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Protein function assignments based on postulated homology as recognized by high sequence
similarity are used routinely in genome analysis. Improvements in sensitivity of sequence
comparison algorithms got to the point, that proteins with previously undetectable sequence
similarity, such as for instance 10-15% of identical residues, sometimes can be classified as
similar. What is the relation between such proteins? Isit possible that they are homologous?
What is the practical significance of detecting such similarities? A simplified analysis of the
relation between sequence similarity and function similarity is presented here for the well-
characterized proteins from the E. coli genome. Using a smple measure of functional
similarity based on E.C. classification of enzymes, it is shown that it correlates well with
sequence similarity measured by statistical significance of the alignment score. Proteins,
similar by this standard, even in cases of low sequence identity, have a much larger chance of
having similar function than the randomly chosen protein pairs. Interesting exceptions to
these rules are discussed.

1 Introduction

Super-sensitive  sequence comparison algorithms, such as PSI-BLAST 1
BLOCKS 2, Hidden Markov Models3 or BASIC4 29, can routinely recognize
similarities between sequences of proteins that most biologists wouldn't easily call
homologous. These and other similar algorithms define specific scoring systems for
evaluating alignments between two protein sequences, and describe the similarity
between two proteins as a statistical significance of their alignment score. With
such tools, some protein pairs or groups are classified as similar, even when the
more straightforward measures of protein sequence similarity, such as the
percentage of identical residues in the alignment, appear random. Algorithms from
this group aim at detecting the similarity between weak sequence patterns, so at least
by design, they try to recognize distantly related proteins. Other algoﬁtﬁms

’ present address: International Institute of Molecular and Cell Biology
ul. Ks. Trojdena 4, 02-109 Warszawa, Poland

1



Pacific Symposium on Biocomputing 5:42-53 (2000)

specifically aim at recognizing possible fold similarity disregarding question of
sequence similarity. Y et another group of programs mixes both approaches 78,

It is not clear what the relation is between proteins that are seen as similar by
such agorithms but fail the more standard tests of sequence similarity. It is
generally accepted that proteins with high sequence similarity are homologous. In
fact, these two very different notions are often treated as virtual synonyms.
However, many proteins, whose similarity is recognized with more sensitive
alignment programs or threading algorithms, challenge this relation. Are proteins
like collicins and globins 9, tenascin and immunoglobulin 10, and many other pairs
and groups of proteins with similar folds but no apparent sequence similarity,
distantly related, with evolutionary distance so large that any traces of sequence
identity was lost, or do they represent examples of convergent structural evolution?
This question is gaining significance, as threading and sensitive sequence
comparison algorithms often provide first annotations for newly sequenced proteins.
Unfortunately, this question is not easy to answer, and conflicting arguments are
often made in similar cases and often remain a matter of taste 11.

Leaving aside the fundamental aspect of this question, there is aso a very
important pragmatic side to it. Many newly sequenced proteins are being tentatively
annotated as being similar to aready known and well-characterized protein
families4 712 and there is a very practical question: what is the importance of
finding such relations between two proteins? Does it help to predict a function of
the new protein if no experimentally determined function is known? High sequence
similarity, synonymous with close homology was used for a long time to annotate
new sequences. Can this approach be used when “twilight zone” (and beyond)
sequence similarity is found? In many examples presented in the literature there are
proteins recognized as similar by the new algorithms with less then 15% of identical
resides. What is the chance that such similarity could be used for function
prediction?

To answer these questions, we compared in a very simplified manner the
functions of proteins from th&. coli genome that are seen as being similar by
BASIC 4 29 algorithm. Very similar results could be obtained with other super-
sensitive sequence comparison algorithms, such as PSI-BLAST or BLOCKS. It
should be stressed that we did not try to use protein function to test the accuracy of a
sequence comparison method. Function similarity is not a very rigorously defined
concept and it would be difficult to use it for calibrating sequence comparison
methods in a manner analogous to structure simil&ﬁt}“.

2. Materials and methods
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2. 1. Sequence comparison algorithm.

BASIC is aprofile-profile alignment program, described previously 415 Thebasic

idea of the algorithm is in the spirit of early profile searches 16, put here two
proteins are compared by calculating the local alignment between two sequence
profiles representing both proteins and their respective homologues. The
significance of sequence similarity between two proteins is described as the
alignment score rescaled by the standard deviation of the distribution of scores for

the entire sequence database # 15, Later in the text we call this rescaled score the Z-

score, but we don’'t make any assumptions about the score distribution being
Gaussian, in fact such rescaling can be done for any distribution with a non-zero
standard deviation. Assuming a specific distribution of scores, it is possible to
recalculate Z-scores to E-values (as used by PSI-BLAST assuming the extreme
value distribution) or p-values (as used by BLAST under the same assumption).
BASIC was validated by calculating sequence similarity (as measured by it's Z-
score) of proteins with similar structures (as measured by structure comparison
programs) but no obvious sequence similarity. On several sets of pﬂoteins
including a new set of 929 protein pa%% it was shown that the highest Z-score
obtained for a pair of proteins with markedly different structures (different structural
classifications in several different structural classifications) was less than 7.0.
Examples of high scoring false positi\il%could be traced to proteins with a small
number of homologous proteins contributing to the profile. New procedure for
profile calculatior?? eliminated these problems, therefore, here we use a Z-score
threshold of 7, to define proteins as being similar. We stress again that while this
level of sequence similarity was verified to correspond to structural similarity,
evolutionary relationships between such “similar” proteins remain unclear.

2. 2. Protein functional classification

The E.C. enzyme classificatid® was developed for enzymes and describes the
chemical reaction catalyzed by the given enzyme. A hierarchical, four level
classification denoted by four numbers, e.g. 1.4.2.29, characterizes every enzyme.
The first number corresponds to one of six general categories of chemical reactions.
The subsequent three numbers correspond to subcategories describing the type of
chemical reaction in increasing detdil.coli offers an ideal system for an analysis,
such as described here, because a substantial fraction of the proteins from this
genome were characterized experimentally. The remaining part was classified based
on close homologies to experimentally characterized proteins from other organisms.

2. 3 Protein functional similarity.
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Within each family of proteins with similar sequences, as identified by the BASIC
Z-score (see above), functional similarity between proteins was expressed as the
number of common roots shared by their functional classification. For example, two
proteins having E.C. numbers 1.2.3.4 and 1.2.5.4 would have functional similarity
(called here E.C. overlap) equa to 2. In case of proteins with incomplete E.C.
classification, only the assigned part of the classification was considered. For
example, two proteins having E.C. numbers 1.2.3.- would have E.C. overlap egual to
3. Thefunctional similarity defined this way can assume values from O to 4.

2. 4. Protein sequence database and comparison procedure

The sequences of E.coli proteins were downloaded from the NCBI site
(http://www.ncbi.nlm.nih.gov/Entrez/). The E.C. classification for E. coli enzymes
was extracted from the SwissProt database 19 (http://www.expasy.ch/sprot/) and
cross-checked against the EcoCyc database 20 1o simplify the analysis and avoid
possible errors, proteins that were assigned more than one classification (e.g.
multidomain proteins involved in different functions) were excluded from the
analysis. Thus 904 proteins from the E. coli genome with E.C. classification
remained for analysis.

A subset of a previous BASIC all-by-all comparison of proteins from the E. coli
genome was used 21, For each of the 904 E. coli proteins, the protein with the best
Z-score and having an E.C. classification was identified in the list of similar proteins
identified by the BASIC program. The al-by-all comparison was then projected
onto the group of E. coli genome proteins with E.C. classification, i.e. only proteins
with E.C. classification were retained. Thus 904 protein pairs were obtained.

3. Results

3. 1. Sequence similarity versus functional similarity

The relation between protein sequence similarity as measured by Z-score of their
alignments versus function similarity, as measured by the E.C. overlap, is shown as
series of histograms in Figurel. The most obvious observation is that the
percentage of proteins with high degree of function similarity grows monatonically
with increasing significance of sequence similarity. These figures can be used to
provide a very rough estimate of probability that two proteins with a given degree of
sequence similarity have similar functions. For instance, if protein A is predicted to
be similar to protein B with the Z-score between 50 and 100, then thereisa 22 %
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Figure 1. Relative numbers of functionaly similar protein pairs for different levels of sequence
similarity. Function similarity is expressed as E.C. overlap (see text) and seguence similarity is
expressed as BASIC Z-score. For each of the E. coli proteins with E.C. classification, the most similar
protein was identified with the BASIC algorithm (see text for details). For the indicated Z-score
intervals, percentages of pairs with different levels of function similarity are shown.
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Figure 2. Relative numbers of functionally similar protein pairs for different levels of seguence
similarity for pairs of low sequence identity: The notations are as in Figure 1, but the analysis is
restricted to 651 pairs with less than 25% sequence identity. The first bar shows function similarity
distribution for corresponding to 408156 random pairs (see text).

probability that proteins A and B have identical functions as described by the E.C.
numbers, and only 9% probability that their functions will be completely different
5
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(see Fig. 1). This should be compared to 1% and 79%, respectively, for a randomly
chosen protein pair (the leftmost bar in the histogram in Figure 1).

Traditionaly, the threshold of 25% of identical resides was used to define the
“twilight zone” of sequence similarity, where homology between proteins is no
longer certain. It is worth noting that a very similar picture to that in Figure 1 is
obtained when the data set is restricted to protein pairs in this region and below (see
Fig. 2). This observation has a very important practical meaning. The threshold of
25 % sequence identity is usually regarded as the limit of easy and unambiguous
homology detection. It is very encouraging, that even below this threshold, the
sequence similarity can be recognized and function similarity can be predicted with
above random probability.
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Figure 3. Absolute numbers of functionally similar protein pairs for different levels of sequence
similarity (expressed as sequence identity). The relation between function and sequence similarity:
function similarity is expressed as E.C. overlap (see text) and sequence similarity is expressed as
percentage of identical residues in the Smith-Waterman alignment. For each of the E. coli proteins with
E.C. classification, the most similar protein was identified with the Smith-Waterman alignment
algorithm, using percentage of sequence identity as a similarity measure (see text for details). For the
indicated sequence identity intervals, the absolute number of pairs with different levels of function
similarity are shown.

3.2. The advantages of using significance measure compared to sequence identity.
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Figure 4. Absolute numbers of functionally similar protein pairs for different levels of sequence
similarity (expressed as Z-score). Data from Figure 1 presented in away analogousto Figure 3.

Using dtatistical significance measures such as Z-score or E-value requires
calculation of an entire distribution of scores for the whole protein database. It
would be more intuitive to use another measure of sequence similarity to evaluate
the similarity of two proteins, such as for instance, the widely used percentage
sequence identity. For comparison, the entire analysis as described above was
repeated using a simple Smith-Waterman alignment between two sequences and
using the percentage of identical residues as a measure of similarity. The Blosum62
substitution matrix was used 22. The results of this, as well as the previous analysis
are presented in Figures 3 and 4. Figure 4 repeats the same data as shown earlier in
Figure 1, but formatted to easily compare to Figure 3. This time, the histograms are
scaled to provide the absolute numbers of proteinsin different similarity regions.

There are several important differences between the results obtained with
identity percentage and the Z-score as sequence similarity measure, as seen from the
comparison of Figures3 and 4, respectively. First, the Z-score based algorithm
recognizes much more similarities between proteins that the % identity based
similarity measure. For the set of 904 proteins used here there are only 300 pairs of
proteins with a percentage of segquence identity larger than 25%, versus 664 pairs
with a Z-score larger than 7. As seen in Figure 3, most of the proteins fall into the
20-25% similarity range. As shown in an independent test, in this range about 50%
of all proteins have different folds. Therefore, using a measure of protein sequence
similarity based on % of identical residues (Figure 3) would lead to the conclusion
that only 30% of al proteins with E.C. classification in E. coli genome have other
similar proteins in the same genome and a magjority does not have any similar
proteins. In contrast, using Z-score based similarity criterion (Figure 4) suggests
that most of the proteins in our set have at least one similar protein, at least in the
sense of having similar structure.
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The second difference is even more interesting. The relation between sequence
similarity expressed as percentage of identical residues and functional similarity
shows a “phase transition”, with a percentage of proteins with some level of function
similarity going from 95% for proteins with sequence identity above 30% to 50% for
protein with 25-30% sequence identity to 25% for proteins with lower sequence
identity. These could create an impression of the qualitative difference between
homologous proteins with very similar functions and all other, unrelated, proteins
with very little function similarity. Using alignment score significance as a measure
of proteins similarity presents a very different picture. According to this picture, in
families of sequentially similar proteins function diverges slowly with decreasing
sequence similarity. The divergence is gradual, with general similarities (such as
described by lower values of E.C. overlap) persisting for much longer than exact
functional identities, such as described by identical E.C. classifications. Even at the
below-threshold similarity level of Z-score between 5 and 7, the percentage of
functionally unrelated proteins (E.C. overlap equal to 0) is only 51%, significantly
lower than the random level of 79% (see Figure 1 and 2).

The superiority of the statistical measure of sequence similarity is most obvious
for the low sequence similarity region, where sequence identity produces much more
false positives in function “prediction” (see Fig 3). For the 20-25% sequence
identity range, which contains almost half of all protein pairs, 66% of the protein
pairs have no function similarity (E.C. overlap 0). The “just below threshold”
similarities as seen by Z-score similarity measure, show similar number of proteins
with different functions, but this group constitutes only 8% of all protein pairs.

3. 3. Dissimilar sequences, similar functions

Two regions in Figures 1-2 are particularly interesting and will be briefly discussed
below. There are protein pairs with high Z-score and no functional similarity, and
on the opposite end of the histogram, there are pairs with low Z-score and
substantial functional similarity.

The first group (e.g. 6% of pairs with Z-score below 5 have E.C. overlap 3) was
recently discussed in detail by Koonin and co-workskslt was described as
consisting of groups of enzymes "invented" independently and groups that have
undergone divergent evolution diluting any traces of common ancestry beyond
recognition, except for similar function and three-dimensional structure.

In the present analysis other factors might have also led to this kind of
relationship between sequence and function similarity. There are, amongst other
reasons, inconsistencies in the E.C. classification (e.g. an E.C. number is sometimes
assigned to all the subunits of an enzyme, although only one subunit actually
performs the catalytic function) and false negatives of the BASIC algorithm. Further
improvements in the prediction algorithms and “cleaning” of the database could
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affect the specific results, but are unlikely to change the general observations made
here.

3.4. Smilar sequences, dissimilar functions

The second group (e.g. 7% of pairs with sequence similarity with Z-score above 100
have E.C. overlap 0) can in principle correspond to extreme cases of divergent
evolution, where proteins that could univocally be classified as homologous do not
show any function similarity. However, these could also be examples of ambiguity
in functional classification or even database misannotation. Functional classification
ambiguity seems to be the reason in most cases of pairs with similar sequences and
dissmilar functions. By ambiguity we mean the inability of one-dimensional
classification to grasp all aspects of protein's function (see also the Discussion
section).

Enzymes undergoing divergent evolution have several characteristics and may
change some of them while keeping others constant. Possible constraints are
substrate and cofactor binding sites and active sites determining chemical
mechanism of the reaction catalyzed by the enzyme. Enzymes with the same
cofactors or substrates may often have completely different functional classifications
while enzymes with similar active sites but changed substrate specificity may have
similar functional classifications.

However, even enzymes having the same substrates and using the same active
sites but acting in different pathways may have completely different functional
classifications. Also, very similar enzyme subunits may occur in different
complexes, being similar parts of different machinery. In such cases, we observe not
divergent molecular evolution, rather divergent cellular context.

As an example, ENTC ECOLI and PABB_ECOLI (Z-score 99, segquence
identity 21 %) both use the same substrate: chorismate, and share the chorismate
binding domain, but one is classified as isomerase (E.C. classification 5.4.99.6), and
the other - aslyase (E.C. 4.1.3.-) PABB is part of a complex, and one of itsrolesis
chorismate binding. GLGB_ECOLI and GLGX_ECOLI (Z-score 80, segquence
identity 24 %) both use glycogen as substrate and have the same active sites. one
enzyme is classified as a glycogen branching transglucosidase (2.4.1.18), the other -
hydrolase (3.2.1.-).

GOAG_ECOLI (aminotransferase, E.C. 2.6.1.19) and GSA_ECOLI (glutamate-
1-semialdehyde aminomutase, E.C. 5.4.3.8) have a Z-score 76 and sequence identity
27 %. These proteins have both a pyridoxa phosphate (PLP) cofactor and belong to
PLP-dependent aminotransferases. POXB_ECOLI (pyruvate dehydrogenase, E.C.
1.2.22) and ILVB_ECOLI (acetolactate synthase, 4.1.3.18), Z-score 107 and
seguence identity 28 %, have both a thiamine pyrophosphate cofactor.

9
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These few cases (however blurring the sequence - function relationship
discussed in this contribution) on one hand show the inevitable shortcomings of any
one-dimensional functional classification, and on the other hand exemplify the
multi-constraint aspect of enzyme evolution. Classifications of the E.C. type are
likely to reflect the chemical mechanism/active site constraint, but not the substrate
or cofactor constraint. These examples also show the importance of expert analysis
of any automatic function assignment deduced from sequence similarity.

4. Discussion

The question of function similarity between proteins is very complex. Apart from
the obvious cases of identical function of closely homologous proteins in different
organisms, it is not easy to propose a quantitative measure of function similarity.
Because protein function is such a complex notion involving biochemica activity,
the role in the functioning of the entire organisms, etc., any one-dimensional
classifications grasp only one of its many aspects 24 Here we use function
classifications emphasizing biochemical activity, thus two proteins from different
metabolic pathways would be classified as similar, if the chemical reaction they
catalyze is similar. However, using another classification based on the function of
the protein in the entire organism S instead of E.C. leads to very similar results
(data not shown).

The approach to the functional classifications as presented here may be
regarded by a biologist as over-simplified and naive. One problem is that the
identity of E.C. values may have different meanings in different branches of the
classification. For instance, there is much more functional variation between three
E. coli DNA polymerases, E.C. 6.4.1.2, than between two superoxide dismutases,
E.C. 1.15.11.5. In other words, difference in E.C. is not proportional to the
evolutionary distance between two enzymes. Another difficulty arising in automated
treatment of functional classifications is, on one hand, the presence of multienzyme
complexes, and, on the other hand multidomain proteins with different domains
performing different functions. In multienzyme complexes, several different
subunits are labeled with one common functional annotation. In multidomain
proteins or multi-purpose enzymes, we may have thus several different functional
annotations for one polypeptide chain. While such a critique is correct, we still
believe that there is a practical need for a quantitative comparison of the functional
classifications of different proteins and despite all the pitfalls, an approach such as
this provides interesting insights into relations between proteins.

The practical conclusions of this study are encouraging for automated function
prediction based on sequence similarity to proteins of known functions. Leaving
aside the question whether proteins seen as similar by super-sensitive sequence
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comparison methods are homologous or not, we have shown that the significance of
the sequence similarity correlates well with the function similarity. Existence of
even a very weak sequence similarity between two proteins increases the chance of
them having similar function several times.

It should be also stressed that the analysis presented here is more restrictive than
real-life situations. Here, we analysed the function conservation alongside with
sequence conservation within one genome. In principle, two most similar proteins
from two different genomes (if they are related) are likely to be orthologous, whilst
within one genome they will be, at best, paralogous. Two paralogues are much more
likely to have evolved some divergence in their function. In a rea prediction
situation, proteins from a newly sequenced genome would be compared to the
sequence database of all known proteins. Within such a dataset a given level of
sequence similarity should in principle correspond to a higher level of function
similarity than within a single genome. Therefore, it can be expected that the rough
estimates for sequence-function relationships shown here are in fact lower-bound
estimates.

Altogether, the results presented in this paper clearly show that recognition of
even remote sequence similarity greatly increases chances for the two proteins
having similar or related function. Next step of function prediction, such as analysis
of active site residue conservation 26, can increase the prediction accuracy even
further.

4. 1. Biological implications

The very obvious and widespread practice of function assignment based on sequence
similarity is analysed here with special attention given to cases of low sequence

similarity. It is shown that even in this “twilight zone” while using appropriate

similarity measures one can make reasonable function predictions.

The results presented here touch upon an interesting point — much of general
function predictions can be made without any reference to the three-dimensional
structure. It has been reported recently that no clear correspondence between
enzyme and fold classes can be establifediowever, in another recent paper

preferences of some folds for some functions have been obs&tved

The approach described here also has another dimension. Establishing the
correspondence between weak sequence similarity and function could be invaluable
in attempts to “reduce” organisms to a set of basic ancient genes responsible for the

most basic functions.
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