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This paper describes a uni�ed framework for visualizing the preparations for, and

results of, hundreds of machine learning experiments. These experiments were

designed to improve the accuracy of enzyme functional predictions from sequence,

and in many cases were successful. Our system provides graphical user inter-

faces for de�ning and exploring training datasets and various representational

alternatives, for inspecting the hypotheses induced by various types of learning

algorithms, for visualizing the global results, and for inspecting in detail results

for speci�c training sets (functions) and examples (proteins). The visualization

tools serve as a navigational aid through a large amount of sequence data and

induced knowledge. They provided signi�cant help in understanding both the sig-

ni�cance and the underlying biological explanations of our successes and failures.

Using these visualizations it was possible to eÆciently identify weaknesses of the

modular sequence representations and induction algorithms which suggest better

learning strategies. The context in which our data mining visualization toolkit was

developed was the problem of accurately predicting enzyme function from protein

sequence data. Previous work 9 demonstrated that approximately 6% of enzyme

protein sequences are likely to be assigned incorrect functions on the basis of se-

quence similarity alone. In order to test the hypothesis that more detailed sequence

analysis using machine learning techniques and modular domain representations

could address many of these failures, we designed a series of more than 250 ex-

periments using information-theoretic decision tree induction and naive Bayesian

learning on local sequence domain representations of problematic enzyme function

classes. In more than half of these cases, our methods were able to perfectly dis-

criminate among various possible functions of similar sequences 10. We developed

and tested our visualization techniques on this application.

1 Introduction

The application of machine learning techniques (such as neural networks, hid-
den Markov modeling and information theoretic approaches) to molecular data
has been growing in scope and signi�cance. As such projects get more complex,
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visualization tools become more important in helping researchers and others
manage the data mining process and interpret the results. In this paper, we
describe a set of tools for facilitating a data mining project which consisted of
a large number of related machine learning problems. Although data mining
promises automated inference, much of the work in creating a successful data
mining applications involves data set selection, representational choice, and
interpretation of the results, which are labor-intensive tasks. Our visualization
tools focus on helping people with these aspects of data mining projects.

1.1 Background: Visualization for Large-scale Data Mining

Many of the commercial data mining tools used with most success in molecular
biology applications (e.g. SGI's MineSet product) contain extensive toolkits
for visualizing data. In many cases, these tools make it possible for human
visual pattern recognition abilities to identify important regularities in the
data, without any further processing. These tools also make it possible to
visualize the results of the application of a particular induction technique to
a particular data set, e.g. viewing a complex decision tree. However, it is not
easy to use these tools to set up, monitor and globally analyze a large number
of related machine learning experiments. We found ourselves confronting just
such a situation when attempting to apply machine learning techniques to
improve the quality of enzyme function prediction from sequence.

Sequence comparison methods are widely used for predicting protein func-
tion; however, a systematic study of these methods shows approximately 6%
of sequences are more similar to proteins with di�erent functions a than they
are to at least some proteins with the same function 9. These errors are due
to a variety of factors, including biologically signi�cant ones such as homolo-
gy restricted to certain enzymatic subunits and functional di�erences due to
modest sequence variations (e.g. in active sites). In recent work, we were able
to improve performance in many cases using a machine learning method for
discriminating between functionally di�erent proteins with similar sequences
11. That work demonstrated the value of automated machine learning methods
in a large scale study involving more than 250 functionally de�ned datasets
containing more than 3000 proteins. Designing, managing and understanding
the results of such a large-scale e�ort was greatly aided by the use of a visually-
driven user interface for navigating through the many choices that needed to
be made and visualizing their results.

aWe used the Enzyme Commission (EC) classi�cation as a gold standard for protein

function. We recognize that this classi�cation is awed in various ways, but because of its

breadth and the dearth of reasonable alternatives, we feel it is appropriate to use it for this

study.
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1.2 Strategy

The design and development of the user interface and visualization tools were
driven by two factors: our top-down understanding of the complete data mining
process as including a variety of both manual and automated tasks, and by
the particular bottom-up demands of our application problem.

Designing e�ective machine learning experiments requires a variety of steps
other than the automated induction itself 5. Two of the most important are
de�ning training sets and selecting representations for the data. Theoreti-
cal limits on inductive accuracy arise from the interaction of the size of the
hypothesis space (a function of representational complexity) and the amount of
training data available 4;3. Therefore, the selection of an appropriate represen-
tation depends not only on expert knowledge about the application domain,
but also on the amount of training data available for inference. Since the
universe of possible representations is diÆcult to de�ne, and since automat-
ing choices among representations increases the e�ective size of the hypothesis
space, human expertise is extremely valuable in this task. However, it can
be diÆcult for people to get a sense of the rami�cations of various possible
representational choices confronting them. One of the goals in the design of
our system was to make representations visually intuitive, so that people could
rapidly assess the implications of alternatives, and easily see how a represen-
tation interacted with a particular training set.

A second general goal in the design of the system was to make it easy
for people analyzing the results of all of these experiments to rapidly draw
biologically meaningful conclusions. We designed the visualization system to
easily move from global summaries to the detailed results we thought would
be most signi�cant for assessing the biological meaning of the results. For
example, we wanted to be able to select particularly diÆcult enzyme functional
classes, select from them the particularly diÆcult examples, and then compare
the domain and sequence structures of those proteins.

Finally, we wanted to make design responsive to unexpected analytical and
visualization needs that arose during the course of the project. Through the
use of object-oriented design, careful de�nitions of the initial data types and
the use of re-usable graphics libraries, we were able to rapidly generate new
tools as soon as we discovered the need for them.

2 Methods

In order to explain the details of the visualization techniques, we must �rst
summarize the data mining experiments. A more detailed description of the
data mining methods and results can be found in our earlier work 8.
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(i) conserved modules (ii) representation

1        1        1        1        0       0

1        1        1        1        0       0
1        1        1        1        0       0
1        1        1        0        1       0
1        1        1        0        1       1
1        1        1        1        0       0

a        b        c         d        e       b’

1        1        1        0        1       0

Figure 1: Representing protein sequences on conserved modules. (i) A set of (hypothetical)

homologous proteins with conserved modules shown as boxes. There are a total of �ve

modules: a,b,c,d and e. (ii) A representation of the proteins on the basis of the modular

attributes. Each protein is shown as a vector of attribute values.

2.1 De�ning Training Sets

Our universe of sequences was de�ned by taking all of the sequences from
SwissProt release 33 1 that were labeled with an Enzyme Commission (EC)
classi�cation from Enzyme release 212, resulting in the set of 15,208 SwissProt
proteins (out of 52,205 total) which are labeled with one of 1,327 EC classes.

Not all proteins in an EC class must be homologous with each other.
Non-homologous subgroups within EC classes may arise due to di�erent evo-
lutionary origins of multiple domain enzymes' subunits, convergent evolution
of proteins catalyzing a particular reaction, or by vague or generalized reac-
tion de�nitions by the EC. Since in this study we were concerned with detect-
ing proteins with similar sequences but divergent functions, we controlled for
the presence of non-homologous proteins in EC classes by subdividing the EC
classes into putatively homologous subgroups (which we call simgroups) on the
basis of sequence similarity. All members of a simgroup have the same (EC)
function and similar sequences. Even using simgroups instead of EC classes,
sequence similarity is not, in general, enough to establish function. Nearly 40%
of simgroups have at least one member that is more similar to an enzyme with
a di�erent function than it is to some other member of the simgroup. Setting
a lower bound on the size of a simgroup to avoid sampling e�ects, we found
251 simgroups with at least 10 members that could not be perfectly identi-
�ed on the basis of sequence similarity alone. These problematic simgroups
were each used to create training data for 251 machine learning experiments.
The members of each simgroup were de�ned to be positive examples for a
particular experiment, and the union of all proteins in our universe that had
signi�cant sequence similarity to one or more members of the group, but were
not themselves members were de�ned to be negative examples.
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2.2 Representing Proteins

Homologous proteins with divergent functions may exhibit di�erences at many
levels of description, ranging from point mutations (say, in an active site) to
large-scale rearrangements. However, there is an inherent trade-o� between the
expressive power of a representation (and, therefore, the size of the hypothesis
space searched by a learning method using it) and the amount of training
data required to induce a particular relationship. Given the modest number of
training examples available in most functional classes, we are constrained to
select a representation which has modest expressive power. Based on modular
theories of protein evolution, and on our observations in the systematic study,
we decided to test if the presence and arrangement of conserved subregions
of sequence (\domains") could be used to discriminate among functions. Al-
though using a multiple sequence alignment to identify di�erences at the level
of individual amino acids might be desirable, there are far too many di�erences
at this level of description for e�ective induction.

The ProDom database 13 is one attempt to systematically de�ne protein
domains, done on the basis of local sequence alignments within a large set of
sequences. We used our visualization tools to explore it and other possible
domain de�nitions (e.g. P-Fam 12). We judged the larger number of ProDom
domains per protein, although possibly more fragmented and less correlated
with structure than P-Fam domains, provided an advantage for the machine
learning tools, so we selected ProDom for this project.

Since all of our training sets consisted entirely of sequence-similar proteins,
we were able to de�ne a simple attribute vector identifying the presence or
absence of all domains that are observed anywhere in the training set (see
�gure 1). We adopted this vector as our representation.

2.3 Induction

Choice of induction method (e.g. neural networks vs. decision tree induc-
tion) can make a di�erence in the outcome of a machine learning experiment.
We wanted to evaluate the contribution that selection of induction method
might make to our task, but we also wanted to avoid lots of redundant learn-
ing experiments on hundreds of datasets. We selected two learning methods,
information-theoretic decision tree induction as implemented in C4.5 7, and
our own implementation of naive Bayes, assuming that each element of the
representation is statistically independent 6. Although many other supervised
induction methods exist (e.g. arti�cial neural networks), these two methods
represent quite di�erent approaches, so that if there were going to be a sig-
ni�cant di�erence in performance attributable to induction method, it would
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likely have appeared among these two methods. Some unpublished preliminary
data suggests that neural networks would perform at about the same level as
these two methods, and would have taken at least an order of magnitude longer
to train.

2.4 Visualization methods

We used perl5 and perl/Tk for rapid prototyping and implementation of our vi-
sualization system. These free public tools, used on a Pentium II class machine
running the Linux operating system, provided an inexpensive and powerful de-
velopment environment.

The component objects of the graphical interfaces were based on the under-
lying data model for the data sets, their modular representations and induced
hypotheses. The data model captures the relevant information in the data
sets and hypotheses for discriminating between proteins by function. The data
sets contain protein instances with similar sequences yet possessing di�erent
catalytic functions. We treat protein instances as complex entities which have
a number of attributes, including the sequence of IUPAC codes for amino acids
and the function or functions, represented as a list of valid EC class numbers.
Protein examples also have other attributes like name, comments, references,
a biological feature table, a list of homologous proteins and their sequence
similarity scores and a list of the ProDom modules which occur in the protein.
All proteins are uniquely identi�ed using SwissProt conventions.

More complex structures, such as binary feature vectors, are built by �l-
tering and combining information from these instances. Also included in the
data model are representations of probabilistic estimators and decision trees,
which are used for visualizing the inductive results.

3 Visualization Tools

The graphical user interfaces (GUIs) represent di�erent views of the underlying
data model which allow interactive navigation through the data. The user
interfaces conform to a simple and consistent layout of visual components which
facilitates ease of learning and use. We describe the visualization tools in the
following sections.

3.1 Data sets

The data sets are browsed using the Data Set Viewer. This viewer allows the
user to browse a sorted list of available data sets which satisfy a number of
criteria. The columns contain the EC number of the data set, the description
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Figure 2: Visualizing protein modules. The �gure shows the interface for visualizing modular

representations of protein examples in a data set. Protein sequence examples are represented

as black lines on which ProDom modules are shown as colored rectangles. The catalytic class

of each example is shown on the right hand side: positive characters signify instances with

the same function while negative examples are shown with negative marks (-). In this �gure

the vertical position signi�es similarity with instances of the simgroup. See the text for

details.

of catalytic activity, the numbers of positive and negative instances, and the
predictive accuracy of learning algorithms. Criteria for selecting data sets
are speci�ed in the entries in the toolbar. Currently, it is possible to specify
the minimum number of positive examples, the induction algorithm, and the
output format. The datasets displayed in this view are active. Selecting one
takes the user to an interface for visualizing a set of instances, described below.

3.2 Modular representation of proteins

This interface is aimed at emphasizing modular protein sequence representa-
tions, protein functional classes and sequence similarity relationships in a data
set (see �gure 2). In the visualization protein sequence instances are listed
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vertically and represented schematically by straight lines whose length is pro-
portional to the number of amino acids. Conserved ProDom modules for each
instance are superimposed on the sequence schematic as colored rectangles.
Modules with the same ProDom identity are �lled with the same color making
it easy to visualize conserved regions. All examples are also labeled with EC
classes to clearly identify their function; examples with the same function as
the selected data set are labeled with a +, and those from a di�erent functional
group are labelled {.

It is possible to vertically arrange the sequences in two possible ways. The
�rst arrangement organizes instances by simgroups which emphasizes the con-
served sequence modules in each simgroup. In the second arrangement (shown
in �gure 2) instances are arranged vertically in descending order of similarity
with the positive examples. From the second visualization it is possible to see
whether sequence similarity alone can accurately distinguish between function-
ally di�erent homologs. Furthermore, it also possible to see whether modular
representations of protein sequences improve predictive accuracy.

The visual representations of a data set support a number of user inter-
actions. First, mouse traversal across any item loads its properties in the
statusbar. At present these properties include the SwissProt identi�er for the
protein sequence, the ProDom identi�er for the module under focus, and the
EC class label for the protein. The second form of interaction involves the
selection of an instance which leads to an interface containing a more detailed
description of a protein sequence. The third and �nal form of interaction ad-
vances the user a step along the data mining process to show the feature vector
representations of instances.

3.3 Feature Vectors

The feature vector viewer (�gure 3 (a)) presents an alternative visualization
of the modular descriptions of sequences in a data set. While the modes for
organizing sequence instances and interaction are quite similar to the interface
for modular arrangements (�gure 2), this window presents a visualization for
the sequence instances as feature vectors as shown in �gure 1. The data set is
organized as a table in which the rows correspond to instances (labeled with
SwissProt ID and EC class) and the columns stand for individual features.
The absence or presence of a ProDom module in a protein sequence is signi�ed
with a black or a white square, respectively. The visual regularity in this
display facilitates human pattern recognition, making visual analysis of a data
set easier. This view is capable of accommodating multiple representations
of the sequence data through an "options" menu. We used this capability to
quickly and easily compare alternative representational schemes on a variety
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of easy and diÆcult data sets, helping us make an appropriate representational
choice.

After mapping instances in data sets to feature vectors the next step is
induction of predictive hypotheses. The GUI allows users to retrieve previ-
ously computed results, to execute the two available learning techniques on
a prede�ned data set, or to interactively select training and testing instances
and then execute either of the learners. The resulting induced hypotheses are
presented in interfaces specialized for each learner, described below.

3.4 Naive Bayesian learner

The naive Bayesian learner shows a visualization of the posterior probabilities
as computed from the training data (�gure 3 (b)). The a posteriori proba-
bilities for the feature values and classes, given the training data, are present
in a table: columns represent feature values and rows classes. The �rst row
shows the di�erent modules used in the representation as rectangles of distinct
colors and the second row shows the allowed values for the modular features.
In our simple representation we consider only binary feature values, signify-
ing the absence or presence of modules. These two values are shown as white
and black squares below each module. The positive and negative classes are
shown in the third and fourth rows respectively. Each cell is a rectangle whose
height is proportional to the conditional probability of occurrence of a feature
value given for a given class. Marginal probabilities for the occurrence of fea-
ture values and classes are given in the last row on the bottom and the last
column on the right, respectively. Scrolling below the probabilities one �nds
a performance summary of the naive Bayesian learner in terms of sensitivity,
speci�city and accuracy (�gure 3(b)).

3.5 Decision tree learner

The decision tree learner interface is quite similar in appearance to the naive
Bayesian learner (�gure 3(c)). It di�ers mainly in the representation of the
predictive hypothesis which has the form of a tree.

These visualization methods make it possible to rapidly analyze the in-
duction results for biological signi�cance. In our application, we were able
to scan the 251 results �les for interesting examples spending only a few
minutes on each dataset. Several interesting examples are described below,
with visualizations.

4 Examples

4.1 Zinc-containing alcohol dehydrogenases

Zinc-containing alcohol dehydrogenases (Zn-ADH, EC 1.1.1.1(2)) are the sec-
ond largest simgroup in EC 1.1.1.1 and are homologous with a number of
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(a)

(c)
(b)

(d)

Figure 3: Zinc-containing alcohol dehydrogenases EC 1.1.1.1(2). (a) Feature vectors from

modular representation of protein sequence examples. A tabular arrangement is used for

representing the data set. Each instance is represented as a row: �rst column from the left

contains the SwissProt identi�er of the instance, the second last column contains a positive

or negative character signifying function, and the last column shows the EC number. The

remaining columns represent the feature vector. Each column stands for a distinct module:

the presence of a module is shown by a black square and the absence by a white one. (b)

Naive Bayesian (NB) learner visualization shows joint and marginal probabilities computed

over a training data set from alcohol dehydrogenase. (c) Visualization of the decision tree

induced by using C4.5. (d) Performance summary of NB learner. The learning accuracy of

a hypothesis is summarized in terms of the sensitivity, speci�city and accuracy. Also given

are the instances which are incorrectly classi�ed by the hypothesis.

other enzymes in EC 1.1.1. Visualizing the data set using the modular repre-
sentation viewer we found a number of homologues with functions which are
quite similar: glutathione-dependent fomaldehyde dehydrogenase (EC 1.2.1.1),
cinnamyl-alcohol dehydrogenase (EC 1.1.1.195), sorbitol dehydrogenase (EC
1.1.1.14); and the more functionally distant quinone oxidoreductase (EC 1.6.5.5).
From the visualization it can be seen that ProDom modules 49 and 43 are con-
served in almost all homologues. Scanning through the protein sequence fea-
ture visualizations we �nd that the sequence location of module 49 corresponds
to the binding site for the catalytic Zinc ion. The false positive matches from
sequence similarity are also found to have the same modular representations
which can be seen clearly from the feature vector visualization. In this case

Pacific Symposium on Biocomputing 5:275-287 (2000) 



(a) (b)

(c)

Figure 4: Visualizations for EC 1.10.2.2.3. (a) Feature vectors of modular representations.

(b) Naive Bayesian posterior probabilities (c) Decision tree.

modular representations are inadequate for discriminating between function-
ally distinct homologs. This is con�rmed by the naive Bayesian and decision
tree learners which have less than ideal performance scores of 0.97 and 0.98,
respectively.

4.2 Ubiquinol-cytochrome reductase

Ubiquinol-cytochrome C reductase (EC 1.10.2.2) is an enzyme complex which
participates in the mitochondrial electron transport chain. We found seven
simgroups in EC 1.10.2.2 which correspond to the di�erent subunits in the
complex. Instances of simgroup EC 1.10.2.2(3) consist of Rieske iron-sulfur
proteins (RISP) which have homology with subunits of the cytochrome B6-F
complex (EC 1.10.99.1). Modular representations of these proteins completely
discriminate between all instances of RISP in EC 1.10.2.2 and other homo-
logues using either of the methods (�gure 4).

4.3 L-Lactate dehydrogenase

The L-Lactate dehydrogenase (EC 1.1.1.27(1)), malate dehydrogenases (EC
1.1.1.37(1) and EC 1.1.1.82(1)) are homologous and their modular representa-
tions exhibit a great deal of similarity.

Through visualization of conserved modules and inspection of protein se-
quence features we �nd a common conserved region of around 120 residues
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(c)

(b)(a)

Figure 5: Visualization of the (a) feature vectors (b) decision tree, and (c) naive Bayesian

probabilities for EC 1.1.1.27(1)

(ProDom module 139) which contains the proton-relay active site and the car-
boxyl substrate binding residue. The remainder of the sequence regions do not
exhibit a great deal of similarity. There are two false positive matches which
cannot be discriminated on the basis of conserved modules. One of these in-
stances has only been assigned a partial EC class of EC 1.1.1 and may be a
true positive and the other is an archaebacterial malate dehydrogenase. Since
we were not sure about the functional identity of the instance with a partial
EC class we recomputed the learning accuracy after interactively removing it
from the data set and measured a small increase in performance.

5 Conclusions

This project demonstrated that visualization is useful not only as a way for
people to use their pattern recognition abilities on raw data, but also to help
guide a large-scale data mining experiment and interpret its results. We were
able to rapidly evaluate di�erent representational options, try various ap-
proaches to de�ning our datasets, and to make biological interpretations of
the inductive results.

The tools are object-oriented which makes them extensible to allow addi-
tional functionality in the form of representation spaces and learning algorithms;
the visualizations of the feature vectors and learners are generic and can be
easily reused in di�erent machine learning problems. We are also implementing
modules that will allow users to import their own data sets from structured
text �les and database management systems.
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We informally estimate that the use of visualization tools saved us hun-
dreds of hours in the design, execution and analysis of these experiments.
Given the ease of applying generic visualization tools and of integrating cus-
tom tools into generic frameworks, we believe visualization methods such as
ours can be used to create and interpret ever larger and more ambitious data
mining projects.
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