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We have recently developed a mini-fingerprint (MFP) representation for small molecules that
performs well in database searches for compounds with similar biological activity. The MFP
consists of only 54 bit positions that account for numerical ranges of three two-dimensional
(2D) descriptors or the presence or absence of defined structural fragments. Here we present
an analysis method, termed fingerprint profiling, to systematically compare bit patterns of
compounds belonging to different biological activity classes. Some but not all bit positions
were variably occupied in seven different activity classes and responsible for the detection of
structure-activity differences. The analysis has made it possible to rank bit positions and
encoded molecular descriptors according to their importance for our similarity search
calculations. Fingerprint profiling can be applied to any keyed bit string representation and
should be helpful, for example, to analyze descriptor distributions in large compound
databases.

1 Introduction

Binary hit string representations of molecular structure and properties, often called
fingerprints, have become popular tools to analyze chemical similarity*?. Widely
used fingerprints account for intramolecular atomic distance or connectivity patterns
and molecular descriptors™. Such fingerprints are often highly complex (hashed or
folded) and consist of many hit positions (~1,000 or more). In hashed fingerprints,
molecular properties and patterns are mapped to overlapping bit segments and, in
consequence, single hit positions can not be associated with a specific descriptor or
property. Such complex fingerprints are designed to be sensitive to subtle
differences in molecular structure and properties.

The assessment of molecular similarity typically relies on pairwise comparison
of molecular bit strings using metrics such as the Tanimoto coefficient (Tc)*, defined
as Tc = B/(B1+B2-B), where B is the number of bits set on (i.e., 1) in common in
fingerprints of molecules 1 and 2, B1 is the number of bits set on in molecule 1 and
B2 the number of bits set on in molecule 2.

We were interested in the design of bit string representations to identify
compounds with similar biological activity. Such fingerprints must be able to
capture essential chemical features responsible for a specific activity’. At the same
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time, they should not discriminate between minor structural variations of compounds
that are well tolerated within a given activity class'.

The design of such fingerprints was investigated in a two step analysis. First, we
assembled a test database consisting of a total of ~400 compounds belonging to
seven distinct biological activity classes’ and partitioned this database using a
classification method based on principal component analysis’. In this study, all
possible combinations of 57 structural key-type'®* fragments (SSKeys) and 17 other
2D molecular descriptors’ were analyzed. We found that a combination of 32
SSKeys and only three additional 2D descriptors (accounting for hydrogen bonding
acceptors, aromatic character, and molecular flexibility) effectively classified
compounds with similar biological activity’. On the basis of these findings, we
designed several small fingerprints (mini-fingerprints, MFPs) and evaluated their
performance in exhaustive one-against-all similarity searches in our test database
(with systematic variation of Tc cut-off values for detection of similarity)™.

Overal best performance was obtained for an MFP consisting of 54 bit positions
(termed SSKey-3DS) that correctly recognized similar biological activity of 54% of
the test compounds and showed only ~2 % false positives (Tc = 0.7). In comparison,

a complex 2D pharmacophore fingerprint with 1,024 bit positions’ recognized a
maximum of 35% of compounds (Tc = 0.6) with similar biological activity with

0.5% false positives”. At a Tc cut-off value of 0.85, this complex fingerprint totally
eliminated false positive recognition but found only 9% of compounds with similar
activity, while the MFP still correctly recognized 24% of compounds with similar
activity with very few (0.03%) false positives. These findings indicated that the
“medium resolution” of our MFP design was suitable for similarity searching
focused on biological activity, perhaps more so than highly complex fingerprints that
may often be too sensitive to structural variations of compounds with comparable
activity.

Here we extend the study of MFP performance and introduce fingerprint
profiling as an analysis tool. Fingerprint profiles were calculated for seven activity
classes hy averaging each bit position within the fingerprint for the class.
Comparison of fingerprint profiles and calculation of standard deviations of average
bit occupancy at each bit position made it possible to identify those MFP positions
(and descriptor settings) that were important to distinguish biological activities of
test compounds.

2 Methods

The current version of our test database for similarity searching focused on
biological activity includes a total of 364 compounds in seven different biological
activity classes, collected from the literature as describ&tie compound
composition of the database is summarized in Table 1.
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Table 1. Bioactivity classesin the test database.
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The MFP analyzed in this study, termed SSKey-3DS, consists of 32 bit positions
that detect the presence or absence of a particular structural key and, in addition, 22
bits that account for numerical ranges of three 2D molecular descriptors, identified
by systematic compound classification analysis’ (as described above). These are the
number of aromatic bonds in a molecule (ARB), the number of hydrogen bonding
acceptors (HBA), and the fraction of rotatable bonds (FRB). The design of SSKey-
3D isillustrated in Figure 1. Encoded numerical ranges for these descriptors were
determined by a survey of descriptor distributions in large compound databases” and
the relative importance of SSKeys, ARB, HBA, and FRB (and thus the lengths of
their bit segments) was estimated from principal component analysis in activity-
based compound classification®.

SSK ey-3DS Design
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Figure 1. Mini-fingerprint design. A schematic representation of SSKey-3DS is shown. Each bit
position reports the presence (i.e., “1”) or absence (i.e., “0) of a structural fragment or, alternatively,
sets a numerical range for ARB (aromatic bonds), HBA (hydrogen bonding acceptors), @raeRén

of rotatable bonds), as indicated by gray shading of bit segments (gray means “1”).

The MFP and al routines required for systematic database searching were generated
using SVL code” and implemented in MOE™ that was used for all calculations. For
each compound in our test database, SSKey-3DS was generated. Then, the sum of
bit positions was calculated for each activity class and divided by the number of
compounds belonging to this class, thus providing the average bit occupancy at each
position. The profiles were compared and standard deviations of bit occupancy were
calculated for each bit position.
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Fingerprint profiles of the seven activity classes and a consensus profile for all
activity classes are shown in Figure 2. The results show that activity classes display

significant differences in their patterns of bit occupancy.
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Figure 2 (continued on next page): Fingerprint profiles for compounds belonging to different activity
classes. The average of each of the 54 bit positions of SSKey-3DS is shown for each activity class and
the sum of all classes. A. Benzodiazepine receptor ligands (BEN) B. Carbonic anhydrase-ll inhibitors
(CA) C. Cyclooxygenase-2 inhibitors (COX) D. H3 antagonists (H3) E. HIV protease inhibitors (HIV)
F. Serotonin receptor ligands (HT) G. Tyrosine kinase inhibitors (TK) H. All activity classes (BAC).
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The MFP profiles display high variability in some regions and are similar in others.
This is illustrated in the consensus profile (panel H in Figure 2). Regardless of the
activity class, a few bit positions were rarely or (in two instances) never set on. By
contrast, several other bit positions were often or, in two cases, always set on. Bit
positionsrarely or mostly set on in all activity classes (approximately 10 in total) did
not contribute to the detection of activity differences. Thus, in our search
calculations, MFP performance was dependent on a subset of approximately 40 bit
positions and their combinations. Most important were bit positions with high
variability of occupancy. These positions were identified by calculation of standard
deviations of bit occupancy over all compound classes, as shown in Table 2.
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Table 2. Variability of SSKey-3DS Fingerprint within Biological Activity Classes

Standard Deviation ~ Bit Occupancy  Bit Position Descriptor
0.5000 0.4967 40 Non-H atom linked to 3 heteroatoms
0.4999 0.4901 31 Nitrogen attached to a-carbon of aromatic system
0.4998 0.5143 52 HBA=8
0.4997 0.5187 26 9-membered or larger (fused) ring
0.4994 0.4747 19 Nitrogen-containing aromatic ring
0.4983 0.4593 41 Quaternary atom
0.4980 0.4549 53 HBA=9
0.4952 0.5692 25 5-membered aromatic ring
0.4935 0.4198 20 -SO,

0.4935 0.4198 21 -SO

0.4935 0.4198 29 -0SO

0.4908 0.5956 51 HBA=7

0.489%4 0.6022 24 5-membered non-aromatic ring

0.4890 0.6044 27 Fused ring system

0.4860 0.3824 30 Halogen atom

0.4843 0.6242 13 Heterocycle

0.4788 0.3560 8 ARB 16 to 19

0.4775 0.3516 42 2 methylenes separated by 2 atoms
0.4693 0.6725 50 HBA=6

0.4660 0.3187 54 HBA >10

0.4587 0.3011 23 Amide

0.4548 0.2923 3 FRB0.2t00.3

0.4383 0.2593 38 Methy! attached to hetero atom

0.4371 0.2571 28 Fused aromatic ring system

0.4255 0.2374 15 Aliphatic OH

0.4170 0.7758 2 FRB 0.1t00.2

0.4111 0.7846 7 ARB 8to0 15

0.4096 0.2132 17 Aliphatic tertiary amine

0.3967 0.8044 49 HBA=5

0.3769 0.1714 16 Aliphatic secondary amine

0.3650 0.1582 33 Rings separated by 2-3 non-ring atoms
0.3629 0.1560 43 Non-ring oxygen attached to aromatic system
0.3477 0.8593 48 HBA=4

0.3359 0.1297 37 Oxygens separated by 2 atoms

0.3335 0.1275 9 ARB 20to 25

0.3285 0.8769 18 Phenyl ring

0.3234 0.1187 14 2 non-C,H atoms separated by 2 atoms
0.2767 0.9165 47 HBA=3

0.2363 0.0593 32 -NO,

0.2321 0.0571 22 Ester

0.2279 0.9451 6 ARB 2to7

0.2235 0.0527 10 ARB 26 to 31

0.2145 0.0484 14 Aromatic OH

0.2145 0.0484 39 Double bond

0.2098 0.0462 35 NN

0.1896 0.0374 34 Rings separated by 4-5 non-ring atoms
0.1896 0.9626 46 HBA=2

0.1314 0.0176 4 FRB 0.3t0 0.4

0.1314 0.0176 11 ARB 32t0 37

0.1043 0.0110 36 C attached to 3 carbons and a hetero atom
0.0000 1.0000 1 FRBOto0.1

0.0000 0.0000 5 FRB >0.4

0.0000 0.0000 12 ARB >38

0.0000 1.0000 45 HBA=1

Non-ARB, -FRB, and -HBA bits detect the presence or absence of SSKey-type fragments.
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The results in Table 2 helped to understand the relative importance of molecular
descriptors encoded in SSKey-3DS (standard deviations calculated here range from
0.0-0.5 and their differences are subtle due to the binary setting of bit values). A
few low and high ranges of numerically encoded descriptors (e.g., HBA = 1, ARB >
38; bottom of Table 2) were, as to be expected, detected in all or none of the test
compounds and could therefore be excluded from further MFP designs. The lower
part of the table characterizes features that were common to compounds in our
database, regardless of their activity (e.g., aromatic character, certain functional
groups etc.; see also Table 1). The upper part shows descriptors with variable bit
occupancy that were more important to distinguish compounds with different
activity. Among the top scoring descriptors were a variety of structural keys (known
to be powerful 2D descriptors™). An interesting observation is that higher ranges of
hydrogen bonding acceptors (i.e., HBA 7-9) were very important, more so than other
numerically encoded descriptors.

4  Discussion

Approaches to database searching for compounds with similar activity are
conceptually based on the idea that significant similarities in molecular structure and
properties are responsible for similar biological activity’. However, structure and
activity can relate in many different ways and it is difficult to generate molecular
representations that capture structure-activity relationships for diverse sets of
molecules. On the basis of extensive molecular descriptor analysis, we investigated
the design of short binary bit string representations of molecules that are
conceptually much more simple than other commonly used fingerprints™*.

Results obtained so far include complete similarity searches for ~400 compounds
belonging to seven different biological activity classes. Our findings indicate that the
use of relatively few and simple descriptors is sufficient to describe molecular
features at a level of resolution suitable to distinguish biological activities.
However, our current studies have at least two significant limitations. First, the
number of activity classes analyzed to date is still small, and the results may vary to
some extent with the composition of the compound database used for benchmarking.
Second, we currently do not differentiate between activity levels of compounds
belonging to the same class (e.g., weakly versus highly active), akin to the scenario
of binary QSAR calculations®".

In order to analyze MFP performance in more detail, we have calculated
fingerprint profiles. As an anaysis tool, fingerprint profiling can be immediately
applied to any keyed fingerprint-type representation (i.e., where each bhit is
associated with a particular pattern or descriptor). It can also be used to study
descriptor distributions in large compound database and identify structural keys and

18,19

descriptors that characterize, for example, molecules with drug-like properties ™.
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It is important to note that fingerprint profiling is a diagnostic tool to visualize
and study patterns and variability of bit occupancy and not in itself a method to
identify or classify biologically active compounds™?,

When analyzing our MFP and benchmark compound database, we found that
different compound classes showed characteristic patterns of bit occupancy.
Analysis of these patterns, aided by calculation of standard deviations, has provided
a differentiated view of our MFP design and made it possible to rank molecular
descriptors according to their importance. Only a subset of bit positions, with highly
variable occupancy, was responsible for the performance of the MFP, consistent
with the idea that combinations of relatively few encoded descriptors suffice to

capture essential features of tested compounds.
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