential surface of these valence bond states is represented as

εi = Ui
SS(R) + Ui

Ss(R,Qi
0(R)) + Uss (13)

where R denotes the solute geometrical coordinates, Qi
0(R) is the solute gas phase

charge distribution in the ith resonance structure, and S and s again designate the

solute and solvent respectively. Substituting equation (13) for Em in equation (11)

we obtain15

exp −βΔg(Xn ){ } = exp −βΔGref (λ0 → λm ){ } ×

δ(X − Xn )exp −β Eq − εref
m( ){ }

ε ref
m

(14)

where εref
m  is the mapping potential from equation (12), λm is the value of λ that

keeps the system closest to Xn, and Eq is the given quantum mechanical potential

surface (either the ab initio surface or the ground state EVB surface obtained by

solving equation (3)). The free energy ΔGref(λ0→λm) is obtained using standard

free energy perturbation (FEP) approaches with a gradual change of λ in m discrete

steps:15,32,35,36



exp −βΔGref (λ0 → λm ){ } = exp −β εref
n+1 − εref

n( ){ }
ε ref

n

n=0

m

∑ . (15)

The reaction coordinate X is usually taken as the energy difference between ε1 and

ε2.

III. Results and Discussion
In order to demonstrate and examine our approaches we select as a model

problem proton transfer in the [FHF]- system (Figure 1) in aqueous and nonpolar

solution.

F H F- F- H F

Figure 1: Proton transfer reaction studied in the present work.

As a first step in our procedure we examine the gas phase ab initio potential

and calibrate the corresponding EVB potential surface. The gas phase minimum

energy structure at the HF/6-31G** level is symmetric and linear with RFH=1.122

Å. Because a polar solvent may interact more strongly with localized charges than

with delocalized charges, we expect solvation to destabilize this symmetric geometry,

where the negative charge is spread over the two oxygen atoms, in favor of an

asymmetric geometry, where the negative charge is concentrated on only one of the

oxygen atoms.

Values for the EVB parameters must be found so that the ground state energy

obtained by diagonalizing Hevb reproduces the results from ab initio quantum

mechanics. Figure 2 shows gas-phase potentials using ab initio (GAMESS with

MP2/6-31G**) and EVB techniques. The curves in this picture show that it is

possible to obtain excellent reproduction of ab initio results with judicious choice of

the EVB parameters.



- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

- 1 - 0 . 5 0 0 .5 1
R1 - R2 (Å)

RFF = 2.6 Å

RFF = 3.0 Å

RFF=3.4 Å

EVB
MP2

EVB
MP2

EVB

MP2

G
a

s 
P

h
a

se
 E

n
th

a
lp

y 
(k

ca
l/m

o
l)

Figure 2: Gas phase potential surfaces for proton transfer in the [FHF]- ion, using

both ab initio MP2/6-31G** and EVB methods. Results are presented at RFF=2.6,

3.0 and 3.4 Å, with energies relative to the symmetric geometry at RFF=2.6 Å.

With the EVB Hamiltonian for the [FHF]- system and the EVB mapping

procedure it is possible to obtain the ab initio free energy curves for the reaction in

nonpolar and aqueous solution. Figure 3 presents results using EVB mapping to

compute the ab initio (AI) and the EVB activation free energy curves in nonpolar

solution. These curves are obtained from 6 mapping steps of 1000 time step

trajectories at 200°K with step size 0.5 fs. The F-F distance in these simulations in

constrained to 3.4 Å. The free energies of activation obtained from these two

methods agree very well, 40 and 35 kcal/mol, respectively. This agreement is not

surprising given the agreement of the gas phase potentials reported in Figure 2.
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Figure 3: Ab initio (ΑΙ) and EVB free energies curves, in kcal/mol, using EVB

mapping techniques, for proton transfer in [FHF]- model system in nonpolar solution

with fixed RFF value of 3.4 Å.

Figure 4 presents data for simulations in aqueous solution. These results are

again obtained from 6 mapping steps of 1000 time step trajectories at 200°K with step

size 0.5 fs on the [FHF]- model system described earlier, and again the F-F distance

is constrained to 3.4 Å. As expected, the barrier height with both the EVB and ab

initio Hamiltonians increases in solution, due to the destabilization of the charge

delocalized transition state upon solvation. The effect is notably more strong with the

ab initio free energy surface, which increases from 35 kcal/mol in the nonpolar

solution to 68 kcal/mol in aqueous solution. A smaller effect is seen with the EVB

free energy curve, which increases from 40 to 58 kcal/mol when moving from

nonpolar to aqueous solution.



- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

- 3 0 0 - 2 0 0 - 1 0 0 0 1 0 0 2 0 0 3 0 0

ε
1
−ε

2

AI

EVB

(kcal /mol)

F
re

e
 

E
n

e
rg

y 
(k

ca
l/m

o
l)

Figure 4: Ab initio (ΑΙ) and EVB free energies curves, in kcal/mol, using EVB

mapping techniques, for proton transfer in [FHF]- model system in nonpolar solution

with fixed RFF value of 3.4 Å.

The discrepancy between the EVB and ab initio curves shown in Figure 4

does not present a serious problem in our study since the EVB potential is used only

as a tool for effective mapping of the ab initio potential surface. If a more accurate

EVB surface is required (e.g. for a series of studies of the present reaction in

different catalytic environments) it could have been obtained quite easily. For

example, the larger ab initio barrier indicates that the EVB Hamiltonian is polarized

by the solvent less than the ab initio Hamiltonian. A larger polarization of the EVB

results could be achieved by further adjustment of the charges of the EVB resonance

structures, or by scaling the off-diagonal matrix elements. A more systematic fitting

procedure would require us to reproduce the response of the [FHF]- system to

external charges in the system. The current paper, however, does not attempt to

refine the best EVB parameters for this system, but, rather, only uses them as a

reference potential. In order to obtain optimal EVB parameters we usually consider



experimental data since the ab initio calculations may not be sufficiently accurate.

However, the present paper only considers the solvated [FHF]- as a tool for

illustrating our method.

IV. Conclusion
The results presented in this paper demonstrate that it is possible to calculate

free energy barriers using hybrid QM/MM methods, which are shown to be

particularly effective when one uses the EVB Hamiltonian as a reference potential for

the ab initio free energy calculations. The use of EVB reference potentials provides

several major advantages: (1) The EVB reference potential allows one to consistently

evaluate the solvent contribution to the free energy barrier, thus overcoming

fundamental problems in approaches that use the ab initio potential for evaluating ab

initio free energies. (2) MD simulations on the reference potential do not require

evaluation of the ab initio forces. (3) Although not used in the current paper, the use

of an EVB reference potential allows one to dramatically reduce the computation time

when computing activation barrier heights by the use of a thermodynamic cycle. In

such a cycle the mapping from the EVB reference potential to the ab initio potential

surface is only performed at the ground and transition states, and the ab initio free

energy of activation is obtained by summing the free energy along the reference

potential surface ΔGref(λ0→λ†) with the difference at the ground and transition states

in the free energy changes between the reference and ab initio potential surfaces.

Obtaining fast convergence requires the reference potential to be similar to the

corresponding ab initio potential. Fortunately, and as demonstrated in this work, it is

quite simple to approximate the ab initio results by an EVB Hamiltonian. That is, as

Figure 2 shows, the EVB and ab initio surfaces are quite similar and can be made

more similar by further refinement (although it might be better to use in the final

refinement of the EVB potential experiments in solution rather than the corresponding

ab initio results). Our experience indicates that both the energy and the charge

distribution of large ab initio calculations may be reproduced with a few physically

relevant parameters using EVB techniques.

EVB Hamiltonians provide a convenient framework whereby ab initio

potentials may be transferred into solution. The simplest (zero-order) option for

solvating ab initio potentials would be to evaluate the ab initio charges at different



points along the gas phase reaction path13,38 and then to add the corresponding

solvation energies to the gas phase energies. Such an approach, however, does not

reflect the polarization of the solute by the solvent and can lead to quite incorrect

results in studies of charge separation processes.15 The EVB method offers a simple

method of capturing the physics of the polarization of the solvent due to an external

solvation field. As shown here, one may easily obtain an EVB Hamiltonian that is

calibrated to reproduce the gas phase energy surface and charge distribution.

Solvating the gas phase EVB charges will reproduce the zero order results, and

solvating the diabatic states in equation (4) and then diagonalizing Hevb will provide a

model that clearly accounts for the main features of solvent-induced solute

polarization, where stabilization of ionic states increases their contribution to the

ground state charge distribution. Such a model can reproduce the exact results at the

asymptotic regions (where the molecule is broken to ionic fragments), which is not

necessarily the case for the zero-order model. In the non-asymptotic region the model

can be further refined by calibrating it to reproduce the response of the gas phase

charges to external fields. Reproducing the ab initio gas phase solute polarizability

guarantees that the solute polarization by the solvent field is approximated in a

reasonable way.

Although the EVB method provides a practical way of obtaining free energy

surfaces for reactions in solution it is important to be able to obtain such surfaces

from a more rigorous, ab initio approach. The evaluation of such surfaces provides a

major challenge that could not be addressed by the available methods until recently.

In particular, the fluctuations of the solvent lead to corresponding fluctuations in the

solute-solvent potential surface and averaging over these fluctuations is extremely

time consuming. Thus one of the main points of this work is in providing a practical

way of obtaining free energy barriers for models that include the solvent in the solute

Hamiltonian. Since our approach is significantly more efficient than alternative

approaches it can be used not only for reactions in solutions but also for reactions in

proteins and such a study will be reported in a subsequent work.
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