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This paper presents and analyzes the results of several new approaches to the problem of finding
the folding nucleus in a given 3D protein structure. Firstly, we show that the participation of
residues in the hydrophobic core and the secondary structure of native protein has a rather
modest correlation with the experimentally found Φ values characterizing the participation of
residues in the folding nuclei. Then we tried to find the nuclei as the free energy saddle points on
the network of the folding/unfolding pathways using the branch-and-bound technique and
dynamic programming. We also attempted to estimate the Φ values from solving of kinetic
equations for the network of protein folding/unfolding pathways. These approaches give a better
correlation with experiment, and the estimated folding time is consistent with the experimentally
observed rapid folding of small proteins.

1   Introduction

An understanding of the mechanism of protein folding can help in design of new
proteins, in understanding of correct and wrong folding of proteins, in attempts to
predict protein structure from sequence.

A key event in protein folding is the formation of the folding nucleus [1-4]. This
“nucleus” is unstable: it corresponds to the transition state (TS), i.e., to the free
energy maximum at the folding/unfolding pathway (or, the better to say, to a saddle
point at the free energy landscape covered with the network of such pathways).

So far, there is only one, very difficult experimental method to identify the
folding nuclei in proteins: to find the residues whose mutations affect the folding
rate by changing the TS stability as strongly as that of the native protein [5].

Several approaches have been recently suggested for the theoretical search of
folding nuclei in proteins. The first is based on a search for a set of highly conserved
residues having no obvious functional role [6,7]; however, this approach can give
only a common part of the nuclei existing in homologous proteins. The second
approach is based on the correlation between the participation of residues in the
folding nucleus and their fluctuations in partly unfolded stationary states [8] or in
native proteins [9]. The third, more direct approach is based on all-atom molecular
dynamic simulations of protein unfolding [10-13]. However, these simulations need
extremely denaturing conditions (500oK, etc.) to be completed in a reasonable time.
Therefore the TS found for such extreme unfolding can be rather different from that
existing for folding [14].
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Here we present and investigate two novel approaches to the search for the
folding nuclei. Both suggested approaches are based on the investigation of
unfolding pathways of 3D protein structure. The first searches for the TS at these
pathways using the branch and bound (BB) technique and the dynamic programming
(DP) method. The second approach is based on the solution of kinetic equations for
the network of protein folding/unfolding pathways. These approaches give a visible
correlation with experiment. (To have a reference point, we previously show that the
correlation of the participation of residues in the protein core and in the secondary
structure with their involvement in the experimentally found folding nuclei is rather
low.)

We investigate protein unfolding rather than folding because this is simpler
(since one can avoid exploring numerous high-energy dead-ends of folding), –
while, according to the detailed balance principle [15], the pathways for folding and
unfolding must coincide when both processes take place under the same conditions.
Hence, we are interested in conditions close to that of thermodynamic equilibrium
between the native and the coil states. Under these conditions small proteins
demonstrate the “all-or-none” transitions, both in thermodynamics [16] and kinetics
[1,2]. This allows us to consider only the pathways going from the native to the
unfolded state and to neglect those leading to misfolded globules [17].

2.   Materials and Methods

2.1  Statistical analysis and correlations

The number of those atomic contacts of residue i of protein p that disappear after
unfolding is computed as Cd(p,i) = Σk�Σi<k+1 δd

ik , where δd
ik is the number of contacts

between atoms of residues i and k (atoms are in contact when the distance between
them is below d), and the sum is taken over all non-neighbor chain residues of the
protein (since the neighbors are in contact at any chain structure).

The involvement of residue i in the hydrophobic core is computed as

C*
d(p,i) = Cd(p,i) / Cd

max(ai) , (1)

where Cd
max(ai) is the maximal (at a given threshold d) number of contacts for amino

acid ai in all the studied proteins. The secondary structure is determined by program
DSSP [18] from the atomic coordinates taken from PDB [19].

The correlation between the experimental Φf(i) values (see below) and any
calculated values A(i) is computed (for each protein p) from the conventional
equation Corrp(A,Φf)=[<AΦf>p− <A>p<Φf>p]/[(<A2>p− <A>p

2)(<Φf
2>p− <Φf>p

2)]1/2,
where <AΦf>p = (1/Np) Σi

Np A(i)Φf (i), etc.; the sums over i are taken over all the Np

residues of protein p with the experimentally studied Φf  values. The averaging of
the values Corrp(A,Φf) over all the analyzed proteins is done with the weights
proportional to the number Np of the studied residues in each of the proteins.
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2.2  Network of protein unfolding pathways

We consider a network of simplified stepwise unfolding pathways (Fig.1), each step
being the removal of one chain link from the native protein 3D structure.

Fig.1. Unfolding intermediates (only a small part of them is shown) and a network of unfolding
pathways. Each arrow corresponds to an elementary step, i.e., to the transition of one chain link (of one
or a few residues) from the globular, native-like part of the intermediate (bold line), to the coil (dotted
line).

The structure Sν (ν = 0,1,..,U) contains ν disordered and U-ν ordered links; S0  is
the native state, SU  the coil. The removed links are assumed to form the random
coil; they lose all the non-bonded interactions and gain the coil entropy (except the
entropy spent to close disordered loops protruding from the remaining globule). It is
assumed that the links remaining in the globule keep their native positions and that
the unfolded regions do not fold into another, non-native globule.

The free energy of structure Sν , relatively to that of the random coil, is taken as
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The first sum is taken over all residues i, j keeping their native positions in Sν. The
last sum is taken over all the closed loops protruding from the native-like part of Sν .

 δij is the number of native atom-atom contacts (at a distance <5Å) between residues i
and j (except i to i+1 contacts: they exist also in the coil); ε is the energy of one
contact; nν is the number of unfolded residues; T is the temperature; σ1 is the entropy
difference between the coil and the native state of a residue (we take σ1 =2.3R [16],
R being the gas constant). At the point of equilibrium F(S0)=F(SU), i.e., ε and T are
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connected by equation 
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loop between the still fixed residues k and l is estimated [17] as

Sloop = - 5/2R ln|k - l| - 3/2R (r2
kl - a

2) / (2Aa|k - l|) ; (3)

here rkl is the distance between the Cα atoms of residues k and l,  a = 3.8Å is the
distance between the neighbor Cα atoms in the chain, and A is the persistence length
for a polypeptide (according to [20], we take A = 20Å).

To facilitate the computations, we sometimes have to use “chain links” of a few
residues. These “links” somewhat limit the accuracy of our calculations, but not in a
crucial way: they are still much smaller than the expected size of a folding nucleus
in a vicinity of mid-transition between the folded and the unfolded phases (where the
nucleus should include roughly 1/3 of the protein globule [17]).

2.3  Transition states on the protein unfolding pathways

Let us consider some unfolding pathway w = (S0→S1→...→SU); then Fw
# =

max{F(S0),F(S1),...,F(SU)} is the free energy of the TS (“free-energy barrier”) at the
pathway w. The most efficient kinetic pathway has the minimal (over all the
pathways) TS free energy, F#

min = minpossible w{ Fw
#}: this pathway passes from S0 (the

native state) to SU (the coil) via the lowest free energy barrier. Let Sν−1∈{ Sν−1→Sν}
mean that Sν−1 can be transformed into Sν  in an elementary step (i.e., by removal of
one link from the globular part of  Sν−1). Thus,

F#
min =       min      {max{F(S0), F(S1), ..., F(SU)}}. (4)

S1, ..., SU-1

 S1∈{ S1→S2}
. . . . .

SU-2∈{ SU-2→SU-1}

Despite the huge number of possible pathways, F#
min can be calculated either by

a branch and bound (BB) technique [21], or by dynamic programming (DP) [22].

In application to our problem the key idea of the BB method is that having some
estimate Flimit of the upper limit of the TS free energy, we can refrain from
considering all the pathways from any state S where F(S)≥Flimit. If some pathway w
has been passed up to the end (from S0 to SU), we fix the Flimit to be equal to the free
energy maximum F#

w at this pathway. Then we follow this pathway back, up to that
S#

w structure which has F#
w(S#

w)=F#
w, make one more step back, and begin to

explore the other pathway branches going from the “pre-maximum” state S#
w-1. If we

can pass the new pathway w* up to the end without violation of the limit Flimit, this
means that we have found a new, lower barrier F#

w* and the structure S#
w*
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corresponding to the new TS. Then we make one step back from this structure and
start to consider the other pathways from this state S#

w*-1 forward (to SU), and so on.
If the movement along new pathway w* brings us to a state Sw* such that
F(Sw*)≥Flimit, we make one step back from the Sw* along the pathway w* and start to
consider other branches from this state Sw*-1, and so on. In both the above cases we
make one step back from some structure S with F(S)≥Flimit. Moreover, we make one
step back when we find a “completely explored” structure, i.e., such a structure that
each pathway from it is either estimated (in the sense of maximal free energy at this
pathway) or discarded, since the free energy at the pathway is above Flimit. The
process ends when the initial structure S0 becomes “completely explored”. This
algorithm guarantees that the found free energy barrier is the lowest of all the
possible ones at the pathways leading from S0 to SU.

The same BB method can explore also the “suboptimal” pathways. To this end
we take the Flimit already found for the optimal pathway, fix the free energy limit for
suboptimal pathways equal to Flimit+∆F, and then consider the pathways not
exceeding this limit using the above described method.

DP method also can solve equation like eq.(4). The algorithm is as follows. Let
b(S) be the altitude of the lowest free energy barrier at the pathways leading from S0

to S  inclusively (thus, F#
min= b(SU)), and q(S) be that at the pathways from S

(exclusively) to SU. The b(S), q(S) values are computed recursively:

b(S1) = max{F(S0), F(S1)}     for all intermediates S1;

b(S2) =      min         { max{b(S1), F(S2)} }     for all  S2;
S1∈{ S1→S2}

. . . . . (5)

F#
min =  b(SU) =  min { max{b(SU-1), F(SU)} } ;

SU-1

and

q(SU-1) = F(SU)     for all SU-1;

q(SU-2) =      min        { max{F(SU-1), q(SU-1)} }     for all SU-2;
SU-1∈{ SU-2→SU-1}

. . . . . (6)

q(S1) =      min         { max{F(S2), q(S2)} }     for all S1 ;
S2∈{ S1→S2}

(Sν∈{ Sν−1→Sν} means that Sν is obtained from Sν−1 in one elementary step). Then

F#(S) = max{b(S), q(S)}  (7)
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is the altitude of the lowest free energy barrier at the pathways leading from S0 to SU

via each intermediate S.
The intermediate(s) with F#(S)=F#

min give the transition state(s) with the minimal
free energy. The intermediates with F#(S)=F(S) give the ensemble {S#} of all the
possible passes over the free energy barrier dividing S0 from SU. {S#} gives the
utmost estimate of the variety of TS (it can be redundant since a pathway to the TS
high in free energy can pass via some TS of the lower free energy). To outline the
nucleus, we investigated both the single TS of the lowest free energy and the
ensembles {S#} of all possible transition states. In the last case we compute (for each
residue i) the average fraction of the side chain native contacts preserved in the
transition state ensemble {S#} (we pay attention to the side chain contacts since just
they are changed by mutations aimed to outline the TS experimentally):

Φ(i) =  ΣS# P(S#) [C(S#,i) / C(S0, i)] . (8)

The sum is taken over ensemble {S#}; P(S#)=exp(-F#(S#)/RT)/[ΣS# exp(-F#(S#)/RT)]
is the Boltzmann probability of S# in the ensemble {S#}; C(S#,i) is the number of
contacts between the side chain atoms of residue i keeping its native position and all
atoms of the other residues having the native arrangement in state S# (except those
with next-neighbors of i: they exist in the coil as well); C(S0,i) is the number of these
same contacts in the native structure. These Φ values have the same sense as the Φf

values derived from protein engineering experiments (Φf(i)=1 when the mutation of
residues i affects the folding rate by changing the TS stability as strongly as that of
the native protein, and Φf(i)=0 when the mutation does not affect the folding rate
[5]). The computed Φ and the experimental Φf  values are compared to see the
correlation of the theory with experiment.

To use DP in searching for the TSs at a network of folding-unfolding pathways,
we have to restrict this network by ~107 intermediates. Therefore we use “chain
links” consisting of a few residues: of two residues for proteins with less than 100
residues, and of four residues for larger proteins. To the same end we consider only
the intermediates with no more than two closed loops in the middle of the chain plus
the N- and the C-terminal disordered tails. These four unfolded regions should be
enough to describe the unfolding of a protein up to L≈100 residues, since the
estimated [17] number of coil regions in the folding nucleus is close to L2/3/6.

2.4  Kinetic equations at the network of folding/unfolding pathways

The number ni of protein molecules having state i (i = 0, 1 ,…, M, M+1 where “0” is
the native state S0, “M+1” the coil SU, and “1”,…, “M” the intermediates, see Fig.1)
changes with time t according to usual kinetic equations
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where kij is the rate of transition from the i to the j state. These equations can be
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solved in a quasi-stationary approximation [23], i.e., under the assumption that
dni/dt = 0 for all the intermediates “1”,…, “M”, which is correct when all the
intermediates have a high free energy and therefore low statistical weight as
compared with the initial and the final states; thus, it is valid for “all-or-none”
protein folding and unfolding. When all kij are given, the resulting rate K0,M+1 of the
“0” →“M+1” transition and KM+1,0 of the “M+1”→“0” transition can be computed
from solution of M linear equations. Then we can “mutate” a residue (by
infinitesimal modification of its interaction energies with other residues), compute
the modified F0 – FM+1, K0,M+1 and KM+1,0 values, and from them calculate (cf. Ref.5)
the Φ value for this residue .

For transition rates we use an approximation usual for the Metropolis scheme of
kinetic simulations based on Monte-Carlo method [4,24]:

(transition is “possible” when j is obtained from i by adding of one link to the
native-like part of i, or by removing of one link from this native-like part). k0 is the
rate constant for a downhill (in free energy) step.

To have a limited size of the network of intermediates (and thus of equations) we
use “chain links” of 4-8 residues, but do not restrict the number of loops.

2.5  Analyzed proteins and experimental data

All the calculations of folding nuclei in this paper are held for five proteins where
the experimental Φ values have been obtained for many chain residues: barnase
[25], chymotrypsin inhibitor 2 (CI2) [11,26], signal-transduction protein CheY [27],
SH3 domain of src tyrosin-kinase transforming protein (src-SH3) [28], and SH3
domain of α-spectrin (α-SH3) [29]. Their 3D coordinates are taken from the PDB
[19], files 1rnb.ent, 2ci2.ent, 3chy.ent, 1srm.ent and 1shg.ent, respectively.

The maximal number of contacts for each sort of amino acid is computed from a
large set of 250 small (≤200 residues) non- or weakly homologous proteins [30]
enriched with the above mentioned five proteins.

Experimental Φf  values are taken from [11,25-29]. Since the rarely observed Φf

�� �� � Φf  > 1 values have no structural interpretation [26], and the errors in Φf

values are about ±0.1, the rare values Φf < -0.1 and Φf > +1.1 are excluded. Φf  is
taken as 0 when 0<Φf <-0.1, and as 1 when 1<Φf <1.1. When several Φf values are
given for a residue, we average them. For barnase we take Φf as 1-Φu [25] since its
folding in pure water goes via a metastable intermediate, while its unfolding (u) and
folding at the moderate denaturant concentrations is a two-state process studied
here.

0, if transition  i → j  is physically impossible

kij = k0 × 1, if transition  i → j  is possible and Fi ≥ Fj

exp[-(Fj - Fi)/RT], if transition  i → j  is possible and Fi ≤ Fj
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3   Results and Discussion

Before analysis of folding/unfolding pathways, it is worthwhile to elucidate the
correlation of involvement of a residue into the folding nuclei with its role in the 3D
protein structure.

Let α be 1 if the residue is in an α-helix and 0 if not, β be 1 if the residue is in a
β-sheet and 0 if not, and C*

d (eq.(1)) be a fraction of the residue’s atom-atom
contacts (up to distance d) from that maximally possible for given amino acid.

C*
5Å characterizes the involvement of a residue into the hydrophobic core of the

protein. C*
5Å  correlates with the experimental Φf value at the average level of only

17% (Table 1). The absolute number of residue contacts C5Å correlates with the Φf

value even worse. A weak correlation of the number of native contacts with the Φf

values has been mentioned in [10] and further investigated in [31].

α+ β characterizes the involvement of a residue into the secondary structure. It
correlates with theΦf  only a little better, at the average level of 19% (Table 1).

The generalized value A=θα+λθβ+µC*
d, where ,  and d are the optimized

parameters, correlates with the Φf value at the average level of 26% only (Table 1),
– although the values d=9.2Å,� =0.5 and =4.1 have been optimized (to increase
correlation of A with Φf) at the same five proteins (which must overestimate the
resulting correlation).

All this suggests that it is impossible to predict participation of residues in the
folding nucleus by just the participation of residues in the protein hydrophobic core
or the secondary structure without modeling of its folding/unfolding.

Table 1. Coefficient of correlation between experimental Φf values and involvement of residues in the
hydrophobic core and in the secondary structure of proteins

Protein CI2 Barnase CheY src-SH3 α-SH3 Average

Number of experimental points 39 29 27 15 6 -
Involvement in hydrophobic core (C*

5Å) 0.16 0.01 0.26 0.05 0.83 0.17
Involvement in secondary structure ( α+ β) 0.41 0.17 0.15 -0.20 0.06 0.19

Involvement in hydrophobic core and
secondary structure (θα+0.5θβ+4.1C*

9.2Å)
0.36 0.08 0.42 -0.18 0.87 0.26

3.1  Results of investigation of the folding/unfolding pathways.

Table 2 shows that, on the average, the correlation of the “optimal” (according to
calculation) folding nuclei with the experimental Φf values is about 30%, i.e., it is
somewhat higher than that of Φf values with the residue involvement in the
hydrophobic core and in the secondary structure. Although the correlation itself
virtually does not depend on the size of links used in computations, the exact
position of the “optimal nucleus” in the chain is rather sensitive to all the
computational details, including the link size (Fig.2). This shows that one should not
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consider only one, even the “optimal” TS: the “suboptimal” transition states are very
close to the “optimal” state (Fig.2), their free energies exceeding that of the
“optimal” folding nucleus only by a small fraction of RT. In other words, the choice
of the sole “optimal” nucleus depends on all details of calculations.

Table 2. Computed folding nuclei and their correlation with the experimental Φf values

Protein CI2 Barnase CheY src-SH3 α-SH3 Average

Number of experimental points 39 29 27 15 6 -
Number of amino acid residues 64 109 128 56 57 82,8

Optimal TS, ∆F# (in RT units) [BB method*] 13.5 19.4 10.7 14.1 13.1 14.1

Optimal TS [by BB*], correlation with Φf 0.37 0.16 0.56 -0.24 0.50 0.29

Optimal TS [by DP**], correlation with Φf 0.35 0.16 0.52 -0.12 0.50 0.29

Ensemble of all the TSs [by DP**],
correlation with experimental Φf

0.48 0.49 0.60 -0.01 0.54 0.45

* “Chain link” consists of 2 residues for barnase (where computations with 1-residue link overflows the
computer memory), and of 1 residue for other proteins;

** “Chain link” consists of 4 residues for barnase and CheY, and of 2 residue for the other proteins.

Fig.2. At the top: location of the “optimal” folding nucleus (black rectangles) and of some “suboptimal”
nuclei (thin lines) in the CI2 chain. The computation was done by branch and bound method (where a
“link” consisted of one residue). Free energies of the suboptimal nuclei, about 13.4817 RT, are only a
little higher than that of the optimal nuclei, 13.4816 RT. The hatched rectangles (below) show the
location of the optimal folding nucleus computed with two residues in a link. The plot (solid line with
filled circles where a comparison with experiment is possible) shows the theoretical Φ values calculated
for the transition state ensemble in CI2 using dynamic programming (with two residues in a link); for
more plots of this kind, see Galzitskaya & Finkelstein, Proc. Natl. Acad. Sci USA, in press. The
experimental Φf values are shown with open circles (connected with dotted line for better presentation).
The rectangles and lines below the plot show the location of the native α-helices and the β-strands in the
protein chain.

Thus, it is better (Table 2 and Fig.2) to consider the ensemble {S#} of all the
folding/unfolding transition states. This ensemble is more appropriate to compute by
DP than by the BB technique. However, the application of DP requires a limitation
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of the considered set of intermediates. The volume of this set depends on the
limitations used in computations. The possible limitations can be estimated using a
less demanding BB method. The “optimal” folding nuclei found in this way in small
proteins usually include only one-two, very rarely three, closed loops protruding
from the nucleus. This shows the limitation of the loop number (≤2) that can be
allowed in our calculations of the Φ values by dynamic programming.

In solving kinetic equations for a network of folding pathways we get the Φ
values close to those obtained by DP for a whole TS ensemble (cf. Fig.3 and Fig.2).
Like experiment, both theories show high Φ values for the N- and C-terminal parts
of the CI2 chain (this means that they are involved in the nucleus), but the peaks for
the theoretical Φ’s are broader than those for the experimental Φf’s. This is probably
due to the neglected specificity of atomic contacts and to the rough estimate of loop
entropy in our calculations.

Generally, the computed Φ values are not very sensitive to such details as small
changes of contact energies or a modification of the link size (usually, the results are
essentially the same for 2-, 3- or 4-residue links). The only exception is src-SH3. It
has the worst predicted Φ values when the DP computations are held with 2-residue
links (Corr = -1%, the only example of negative correlation in our practice, see
Table 2), but Corr = 54% when 3-residue links are used.

All the considered proteins have the two-state transitions between the native
globule and the random coil in a vicinity of the denaturation point (a metastable
folding intermediate is observed for some of them only when the native state is very
stable). The developed theories refer just to these two-state transitions. It seems that
they can be applied also to the molten (or swollen) globule-native state transitions
for the cost of some modification of the energy and entropy terms in equations (2),
(3). However, they cannot be applied to the coil-molten globule transition when the
3D structure of the molten globule is not known.

Fig.3. Φ values calculated from kinetic equations for the network of CI2 (a) and CheY (b)
folding/unfolding pathways (with 4 residues in a “chain link” in CI2, and with 8 in CheY). For CI2, the
computed folding rate K=1.2×10-7 k0, i.e., the free energy barrier is 16RT. For CheY, K=9×10-7 k0, and
the barrier is of 14RT. With k0 ~ 107  sec-1 (a reasonable rate estimate for folding/unfolding of a “link” of
a few residues [35]), K is of the order of ~1 sec-1 for both proteins, in a reasonable concordance with
their folding/unfolding rates (at the considered point of thermodynamic equilibrium of the native
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structure and the coil) [26,27]. The correlation between the theoretical (-•-) and the experimental (o) Φ
values is 48% for CI2 and 78% for CheY.

4   Conclusions

This study shows that the coarse-grained model of sequential protein folding [17]
gives a possibility to outline the folding nucleus. And although the nucleus is
outlined by this model more crudely than by MD simulations reported in [10,11] for
CI2, the presented approaches have two important advantages over the MD
simulations: they do not need neither additional experimental data nor additional
speculations to single out the TS, and they are fast. Our next aim is to do them more
precise using more precise estimates of inter-residue interactions.

An overview of the calculated TS ensembles shows that many of the parallel
transition states, though of nearly equal free energy, have substantial variations in
size and positions. This result correlates with the suggestion that a 3D structure can
fold using various folding nuclei [29,32]. It should be also mentioned that the found
globular parts of the TS structures are not very small: usually, they include from one
third to a half, even up to two thirds of all the chain residues. Theoretically [17],
such large and not too specific nuclei must be typical of folding (and unfolding)
close to the point of thermodynamic equilibrium between the native globule and the
coil. However, a stabilization of the native structure must make the nuclei smaller
and more specific. This is suggested also by comparison of the results of folding
simulations [32] and [4,6,7] held under different conditions, as well as by some
experimental results [33,34].

In the examined proteins the semi-folded structures have high free energies; this
is consistent with the two-state all-or-none transition between the native and the
unfolded state. Most of these semi-folded structures have a very high free energy of
many tens or even hundreds of RT units. However, the calculation finds the passages
through this high free energy landscape where the free energy of the maximum
exceeds that of the native (or coil) states by only 10 - 20 RT (Table 2). This is
consistent with the estimates [17] for proteins of the examined size (of 60-120
residues; however, it is noteworthy that Table 2 shows no direct dependence of the
TS free energy on the protein size). Such relatively low free energy barriers allow
these proteins to fold within milliseconds or seconds [17] in a reasonable semi-
quantitative concordance with experiment [25-29]. The computed transition states
look compact and contain small number of protruding loops.
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