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Combinatorial library design is by nature a multicriterion problem. These criteria often include reagent
diversity, product similarity to lead compounds and product novelty with respect to a corporate compound
bank. More recently, developability and druglikeness have also attracted much attention in library design
practices. To address this multicriterion design problem, we have developed a computer program
(PICCOLO) that simultaneously optimizes all the factors under consideration using a weighted sum
optimization technique. In this paper, we describe the overall design of this program and the formulation
of individual penalty functions that characterize the underlying design criteria. We also give an example
to illustrate the process and the result of a library design using this program.

1. Introduction

Combinatorial library synthesis has evolved from what was initially described as a
shotgun approach to a recent one often based on computational planning. Early
computational technologies of library design can be classified as one of two major
types, diverse and targeted. In diverse design, one tries to select a subset of reagents
that (a) are as representative as possible of the full reagent set, and (b) ensure the
novelty of the resulting library with respect to the corporate compound bank. The
former is the diversity analysis problem and the latter is the hole-filling problem.
Many authors have employed clustering technologies,1,2 direct optimization
techniques3,4,5,6 and cell-based approaches7 to diversity analysis while the hole-filling
problem has best been addressed by cell based methods. Several groups have also
advocated pharmacophore diversity in compound selection.8 Several reviews have
appeared recently on the topic of library design and diversity analysis.9,10,8,11

In targeted design, on the other hand, one tries to select reagents so that a higher
percentage of library compounds satisfies a predefined objective. The objective
functions are often similarity of library compounds to lead molecules,12,13 activities
predicted using a pre-constructed QSAR model14 or shape complementarity to a
receptor binding site.15

The early computational techniques have separately addressed either diversity or
probability for binding, and achieved their respective goals. Whether combinatorial
libraries are being synthesized for lead finding or for lead optimization purposes,
ultimately developable druglike compounds are being sought. Therefore, criteria
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other than diversity and likelihood of binding should also be considered. Most
notably, developability parameters are becoming more and more important in the
practice of drug design.16 Empirical rules regarding developability have been
proposed with the most frequently cited being the "rules of 5" suggested by
Lipinski.17 A related topic, druglikeness, has attracted the interests of many and has
led to several publications.18,19 These factors and ultimately, compound solubility,
membrane permeability and cytochrome P450 activities have to be considered
together in comprehensive library design practice. Furthermore, when a mixture is
being synthesized, mass spectroscopic redundancy becomes important for efficient
deconvolution.

Since many factors need to be considered in combinatorial library design, we have
taken a multicriterion optimization approach to this problem. Our method
simultaneously optimizes important factors that include similarity to lead molecules,
reagent diversity, product novelty, Lipinski parameters, mass redundancy and
reagent prices. The list of factors is being expanded to include cytochrome P450
activity classifiers, permeability models, solubility predictors as well as other ADME
models being developed in our group. Some authors have taken similar approaches
to library design problems,20,21,22 but to our knowledge, our program is the most
comprehensive integrated tool that allows chemists to conduct their own
computational experiments. We have named this program PICCOLO, which stands
for reagent PICking by COmbinatorial Library Optimization.

In this paper, we first define the problem and the scope of this work and then discuss
the overall design of this computational tool. We then detail the individual penalty
functions. Finally, a simple example is given to illustrate the process as well as the
result of a typical PICCOLO library design.

2. Problem Definition and Scope

Most combinatorial chemical libraries can be represented as a template and a set of
R-groups (Ri, where i = 1 to Nr) and Nr is the number of substituents, which is
usually between 1 and 4. The template may have up to Nr attachment points. The R-
groups are usually attached to the template and can be bonded to each other. The
template can be null, in which case the R-groups must be bonded to each other.

Let Ni be the number of reagents that are available for an R group Ri. Then the
number of compounds that could be synthesized or enumerated is:
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For instance, one billion compounds could be synthesized in a combinatorial fashion
when 1000 reagents are available for each reagent list in a three-R-group case. This
is much more than one would like to synthesize. Rather, a smaller library is usually
synthesized by selecting a subset of Ki reagents for each R group (Ki … Ni).
Therefore, the problem becomes which Ki out of Ni reagents should be selected in
order to get the best library. As mentioned in the first section, library design is a
multi-objective optimization problem. This nature of library design entails the
formulation of a goodness criterion (or a penalty function) that combines the penalty
scores for all the objectives under consideration. This will be detailed in Section 4.

One can select {Ki} reagents and synthesize a library in a full combinatorial fashion,
(i.e., each reagent is combined with every other) in which case a full combinatorial
library design is needed. The {Ki} are usually specified according to the requirement
of a particular project, but they can be determined using an algorithm to optimize the
"library shape". Libraries can also be generated in a non-combinatorial fashion,
which requires a partial combinatorial design or a "cherry picking" design. Here we
limit the scope of this paper to address only full combinatorial library design when
{Ki} are specified. The shape optimization and partial combinatorial optimization
problems will be addressed elsewhere in subsequent papers.

3. Overall Design of the Algorithm

There are many ways of choosing Ki out of Ni reagents to make combinatorial
libraries, and each of these ways is a potential solution to the library design problem.
The number of all possible solutions for a full combinatorial library design is given
by:
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That is the product of the numbers of all the combinations for choosing Ki from Ni
over all the R groups. For instance, there are 1.54*1062 potential solutions when one
is selecting 20 reagents out of 100 for every R group position for a 3-R-group
library. The size of the solution space becomes even larger when more reagents are
available. The discrete and combinatorial nature of the problem entails the use of an
algorithm that can sample the solution space efficiently to find the global or near-
global optimal solutions. Simulated annealing (SA)23 is known to be such an
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algorithm and has been employed in this work. Other stochastic algorithms such as
genetic algorithms (GA)24 and Taboo search25 can also be applied.

Let E(S) represent the penalty score of a solution S. Let t0, r0, µ be the initial
temperature, number of iterations in an annealing series, and temperature reducing
factor, respectively. The general framework of the SA algorithm can then be
described as follows.
1. Generate an initial solution (S0) randomly and calculate E(S0).
2. Set t = t0, r = r0 and flag = FALSE. Set also current solution Sc = S0, the best

solution Sb = S0, E(Sc) = E(S0), and E(Sb) = E(S0).
3. Generate a trial solution St by perturbing the current solution Sc. Calculate ∆E =

E(St) – E(Sc). If  ∆E … 0, then execute step 5; otherwise execute step 4.
4. Compute P = exp(-∆E/t) and compare it with a random value y from a uniform

distribution in [0,1]. If y  P, then execute step 6; otherwise execute step 5.
5. Set Sc = St. If E(St) < E(Sb), then set Sb = St. If  ∆E < 0, then set flag = TRUE.
6. Set r = r - 1. If r > 0, then return to step 3.
7. If flag is TRUE, then set flag = FALSE, r = r0, t = µ t and repeat step 3;

otherwise, stop with Sb as the best solution obtained.
Two of the most important aspects of our program are the formulation of the penalty
function and the perturbation scheme used to generate the trial solutions during
simulated annealing. These are explained in detail in the following section.

4. Computational Details

4.1. Virtual Library File (RG File)
We have adopted the RG file format26 as the representation of virtual libraries for
input to PICCOLO. This format allows the encoding of templates and R group
members as connection tables, along with attachment point information. R group
members may be attached to the template or to each other with one or more
attachments. The template may be null leading to considerable representational
freedom.

4.2. Perturbation method
We consider three aspects of the sampling task in this application.  1) The choice of
which R group to be sampled on a given iteration; 2) The choice of reagent to be
picked from the reagent pools; 3) The choice of reagent to be ejected from the
current library solution.  The first sampling question is addressed by considering the
relative number of reagents used in each R group, as well as the size of the reagent
pool for each R group. The R groups are sampled randomly with probability
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determined by the average of the ratios of the size of a pool Ni to the total number of
reagents in all pools and the number of selected reagents Ki to the total number of
selected reagents. This empirical rule biases the sampling toward the R groups that
need more sampling, while still ensuring that each R group is sampled reasonably.
The second sampling decision is handled by a uniform random sampling approach.
The reagent pool is randomized at the start of the optimization, with reagents
selected in order. After the pool has been fully sampled, the sampling begins again
from the start of the list. This sampling method is more efficient than a purely
random approach, and converges faster. Finally, the reagent that is ejected from the
chosen R group of the library is selected purely at random.

4.3. Enumeration of Molecules for a Given Solution
Molecular structures of library compounds need to be enumerated to calculate each
individual penalty score for a solution. For the initial solution (S0) in a SA
optimization, all molecules have to be enumerated and their properties calculated.
However, not all compounds of a perturbed solution are different from those of the
previous one. To improve the computational efficiency, molecular features and other
properties of all the molecules of a solution are stored in an internal data structure.
When a trial solution (St) is being generated from a current solution (Sc), all the
features and other parameters of Sc are copied into St. When St is then perturbed (Cf.
Section 4.2), only the structures of new compounds are enumerated and their
parameters are calculated.

4.4. Objective Function
Our current objective function contains terms related to Diversity, Developability,
Focussing, and Practicality. There are two diversity terms: The first, Reagent
Diversity, describes the degree of self-similarity among the reagents at each position.
The second term, Product Novelty, depends on the similarity between the products
of the library and our existing large collection of compounds.  Developability terms
include molecular weight, lipophilicity, and hydrogen bond donor/acceptor counts.
Focussing in this version of PICCOLO is implemented by computing an average
similarity between the library and one or more leads.  Other terms related primarily
to practical issues include Mass Spectral Redundancy, reagent price, and product
flexibility. The overall objective function E(S) of a solution is defined as the
weighted sum of  penalty scores Ei(S) for all the terms under consideration. That is,

Where wi is the weight given to the ith term. Each term is described below.

)()( SEwSE ii ∗= ∑
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Reagent diversity A simple method is employed to penalize the selected library for
excessive self-similarity.  An S-optimality criterion is computed for the reagents of
each R group based on the Daylight fingerprint27 Tanimoto distances between
members of that R group.  This has the effect of minimizing the maximum similarity
between members of an R group.  A uranium atom is connected to each R group
member at the point at which it attaches to the template.  Fingerprints are computed
with the uranium atom included in order to encode the position of attachment.

Product novelty An important goal of many library designs is to augment our large
screening collection with compounds that populate previously unexplored regions of
chemical space.  In order to avoid the time-consuming pairwise comparison of
library products with hundreds of thousands of compounds at each iteration of the
optimization, we chose to implement a low dimensional cell-based method.  In this
approach, compounds from the screening collection are represented in a 4 to 6
dimensional feature space, mapped onto a grid with 20 divisions on each axis.  The
cell occupancies are stored in memory.  On each iteration, features are calculated for
each new product, its location on the grid is determined in an extremely rapid
lookup, and the cell count at that location is incremented.  The average cell count for
the library is minimized.  We have implemented a smoothing function that "bleeds"
density from occupied cells into adjacent cells, as a way of partially compensating
for the errors introduced by the discrete nature of the cells.  The results reported here
used a 4D principal components space derived from topological indices calculated
with Molconn-Z.30 More recently we have implemented a 6D feature space
optimized against the simultaneous separation of actives from inactives in 20 high
throughput screens.

Developability penalties In his well known 1997 paper17, Lipinski pointed out the
importance to the developability of a compound of molecular weight, logP, and
hydrogen bond donor / acceptor counts.  He also introduced a convenient mnemonic
known as the "Rule of 5", which states that compounds associated with good
developability properties have MW less than 500, logP less than 5, and no more than
5 donors or 10 acceptors.  We took these four terms as our initial set of
developability parameters, in each case taking the term to be minimized as the
fraction of the total number of molecules in the library that fall outside of the limit
for each term.  Lipinski’s values for each term are used as defaults, but all are
variables under the control of the chemist.  We have also incorporated a lower bound
for logP, not present in Lipinski’s rules but having a well-known significance to
permeability.28 The default lower limit is a logP of –1.  LogP is calculated with the
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Daylight / BioByte clogP.29 More recently we have implemented neural network
classifier modules with more sophisticated developability models.

Similarity to leads One or more lead molecules may be used as a focussing target.
Similarity metrics include either Daylight fingerprint Tanimoto similarity or the
Euclidean distance in a principle component space derived from topological indices
computed using Molconn-Z.30  The penalty score for each compound in the library is
defined as the distance between it and the nearest lead molecule.  The penalty score
for the library is the average of the individual compound penalty scores. We have
also incorporated neural network classifiers for focussing as well as developability
biasing.

Mass Spectral Redundancy A library synthesized using a split and mix protocol
without the use of tagging schemes results in a mixture of polymer beads in which
only the identity of the last R group added is known.  When a compound cleaved
from one of these beads is found to be active in an assay, it is subjected to mass
spectroscopic analysis in which the parent ion mass is determined.  All expected
products from the library that fall in the range of the mass of the molecular ion +/-
the resolution of the instrument must be resynthesized for confirmation.  It is
therefore beneficial to minimize mass spectral redundancies in the library.  Our
algorithm takes into account the different combinations of chlorine and bromine
atoms that can be identified by characteristic isotopic mass patterns.  It is
parameterized with the resolution of the mass spectrometer.  The library is divided
into sublibraries according to the last substituent added in the synthesis.  Products
are sorted by mass and redundancies are counted.  The average number of
redundancies per library is used as the penalty function.

Reagent Price The price of reagents, when available, is taken from the Available
Chemicals Directory (ACD).  Although extremely expensive reagents can be filtered
out prior to optimization, we find price optimization beneficial.  The quantity
minimized is the average reagent price in dollars per equivalent.
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5. Experiments

5.1. The Reaction Scheme and Reagent Lists
A published synthetic scheme31 (Figure 1) for a four component Ugi reaction has
been adopted as a design example in this paper. Since two of the four components
are fixed in the scheme, only two diversity sites remain for optimization. These two
sites come from primary amines (R1NH2) and aldehydes (R2CHO), respectively. We
have collected from ACD (Available Chemical Directory) structures of primary
amines and aldehydes available from ALDRICH and LANCASTER. Following our
normal practice, we have removed compounds with synthetically incompatible
functional groups. For example, compounds with multiple amino groups, multiple
aldehyde groups, amines with {-CHO and/or -NC groups}, and aldehydes with {-
NH2 and/or -NC groups} have been removed. Compounds with other reactive or
unstable structural patterns were also removed. As a result, 779 primary amines and
246 aldehydes were considered and their structures were put into an R-group file for
the PICCOLO optimization.

Resin
N

O

O

OH

NC

R1NH2
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N
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N

O R1

R2

Figure 1. Reaction scheme for a Ugi library.

5.2. An 864-member Ugi Library
To demonstrate what parameter setup and the results look like in PICCOLO, an 864-
member library is being designed with 24 primary amines (R1) and 36 aldehydes
(R2). Table 1 shows the setup of a typical experiment. The default ranges for
developability parameters are set according to Lipinski. The default weights have
been selected based on the ranges of values observed in most cases.
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Table 1. Parameter setup for a PICCOLO experiment.
Developability

Terms Lower limit Upper limit Weights
MW 0 500 1.0
ClogP -1 5 1.0
H-bond donor 0 5 0.3
H-bond acceptor 0 10 0.3

Diversity & Hole-filling
Reagent diversity N/A N/A 40.00
Hole-filling N/A N/A 0.01

Potential for Binding
Similarity N/A N/A 0.0

Practicality
Mass Spec N/A N/A 0.0
Price N/A N/A 0.0

6. Results and Discussions

PICCOLO records all the accepted solutions during the Simulated Annealing
process. These solutions and their associated penalty scores are presented in a
Spreadsheet. For the 864-member Ugi library, a spreadsheet showing the best three
solutions and the initial random solution are given in Table 2. Note that the terms
with zero weights except MS redundancy are not shown in Table 2. One can see that
molecular weight and clogP penalties went from 70% and 39% for the initial
solution down to 1.9% and 0.9% for the best solution. Hydrogen bond donor and
acceptor counts penalties went from 0.4% and 28% down to 0.0% and 10.0%,
respectively. Reagent diversity (Sdiv) penalty also went down from 73 to 2.1. Since
we gave a very small weight to hole-filling (Hfil) and zero weight to mass spectral
redundancy (MS) in this experiment, their penalty scores actually went up. This
indicates that we can emphasize those terms that we care about most by giving larger
weights to them and sacrifice those that we do not care by giving smaller weights.
This example also indicates that we can reduce the penalty for multiple terms
simultaneously. Chemists usually select several of the best-scoring solutions for
further examination.

PICCOLO also displays the trajectory of each penalty score during the optimization
process. Figure 2 shows an example of the trajectories for Lipinski penalty scores
(MW, H-bond acceptor counts, and clogP).
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Table 2. Spreadsheet in a PICCOLO run.
Solution # Tot Sdiv Hfil MW HBD HBA LogP MS
2004 (best) 91.9 2.1 334 1.9 0.0 10.0 0.9 0.34
1951 92.1 2.1 353 1.85 0.0 10.0 0.9 0.34
1847 92.13 2.1 359 1.85 0.0 10.0 0.9 0.34
…
1 (initial) 3047 73.0 126 70 0.4 28 39 0.08
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Figure 2. SA trajectories for MW, H-bond acceptor and clogP scores.

Finally, PICCOLO allows users to view the structures, prices, and vendor
information for the reagents of any design solution. Users can observe the
MW/clogP distribution of a solution as a scatter plot, with individual points
hyperlinked to product structures (data not shown). All the aforementioned
functionalities are accessible to users via a Web-based user interface.

One can use PICCOLO to compare two different library shapes and find out which
design is better. For instance, a second 864-member Ugi library was designed using
36 R1 (primary amines) and 24 R2 (aldehydes). Compared with the 24-by-36 library,
it has a better diversity (1.9 for 36-by-24 vs. 2.1 for 24-by-36), a better hole-filling
(254 vs. 334), a similar clogP score (0.69 vs. 0.93) and a better H-bond acceptor
score (8.0 vs. 10.0). It is, however, worse on MW (8.3 vs. 1.9). Chemists are
encouraged to experiment in this manner.
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One can bias the library towards any developability criterion. For instance, when a
larger weight was given to clogP when designing a 36-by-24 Ugi library, a solution
with 0.0% penalty on clogP was obtained, as opposed to 0.69 in the previous case.
This is not a dramatic change due to the nature of this particular library, but it can
make a huge difference in other situations. This solution is also better on MW (2.6 as
opposed to 8.3), better on H-bond acceptor penalty (3.8 vs. 8.0). As expected, the
diversity of the library (2.28 vs. 1.92) was sacrificed to achieve the above goals.

7. Conclusions and Future Work

We have developed an integrated computer program (PICCOLO) for library design
that simultaneously optimizes all the factors under consideration. This program is
accessible transnationally to all chemists at SmithKline Beecham. It has been used in
a large number of library design problems of both the general screening and targeted
variety.  We encourage chemists to run "computational experiments" to test their
design ideas.

The program has been designed so that additional objective functions can be added
when more focusing criteria become available. Of particular importance are
classifiers/predictors for developability parameters such as compound solubility,
membrane permeability, cytochrome P450 activities and other ADME parameters.
Pharnacophore models and receptor site directed docking scores could also be
incorporated.

The perturbation scheme has a significant impact on the speed of convergence and
the quality of the results. Thus, the study of various perturbation schemes is of both
theoretical and practical interest. We have considered one of them in this paper (see
Section 4.2). The way that a reagent is removed from a current solution could
conceivably be based on a calculated "quality index" for each reagent. This and other
variants of our perturbation schemes will be addressed elsewhere.
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