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Recently, there has been increased interest in using Single Nucleotide Polymorphisms (SNPs)
as a method for detecting genes for complex traits. SNPs are diallelic markers that have the
potential to be inexpensively produced using chip technology. It has been suggested that
SNPs will be beneficial in study designs that utilize trio data (father, mother, child). In our
previous work, we calculated the probability of detecting Mendelian errors at a SNP locus for
a trio randomly selected from a population in Hardy-Weinberg equilibrium. The highest error-
detection rate was 30%. Here we investigate the error-detection rate when additional sibs are
genotyped. We define an error to be a change from a 1 allele to a 2 allele, or vice versa.
Typing one additional sib increases the detection rate on average by 10 – 13%. Typing two
additional sibs increases the detection rate on average by 14-19%. The increase in the
detection rate is dependent on the allele frequencies. Equal allele frequencies produce the
lowest detection rates, independent of true error rates and number of offspring genotyped.
Typing additional siblings not only improves error-detection rates, but can also provide
additional linkage information. In order to increase linkage information and error-detection
rates, at least two additional siblings should be ascertained when available.

1  Introduction

Recently, there has been an increased interest in the use of Single Nucleotide
Polymorphisms (SNPs) loci as a possible method for detecting genes of modest
effect, i.e., for complex traits1. SNPs occur in large numbers across the human
genome and usually consist of two alleles2. Statistical methods proposed for
detection of genes for complex traits using SNPs include haplotype-relative risk
tests3, and transmission-disequilibrium tests4 (TDT). In each of these tests, the
sampling frame is a family trio, consisting of a father, a mother, and an affected
child genotyped at a locus. In the case of TDT when testing for linkage in the
presence of association, additional affected siblings may also be used5.

One important methodologic issue concerning markers in general and SNPs in
particular is that of errors. Buetow6 found that, in constructing high resolution
human linkage maps (3 cM or less) with highly polymorphic markers, typing errors,
even at the rate of 1.5%, led to a reduction of power to discriminate orders, a
dramatic inflation of map length, and significant support for incorrect over correct
orders. Shields et al.7 also determined that the introduction of typing errors when
constructing human linkage maps led to support for incorrect orders and map length
inflation. Terwilliger, Weeks and Ott8 showed in simulation studies for a multi-
allelic system that misreading an allele results in overestimation of recombination
fraction and a decrease in expected lod score. Using simulated data for a multi-
allelic marker, Gordon et al.9 showed that errors in pedigree data can significantly

Pacific Symposium on Biocomputing 5:660-671 (2000) 



reduce evidence for linkage in the presence of association when using a
transmission disequilibrium test. Several authors10,11,12,13 considered the issue of
errors in pedigree data, and devised methods for detecting such errors.

Regarding SNPs, Gordon et al.14 investigated the error-detection rate in trios by
detecting errors through deviations from Mendel’s laws. The authors defined an
error, as we do in this article, to be anything that causes a 1 allele to change to a 2
allele, or vice versa. Such errors may result from non-paternity, sample swaps in the
lab, or genotyping errors. The highest detection rate for trios was slightly less than
31%. Given such a low detection rate, we seek to quantify the improvement in
error-detection rates by genotyping additional siblings.

2 Materials and Methods

2.1 Detection Rate for Sib Pairs (Genotype Quartets)

For a diallelic marker with allele numbers 1 and 2, there are (up to symmetry) three
possible genotypes: 1/1, 1/2, and 2/2. A genotype quartet is defined to be a 4-tuple
of genotypes
 (Parent1 Allele 1/Parent1 Allele 2, Parent2 Allele 1/Parent2 Allele 2, Child1 Allele 1/Child1 Allele 2,
Child2 Allele 1/Child2 Allele 2)
in which the set of alleles is consistent with Mendel’s laws. In this 4-tuple, no
distinction is made between Parent1 and Parent2, or Child1 and Child2. For example,
the genotype quartets (1/2, 1/1, 1/1, 1/2) and (1/1, 1/2, 1/2, 1/1) are considered to be
equivalent. No distinction is made between genotypes 2/1 and 1/2. Thus, for
example, the quartet (2/1, 2/1, 2/1, 2/1) is equivalent to (1/2, 1/2, 1/2, 1/2), and so
forth. For consistency, the genotypes 1/2 and 2/1 shall always be referred to as 1/2.
A general quartet is defined to be any 4-tuple of genotypes in which each person
has the genotypes 1/1, 1/2, or 2/2, without the restriction that the quartet displays
Mendelian consistency. Here and elsewhere, the term consistency (respectively,
inconsistency) implies Mendelian consistency (respectively, Mendelian
inconsistency). Note that the set of genotype quartets is a subset of the set of general
quartets. Also, the conjugate of a genotype quartet M (denoted M) is defined as the
genotype quartet that results when each value of 1 in M is replace by a 2, and each
value of 2 in M is replaced by a 1. For example, the conjugate of the quartet (1/1,
1/1, 1/1, 1/1) is (2/2, 2/2, 2/2, 2/2), the conjugate of (1/2, 1/1, 1/1, 1/1) is (1/2, 2/2,
2/2, 2/2), and so forth. The list of all genotype quartets and their conjugates may be
found in Table 1. An error in a genotype quartet is defined to be one or more
changes in genotypes of the quartet. For example, if the original quartet is (2/2, 2/2,
2/2, 2/2) then one error is introduced into the quartet if one and only one of the 2
alleles is replaced by a 1 allele. It is assumed that errors are introduced randomly
and independently into genotype quartets at a constant rate, denoted by α.
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Table 1. List of all genotype quartets and their conjugates
Genotype Quartet M Conjugate Genotype Quartet M
(1/1, 1/1, 1/1, 1/1) (2/2, 2/2, 2/2, 2/2)
(1/1, 1/2, 1/1, 1/1) (2/2, 1/2, 2/2, 2/2)
(1/1, 1/2, 1/1, 1/2) (2/2, 1/2, 2/2, 1/2)
(1/1, 1/2, 1/2, 1/2) (2/2, 1/2, 1/2, 1/2)
(1/1, 2/2, 1/2, 1/2) (2/2, 1/1, 1/2, 1/2)
(1/2, 1/2, 1/1, 1/1) (1/2, 1/2, 2/2, 2/2)
(1/2, 1/2, 1/1, 1/2) (1/2, 1/2, 2/2, 1/2)
(1/2, 1/2, 1/1, 2/2) (1/2, 1/2, 2/2, 1/1)
(1/2, 1/2, 1/2, 1/2) (1/2, 1/2, 1/2, 1/2)
(1/2, 1/2, 1/2, 2/2) (1/2, 1/2, 1/2, 1/1)
(1/2, 1/2, 2/2, 2/2) (1/2, 1/2, 1/1, 1/1)
(1/2, 2/2, 1/2, 1/2) (1/2, 1/1, 1/2, 1/2)
(1/2, 2/2, 1/2, 2/2) (1/2, 1/1, 1/2, 1/1)
(1/2, 2/2, 2/2, 2/2) (1/2, 1/1, 1/1, 1/1)
(2/2, 2/2, 2/2, 2/2) (1/1, 1/1, 1/1, 1/1)

For each of the fifteen quartets in Table 1, anywhere from 0 to 8 errors
may be introduced. In the case of either 0 or 8 errors, the resulting general quartet
will always display consistency. We calculate the probability that all errors go
undetected for a collection of genotype quartets in which at least one error has been
introduced, and denote this quantity by β. It follows that the detection rate is 1 - β.
Using basic probability theory,
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Note that the expression B(α;i) is the probability density function,
evaluated at i, 1≤ i ≤ 8, for a binomial distribution with constant success rate α in
each of 8 independent events. Using basic probability theory, the quantity
Pr(undetected errors | i errors in quartet) in formula (1) is calculated as

∑
∈

=
SM

MiMNquartetinerrorsierrorsecteddetun ),Pr(),|Pr()|Pr( 0
(2)

where S is the set of all fifteen genotype quartets in the first column of Table 1, N0 is
the event that all errors in a quartet go undetected, Pr(N0 |M,i) is the probability that
i errors introduced into a genotype quartet M go undetected, and Pr(M) is the
population frequency of the genotype quartet M. Pr (M) is calculated using the allele
frequencies p for allele 1 and q (= 1 – p) for allele 2, assuming that the alleles are in
Hardy-Weinberg equilibrium. For each genotype quartet M in Table 1, Pr(M) is
calculated in Table 2. For each M and each i, the probability Pr(N0 | M,i) is equal to
the proportion of resulting quartets that, after i errors have been introduced, show
consistency. For example, if M = (1/1, 1/1, 1/1, 1/1) and i = 1, Pr(N0 | M,i) = 4/8, or
1/2; of the eight general quartets that result from a change in one of the alleles, a
change in any of the four parental alleles will display consistency and a change in
any of the children’s alleles will display inconsistency.

Table 2. Conditional probability that a quartet M displays consistency if i errors are introduced, 1 ≤ i ≤ 4

Quartet = M Pr(M) Pr(N0|M,i)
i=1 i=2 i= 3 i= 4

(1/1, 1/1, 1/1, 1/1) p4 1/2 5/7 4/7 16/35
(1/1, 1/2, 1/1, 1/1) p3q 7/8 15/28 15/28 4/7
(1/1, 1/2, 1/1, 1/2) 2p3q 5/8 17/28 31/56 19/35
(1/1, 1/2, 1/2, 1/2) p3q 5/8 17/28 4/7 18/35
(1/1, 2/2, 1/2, 1/2) 2p2q2 1/2 1/2 4/7 22/35
(1/2, 1/2, 1/1, 1/1) 1/4 p2q2 3/4 17/28 15/28 19/35
(1/2, 1/2, 1/1, 1/2) p2q2 3/4 9/14 31/56 17/35
(1/2, 1/2, 1/1, 2/2) 1/2 p2q2 1/2 9/14 4/7 4/7
(1/2, 1/2, 1/2, 1/2) p2q2 1 9/14 1/2 18/35
(1/2, 1/2, 1/2, 2/2) p2q2 3/4 9/14 31/56 17/35
(1/2, 1/2, 2/2, 2/2) 1/4 p2q2 3/4 17/28 15/28 19/35
(1/2, 2/2, 1/2, 1/2) pq3 5/8 17/28 4/7 18/35
(1/2, 2/2, 1/2, 2/2) 2pq3 5/8 17/28 31/56 19/35
(1/2, 2/2, 2/2, 2/2) pq3 7/8 15/28 15/28 4/7
(2/2, 2/2, 2/2, 2/2) q4 1/2 5/7 4/7 16/35

We now state some lemmas whose application simplifies the calculation of
Pr(N0 |M,i) for any of the fifteen genotype quartets M in Table 1 and any i, 0 ≤ i ≤ 8.
These lemmas are extensions of ones proved previously14. The lemmas in that
reference apply to genotype trios, and the lemmas below follow from the
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observation that two genotype trios may be uniquely formed (corresponding to the
two children) from any genotype quartet. For example, the quartet (1/2, 1/2, 1/1,
2/2) maps uniquely to the set of genotype trios {(1/2, 1/2, 1/1), (1/2, 1/2, 2/2)}.

Lemma 1. For any genotype quartet M and for any i, 0 ≤ i ≤ 8,
Pr(N0 |M,i) = Pr(N0 |M,i).
Lemma 2. For any genotype quartet M and for any i, 0 ≤ i ≤ 8,
Pr(N0 |M,i) = Pr(N0 |M,8 - i).

Note that any quartet M falls uniquely into one of two categories: either M = M or
not. There are exactly three quartets M such that M = M : (1/2, 1/2, 1/2, 1/2), (1/1,
2/2, 1/2, 1/2) and (1/2, 1/2, 1/1, 2/2). For the remaining twelve, we divide them into
six genotype quartets and their conjugates, compute Pr(N0 |M,i) for the six quartets,
and use Lemma 1 to compute this probability for the remaining six. With this
information, the value Pr(undetected errors|i errors in quartet) in formula (2) is
calculated. Using Table 2, it follows:

∑ Pr(N0 |M,1) Pr(M) = 1/2 p4 + 11/4 p3q + 33/8 p2q2 + 11/4 pq3 + 1/2 q4,
∑ Pr(N0 |M,2) Pr(M) = 5/7 p4 + 33/14 p3q + 199/56 p2q2 + 33/14 pq3 + 5/7 q4, 
∑ Pr(N0 |M,3) Pr(M) = 4/7 p4 + 31/14 p3q + 185/56 p2q2 + 31/14 pq3 + 4/7 q4,         (2.2a)
∑ Pr(N0 |M,4) Pr(M) = 16/35 p4 + 76/35 p3q + 33/10 p2q2 + 76/35 pq3 + 16/35 q4.

Applying Lemma 2, we observe that

∑ Pr(N0 |M,5) Pr(M) = ∑ Pr(N0 |M,3) Pr(M),
∑ Pr(N0 |M,6) Pr(M) = ∑ Pr(N0 |M,2) Pr(M),                                 (2.2b)
∑ Pr(N0 |M,7) Pr(M) = ∑ Pr(N0 |M,1) Pr(M).

Equations (2.2a) and (2.2b) are substituted into formula (2), which are then
substituted into formula (1) along with the term ∑ Pr(N0 |M,8) Pr(M) = 1, to
determine β. In Table 4, error-detection rates for various values of α and p are
calculated, and in Figure 1, error-detection rates for a range of values of α and p are
plotted. It follows immediately from equations (2.2a) and (2.2b) that the detection
rate is symmetric about the line p = 0.5. This symmetry is seen in Figure 1 as well.
Therefore, for a fixed value of α, the detection rate will be the same for frequencies
p and 1 – p.

2.2  Detection Rate for Genotype Quintets

In the case where three offspring are available for study, definitions from the
previous section are extended in the natural way to speak of genotype quintets,
general quintets, conjugates and errors. The list of all genotype quintets may be
found in Table 3. To compute β and the detection rate 1 - β for genotype quintets,
we need only change the index in formulas (1) and (1a) so that the sum goes to 10
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(corresponding to the 10 alleles in a genotype quintet). Also, in formula B(α; i) and
in Lemmas 1 and 2, the value 10 is substituted for 8 everywhere. As above,
extensions of Lemmas 1 and 2 are proved using the observation that any genotype
quintet maps uniquely to a set of three genotype trios.

Table 3. Conditional probability that a quintet M displays consistency if i errors are introduced, 1 ≤ i ≤ 5

Quintet = M Pr(M) Pr(N0|M,i)
i=1 i=2 i= 3 i= 4 i = 5

(1/1, 1/1, 1/1, 1/1, 1/1) p4 2/5 28/45 3/5 46/105 8/21
 (1/1, 1/2, 1/1, 1/1, 1/1) 1/2 p3q 9/10 3/5 29/60 16/35 3/7
(1/1, 1/2, 1/1, 1/1, 1/2) 3/2 p3q 7/10 5/9 59/120 19/42 29/63
(1/1, 1/2, 1/1, 1/2, 1/2) 3/2 p3q 3/5 8/15 59/120 33/70 28/63
(1/1, 1/2, 1/2, 1/2, 1/2) 1/2 p3q 3/5 8/15 61/120 16/35 19/42
(1/1, 2/2, 1/2, 1/2, 1/2) 2 p2q2 2/5 19/45 13/30 52/105 65/126
(1/2, 1/2, 1/1, 1/1, 1/1) 1/16 p2q2 4/5 2/3 29/60 3/7 29/63
(1/2, 1/2, 1/1, 1/1, 1/2) 3/8 p2q2 4/5 3/5 61/120 16/35 26/63
(1/2, 1/2, 1/1, 1/1, 2/2) 3/16 p2q2 3/5 7/15 29/60 33/70 10/21
(1/2, 1/2, 1/1, 1/2, 1/2) 3/4 p2q2 4/5 31/45 31/60 91/210 3/7
(1/2, 1/2, 1/1, 1/2, 2/2) 3/4 p2q2 3/5 29/45 1/2 7/15 55/126
(1/2, 1/2, 1/1, 2/2, 2/2) 3/16 p2q2 3/5 7/15 29/60 33/70 10/21
(1/2, 1/2, 1/2, 1/2, 1/2) 1/2 p2q2 1 31/45 1/2 46/105 56/126
(1/2, 1/2, 1/2, 1/2, 2/2) 3/4 p2q2 4/5 31/45 31/60 91/210 3/7
(1/2, 1/2, 1/2, 2/2, 2/2) 3/8 p2q2 4/5 3/5 61/120 16/35 26/63
(1/2, 1/2, 2/2, 2/2, 2/2) 1/16 p2q2 4/5 2/3 29/60 3/7 29/63
(1/2, 2/2, 1/2, 1/2, 1/2) 1/2 pq3 3/5 8/15 61/120 16/35 19/42
(1/2, 2/2, 1/2, 1/2, 2/2) 3/2 pq3 3/5 8/15 59/120 33/70 28/63
(1/2, 2/2, 1/2, 2/2, 2/2) 3/2 pq3 7/10 5/9 59/120 19/42 29/63
 (1/2, 2/2, 2/2, 2/2, 2/2) 1/2 pq3 9/10 3/5 29/60 16/35 3/7
(2/2, 2/2, 2/2, 2/2, 2/2) q4 2/5 28/45 3/5 46/105 8/21

 Proceeding as above and using the quantities from Table 3, we compute:

∑ Pr(N0 |M,1) Pr(M) = 2/5 p4 + 27/10 p3q +  155/40 p2q2 + 27/10 pq3 + 2/5 q4,
∑ Pr(N0 |M,2) Pr(M) = 28/45 p4 +  11/5 p3q +  1229/360 p2q2 + 11/5 pq3 +  28/45 q4, 
∑ Pr(N0 |M,3) Pr(M) = 3/5 p4+ 473/240 p3q + 1387/480 p2q2 + 473/240 pq3 + 3/5 q4,   (2.3a)
∑ Pr(N0 |M,4) Pr(M) = 46/105 p4 + 129/70 p3q +  935/336 p2q2 + 129/70 pq3 + 46/105 q4,
∑ Pr(N0 |M,5) Pr(M) =  8/21 p4 + 151/84 p3q +  349/126 p2q2 + 151/84 pq3 + 8/21 q4.

As above, note that

∑ Pr(N0 |M,6) Pr(M) = ∑ Pr(N0 |M,4) Pr(M),
∑ Pr(N0 |M,7) Pr(M) = ∑ Pr(N0 |M,3) Pr(M), (2.3b)
∑ Pr(N0 |M,8) Pr(M) = ∑ Pr(N0 |M,2) Pr(M),
∑ Pr(N0 |M,9) Pr(M) = ∑ Pr(N0 |M,1) Pr(M),
∑ Pr(N0 |M,10) Pr(M) = ∑ Pr(N0 |M,0) Pr(M) = 1.
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These equations are used to compute the detection rate for any randomly
selected genotype quintet from a population in Hardy-Weinberg equilibrium. As in
the case of genotype trios14 and genotype quartets above, the detection rate 1 - β is
symmetric about the line p = 0.5. In Table 4, error-detection rates for various values
of α and p are presented. In Figure 2, error-detection rates for a range of values of α
and p are plotted.

3 Results

In Table 4, error-detection rates for various error rates and allele frequencies when
typing genotype trios (one child), quartets, and quintets are presented. Detection
rates for trios were presented previously14. The main result is that typing additional
siblings increases the detection rate by at least 9%. By computing the average
detection rate for each sampling type (trio, quartet, and quintet), it may be seen that
typing quartets or quintets increases the detection rate on average by 13% or 19%
respectively when one allele frequency is 0.1. For equal allele frequencies, the
change in sampling types increases the detection rate on average by 10% and 14%
respectively.

Table 4. Detection Rate 1 - β for Trios, Quartets and Quintets with various values of true error rate α
and various allele frequencies p at diallelic locus.

Frequency p of  one allele = .1 Frequency p of  one allele = .5
True error rate Trios* Quartets Quintets Trios* Quartets Quintets
.0010 .3032 .4352 .5064 .2501 .3361 .3706
.0050 .3025 .4337 .5045 .2506 .3370 .3718
.0100 .3017 .4319 .5022 .2512 .3380 .3732
.0200 .3001 .4284 .4978 .2525 .3400 .3762
.0500 .2960 .4193 .4856 .2562 .3467 .3859
.1000 .2909 .4081 .4705 .2622 .3586 .4039
.2000 .2862 .4017 .4631 .2732 .3841 .4441
.3000 .2865 .4117 .4825 .2820 .4084 .4830

* see Reference 14, Table 4

This increase in detection rate holds for all error rates and allele frequencies. These
results are displayed in Figures 1 and 2, which plot the detection rates for a range of
true error rates from 1% to 30% and for allele frequencies (one allele) from 0.02 to
0.98. Note that detection rates are symmetric about the plane p = 0.5.

The second result is that, independent of the sampling type, detection rates are
always the lowest when allele frequencies are equal (see Figures 1 and 2). However,
the graphs indicate that the detection rates converge to a common detection rate,
independent of allele frequencies, as the true error increases. This result holds for all
sampling types.

At low error rates, a significant difference is observed between detection rates
for extreme allele frequencies (one allele has frequency ≤ 0.05) and equal allele
frequencies, regardless of the sampling type. To explain this observation, consider
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genotype quartets. When allele frequencies are extreme, then the majority of
quartets sampled will have both parents homozygous for the same allele. Without
loss of generality, let us assume that the 1 allele at a SNP locus has allele frequency
greater than 0.95. Then the majority of the quartets are of the form M = (1/1, 1/1,
1/1, 1/1). When error rates are very low, the majority of quartets with errors will
have only one error introduced. A way to reach this conclusion quantitatively is to
evaluate formula (1a) for small values of α. When i in formula (1a) is greater than
1, the probability is approximately 0. It follows that the detection rate for extreme
allele frequencies and small true error rates is approximately 1 – Pr(N0| M,1) = 1 –
1/2 = 1/2, or 0.50 (Table 2).

By comparison, for the case of equal allele frequencies, all genotype quartets M
appear with probability Pr(M) >> 0 (Table 2). When α is small, the detection rate is
approximately 1 - ∑ Pr(N0 |M,1) Pr(M). Note that Pr(N0 |M,1) > 1/2 for all genotype
quartets M, with the exception of the quartets (1/1, 1/1, 1/1, 1/1) and (2/2, 2/2, 2/2,
2/2), and for the quartet M =  (1/2, 1/2, 1/2, 1/2), Pr(N0 |M,1) = 1, so that in
computing the sum, the detection rate for equal allele frequencies is considerably
less than 0.5. The same reasoning applies for trios and quintets.

4  Discussion

In this article, an analytic solution to SNP error-detection rates in nuclear families is
provided. For quartets (two sibs) or quintets (three sibs), the detection rate is
quantified as a function of the true error rate at a SNP locus in Hardy-Weinberg
equilibrium and the allele frequency of one of the alleles. It is shown in our analysis
that genotyping at least two additional siblings, when available, provides a
considerable improvement in error-detection rates, on the order of 14%-19%. The
authors therefore recommend that researchers who are analyzing SNP data consider
results of these formulas (Table 4) when designing linkage and association studies.

There is an added benefit to genotyping additional siblings, even if
unaffected. Such siblings can provide information for linkage studies. For example,
in studying quantitative phenotypes with a recurrence risk of 75%, Risch and
Zhang15 showed that extreme discordant sib-pairs may provide a significant amount
of linkage information.

In addition, genotyping additional siblings, even if unaffected, is typically
much less expensive than ascertaining an additional family with an affected child.
While it is true that collection of additional families increases power to detect
linkage in the presence of association, allowing errors to go undetected in pedigree
data can reduce power to detect that linkage9, potentially negating the effects of the
additionally ascertained families. Also, errors in data can make statistical tests like
the TDT invalid by increasing the type I error rate16.

It is important to recognize that our formulas calculate the probability that
a family is brought to the researcher’s attention because of inconsistency. Our
method does not suggest the most likely location of the error. Ehm et al.11 presents a
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likelihood method for determining typing errors in pedigree data displaying
consistency, while other authors12, 13 present methods for determining (statistically)
incorrect genotypes in pedigree data displaying inconsistency. These methods are
implemented in freeware programs (see Electronic Database Information).

Regarding ascertainment, we assume that the locus studied is in Hardy-
Weinberg equilibrium. However, for most studies, families are ascertained on the
basis of disease. While it is true that the detection rates for SNP loci in linkage
disequilibrium with a disease locus will differ from the results presented in Table 4,
our recommendations regarding genotyping of additional siblings are still relevant.
As previously shown14, for low error rates there is a theoretical maximum error-
detection rate of 33% when sampling trios, independent of linkage disequilibrium
between marker and locus, ascertainment scheme, or allele frequencies at the
marker locus. This detection rate can be improved only by genotyping additional
siblings, if consistency is used as the sole check for errors.
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Figure 1. Error-Detection Rate for quartets as function of allele frequency and true error rate
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Figure 2. Error-Detection Rate for quintets as function of allele frequency and true error rate
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