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Most human tumors are characterized by: (1) an aberrant set of chromosomes, a state termed
aneuploidy; (2) an aberrant gene expression pattern; and (3) an aberrant phenotype of uncontrolled
growth. One of the goals of cancer research is to establish causative relationships between these three
important characteristics. In this paper we were searching for evidence that aneuploidy is a major
cause of differential gene expression. We describe how mutual information analysis of cancer-
associated gene expression patterns could be exploited to answer this question. In addition to providing
general guidelines, we have applied the proposed analysis to a recently published breast cancer-
associated gene expression matrix. The results derived from this particular data set provided
preliminary evidence that mutual information analysis may become a useful tool to investigate the link
between differential gene expression and aneuploidy.

Most human tumors display a set of well-defined aberrations at different
levels of cellular biology and biochemistry. These include numeric chromosomal
imbalance, termed aneuploidy1, mutations in various genes, and an abnormal gene
expression pattern2. One of the main aims of cancer biology is to find the causative
relationship between these aberrations. Beyond scientific curiosity, understanding the
link between these changes detected in tumors may have a profound impact on
cancer therapy as well.  If the abnormal gene expression patterns found in tumors
were in fact a direct result of aneuploidy, then reversal of aneuploidy might be able
to return tumor cells to a more normal gene expression pattern and phenotype, and
therapies based on this approach should be investigated.

With the availability of data from the Human Genome Project specifying
the various genes on each chromosome, it should now be rather straightforward to
establish whether or not an extra chromosome or the loss of a chromosome is
reflected in higher or lower expression levels of the genes present on that
chromosome.  For example, there are cases of pediatric acute lymphoblastic
leukemia in which the sole karyotypic change is chromosome 5 trisomy3. In these
cases the relative expression levels of the genes localized on this chromosome
should be increased and this could be readily measured. However, the karyotype of
most tumors is significantly more complex and the ploidy regulation of gene
expression is likely superimposed by other regulatory mechanisms. Therefore,
proving that differential gene expression patterns detected in cancer are generally
induced by aneuploidy will probably involve a more complicated analysis of large-
scale gene expression and karyotype databases.
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The aim of the current paper is to describe a mutual information-based
analytical framework for such an analysis, and to perform the first such analysis on
a publicly available data set of breast cancer-associated gene-expression changes.

The causes of differential gene expression in cancer: Differential
gene expression patterns in cancer result from the superimposition of the following
three mechanisms:

1) Extra or missing chromosomes or chromosome regions (segmental
aneuploidy). It is obvious that the often-detected complete loss of a given
chromosomal region from a cell is reflected in the complete down-regulation of the
genes present in that region. It is also well-known that increased copy number of a
gene, called DNA amplification or the multiplication of a chromosomal region
directly causes up-regulation of gene expression (see for example4,5)

2) Many oncogenes act as transcription factors themselves or have a well-
characterized direct effect on other downstream transcription factors. When these
oncogenes (e.g., myc, src and ras) are overexpressed or mutated, they directly or
indirectly change the expression level of several other genes6.

3) The genetic network of a cell with a stable phenotype is self-consistent.
In other words, the expression level of each gene is consistent with the expression
level of its regulatory inputs. The very existence of cancer-associated differential
gene expression proves that the genetic network of a given cell has several
alternative stable states. These states are often called attractors in genetic network
theory7, and during malignant transformation the cell is induced to undergo attractor
transition. It was also hypothesized, although never proved experimentally, that the
cells can reach these alternative attractors after major perturbations of the genetic
network, without the continued presence of oncogenes or aneuploidy. This idea is
partially supported by the so called hit and run mechanism, when after malignant
transformation the causative oncogene (e.g., ras) is lost but the cell still remains in
its neoplastic state8,9. (It should also be noted that there are examples of reversible
malignant transformation, when the cells revert to their non-malignant state after the
overexpression of the causative oncogenes has been turned off10,11.)

General analytical framework in order to establish aneuploidy as
a major mechanism inducing cancer-associated gene expression
patterns: If aneuploidy is its main driving mechanism, then differential gene
expression in cancer will be induced as follows: First a group of genes will be up-
or down-regulated due to chromosomal gain or loss. Then this aneuploidy induced
gene expression pattern will be adjusted by the regulatory functions of the genetic
network present in the cell, keeping the network consistent with the gene regulatory
rules.

This hypothesis assumes that the genes present on the same chromosome
or chromosome region will be often mis-regulated in the same tumor samples,
showing a certain degree of co-regulation in gene expression measurements
performed on a sufficiently large number of cancer samples. The level of co-
regulation can be readily quantitated by simple means such as calculating the
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Pearson correlation coefficient in continuous gene expression measurements12. In
this paper, however, we propose to use mutual information instead of correlation
coefficient (mutual information can be considered as a discretized form of the
absolute value of correlation coefficients13) for two reasons. First the precision of
massively parallel gene expression measurements is limited. Second, the degree of
up- or down-regulation which can be expected to result from aneuploidy is not
known. Thus, currently it is more informative to trinarize the data, classifying each
gene as either unchanged or up- or down-regulated, rather than attempt to weight it
with the ratios of mis-regulation. Trinerization can be readily performed after self-
normalization of large-scale gene expression matrices as described by Chen et al14.

Proposed analytical framework:
1. Take a cancer-associated gene expression matrix that was derived from a series

of tumor samples of the same type (e.g. a set of primary mammary carcinomas)
as population- and time-averaged gene expression data. Convert these data into a
ternary matrix at an appropriate confidence level.

2. Calculate pair-wise mutual information for all gene pairs and create relevance
networks of co-regulated genes with a mutual information level that is above
the highest level detected in the gene expression matrix after randomization (i.e.
above a threshold mutual information that can be still due to chance.)

3. Determine the chromosomal localization of the genes of the relevance network
and compare it to the chromosomal distribution due to chance. This is
determined by simulations assuming that co-regulated genes are randomly
assigned to chromosomes.

4. If there are any relevance networks that show an unexpected clustering of genes
located on the same chromosome, compare them to aberrations reported for that
chromosome.

We will provide detailed description of the steps of this algorithm below, using a
concrete breast cancer-associated gene expression matrix.

A complete analysis will require several complementary data sets:

1) A large body of gene expression measurements on a given type of
cancer. The size of this data matrix is defined by the possible number of
chromosome combinations or karyotypes associated with that type of cancer.

2) A catalog of the possible karyotypes of a given cancer. It is well
established, that certain gains or losses of chromosomal regions or of whole
chromosomes are frequently observed in a certain type of cancer, whereas others
never occur15. The potential number of major karyotypes is an important reference
point in this analysis: if there is a high number of potential configurations of
aneuploidy then the number of required gene expression measurements will be
proportionally higher.

3) The complete catalog of chromosomal localization of genes involved in
the analysis, which will be soon available with the human genome project nearing
completion.
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A large number of studies on the karyotypes of cancer indicated, that certain
chromosomal aberrations are often associated with a certain type of tumor, whereas
others are never observed.  (See for example15). This is also true for mammary
tumors15-18. In this paper we were looking for relative enrichment of certain
chromosomes in high mutual information relevance networks derived from a breast
cancer associated gene expression matrix.

Mutual information analysis of a breast cancer-associated gene
expression matrix: We have analyzed the breast cancer-associated gene
expression matrix recently published by Perou et al.2. This publicly available data
set contains cDNA microarray based relative expression levels of 5,584 genes for a
number of both normal and neoplastic breast epithelial samples. For our analysis we
have used only gene expression measurements derived from either breast cancer cell
lines or primary breast tumors, 16 samples altogether. We have converted the
continuous gene expression data into a ternary matrix, using a 2-fold up- or down-
regulation as a threshold value. The ternary representation is justified by the current,
relatively limited precision of massively parallel gene expression measurements and
the fact that we have no estimates about the expected level of up- or down-regulation
of gene expression induced by aneuploidy. The exact karyotype of these tumors have
not been reported, but it is well known that most sporadic breast tumors have a
chromosome set which is far from normal diploid15-18. The breast cancer cell lines
included in the analysis are also known to have a highly aneuploidic karyotype19.

In a recent technical paper20 we have pointed out that the overall
quantitative features of cancer-associated gene expression matrices show several
consistent characteristics. Namely, the number of mis-regulated genes and the ratio
of down-regulated versus up-regulated genes are not arbitrary but remain within a
well-defined range for a given type of tumor. This data set had a high level of gene
expression diversity. On average, 35% of all quantitated genes were mis-regulated in
each sample. The high level of gene expression diversity was reflected in the high
level of mutual information content of the data matrix even after randomization.
It is also interesting to note, that the breast cancer samples examined here showed
significantly more down-regulation than up-regulation of genes. In fact 13 out of 16
samples had more down- than up-regulated genes relative to normal, and in 10 out
16 samples the down-regulated genes outnumbered the up-regulated ones by 3 to 1.

Mutual information analysis: We have calculated mutual information for
all possible gene pairs as described in Butte et al.13  and Liang et al.21 with
appropriate modifications. For simplicity we kept the range of mutual information
between 0 and 1 by using base 3 logarithm for the ternary data set. Therefore the
entropy of the mis-regulation for a single gene was calculated as follows:

(1)           H A p x p xi i
i

( ) ( ) log ( ( ))= −
=
∑ 3

1

3
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where p(xi) is the frequency based probability that gene A will take the value of xi
(i=1,..3) out of the three possible states of 0 (no change), 1 (up-regulation) or -1
(down-regulation). The mutual information for gene pairs A and B is defined as

(2)         MI(A,B) =  H(A) + H(B) - H(A,B)

Randomization of the data matrix: We needed to establish a threshold
mutual information level (recently termed and abbreviated as TMI by Butte et al.13)
above which we considered two genes being co-regulated. Random distribution of
1's, 0's and -1's in a matrix will lead to a certain level of background MI
distribution. This is routinely assessed by randomizing the gene expression matrix
and then recalculating the pair-wise MI for all gene pairs. We have performed
permutative randomization on the gene expression matrix as described in Wahde and
Szallasi22.  This will randomize 1's, 0's and -1's within each row and will retain the
average number of mis-regulated genes in the data matrix. The high number of mis-
regulated genes of this data matrix predicted a high level of background MI level.
Indeed, as demonstrated on Figure 1, after randomization there were several gene-
pairs with a pair-wise MI level of up to 0.75. Therefore we have set TMI at this
level.

Mutual information analysis, matrix randomization and graphic
representation was implemented in Borland Delphi 3. The computation time for
calculating the pair-wise mutual information for the complete 5584x16 matrix is
about 3 min.

 Calculating the chance chromosomal distribution of relevance
networks: In an ideal case to prove the involvement of aneuploidy in differential
gene expression patterns, one would expect fully connected relevance networks with
high mutual information content where all or most genes are localized on the same
chromosome. However, these ideal clusters will be "diluted" by the superimposed
effect of gene co-regulation and by the fact that certain chromosomal aberrations
occur together with higher frequency. On the other hand, if differential gene
expression is driven by gene co-regulation with no ploidy effect at all, then one
would expect that the genes present in high mutual information clusters, if they
exist at all, would be nearly randomly distributed among all chromosomes. This
latter assumption has formed the null hypothesis of our statistical analysis. We
determined the likely distribution of chromosomal assignments within each
relevance network assuming that those genes are randomly localized on
chromosomes. Since the exact number of genes on each chromosome has not been
determined yet (with the exception of Chr. 21 and 22), we have assumed that the
number of genes/chromosome is proportional to the size of the chromosomes
measured in megabases. (These data can down-loaded from the web site of National
Center for Biotechnology Information at www.ncbi.nlm.nih.gov/.) Human
chromosomes vary in size between 263 Mb (Chr. 1) and 47.7 Mb (Chr. 22).
Therefore, we assumed that a gene in a relevance network will be assigned with
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Figure 1 The distribution of mutual information amongst all possible gene-pairs for the
actual data set (open columns) and for the average of ten randomized data sets (filled
columns). The randomization of the gene expression matrix and the calculation of pair-
wise mutual information for all possible gene pairs were performed as described in the
text.

about 5-fold higher probability to e.g. Chr. 1 than to Chr. 22. In other words, we
assumed that in the absence of ploidy regualation the probability that a given gene
is present in a given relevance network will be proportional to the size of the
chromosome on which the gene is localized. This assumption will become more
accurate as more information becomes available from the human genome project.

We have implemented the following simulation in Matlab: we set the
simulated cluster size, i.e. number of genes, to a given detected relevance network of
high mutual information (see table 1). Then we have randomly assigned the genes of
that cluster to chromosomes in such a way that the probability of assignment was
proportional to the size of the chromosome. Finally, we have calculated how
frequently we have seen a chromosomal distribution similar to the one observed in
the relevance networks derived from the original data set. For each relevance network
we ran 1000 simulations and determined whether at 99% confidence level the
detected chromosomal distribution is due to chance.

Summary of findings: We have identified 65 relevance networks at a TMI
level of 0.75. The majority of these were small clusters, namely 35 gene pairs and
16 gene triplets. None of the gene triplets were localized on the same chromosome.
Preliminary analysis suggested, that it is likely (>10% chance) that two genes in a

0

1

2

3

4

5

6

7

8

0
-
0

.0
5

0
.0

5
-0

.1

0
.1

-0
.1

5

0
.1

5
-0

.2

0
.2

-0
.2

5

0
.2

5
-0

.3

0
.3

-0
.3

5

0
.3

5
-0

.4

0
.4

-0
.4

5

0
.4

5
-0

.5

0
.5

-0
.5

5

0
.5

5
-0

.6

0
.6

-0
.6

5

0
.6

5
-0

.7

0
.7

-0
.7

5

0
.7

5
-0

.8

0
.8

-0
.8

5

0
.8

5
-0

.9

0
.9

-0
.9

5

0
.9

5
-
1

Lo
g 

(n
um

be
r 

of
 g

en
e 

pa
irs

)

0
.-

0
.0

5

0
.0

5
-0

.1

0
.1

-0
.1

5

0
.1

5
-0

.2

0
.2

-0
.2

5

0
.2

5
-0

.3

0
.3

-0
.3

5

0
.3

5
-0

.4

0
.4

-0
.4

5

0
.4

5
-0

.5

0
.5

-0
.5

5

0
.5

5
-0

.6

0
.6

-0
.6

5

0
.6

5
-0

.7

0
.7

-0
.7

5

0
.7

5
-0

.8

0
.8

-0
.8

5

0
.8

5
-0

.9

0
.9

-0
.9

5

0
.9

5
-1

Mutual information

Pacific Symposium on Biocomputing 6:42-51 (2001) 



_

relevance network of three genes will be localized on the same chromosome.
Therefore, further examination of these small clusters was not informative. We have
identified 14 relevance networks with more than 3 genes. The chromosomal
localization of each gene was determined by a sequence-based BLAST search against
the human genome data-base maintained by NCBI. (Available at
http://www.ncbi.nlm.nih.gov/genome/seq). This has ensured that the chromosomal
localization of the actual gene probes were determined even if a given microarray
probe carried the wrong gene identification.  The chromosomal distribution of the
genes of these networks is listed in Table 1. All relevance networks were fully
connected at a MI>0.75 level. 13 out of the 14 relevance networks showed
chromosomal distributions that could be caused by chance (at 99% confidence level)
assuming the random chromosome assignment described above.

Relevance network #3, however, displayed significant "enrichment" of
genes originating on three chromosomes. This relevance cluster of 13 genes
contained four genes from chromosome 17, three genes from Chr. 1, and two genes
from Chr. 11, and the remaining four genes were from different chromosomes. This
distribution of chromosomal assignment is unlikely due to chance at a 99%
confidence level. It is well documented that chromosomes 1, 11 and 17 belong to
the group of chromosomes that show numerical aberration with the highest
frequency in breast cancer15-18. These chromosomes often show numerical changes
together15-18. It is also known that loss of heterozygosity involving these
chromomes is frequently detected in these tumors, and these chromosomes are more
often lost than gained in breast cancer15-18. These data showed excellent correlation
with the fact that the mis-regulation of genes involved in this relevance network
represented mainly down-regulation. (The genes present in this relevance network
were down-regulated in 8 tumors, up-regulated in one tumor and unchanged in 7
samples.) In this case, the relevance network gave a very good indication of the
abnormal behavior of chromosomes associated with it.

Discussion: In this paper we have introduced mutual information analysis as
a tool to establish a causative link between aneuploidy and differential gene
expression in cancer. The limited sample number of the available gene expression
data in breast cancer and the lack of a comprehensive database of karyotypes has
obviously limited our analytical efforts at the moment. Nevertheless, in one case
our analysis turned up a large relevance network of high mutual information in
which the genes’ chromosomal assignment was non-random. Furthermore, the three
chromosomes highly represented in this relevance network (Chr. 1, 11 and 17) have
been reported to show coordinated numerical aberrations in breast cancer15-18. These
chromosomes are often lost which corresponds well with the frequent coordinated
down-regulation of these genes in the breast cancer associated gene expression
matrix examined.

The fact that only one out of fourteen relevance networks showed signs of
involvement of aneuploidy suggests that chromosomal aberrations may play a
limited role in the differential gene expression detected in breast tumors. However,
the relevance network with non-random chromosomal assignment provide a
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preliminary proof of principal and suggest a wider application of mutual information
for this type of analysis.

Abbreviations: Chr.; Chromosome, TMI: threshold mutual
information, MI: mutual information

Acknowledgment: The opinions and assertions contained herein are the private
opinions of the authors and are not to be construed as official or reflecting the views
of the Uniformed Services University of the Health Sciences or the U.S. Department
of Defense.

Relevance
 Network

              Chromosomes represented by
    1 gene        2 genes        3 genes      4 genes

#1 17 genes
(2 unknown)

1 ,2 ,3 ,4 ,5 ,8 ,
12 ,13 ,15 ,16

1 7 1 0

#2 15 genes
(1 unknown)

1 ,2 ,7 ,8 ,14 ,
X

2 ,9 ,18 ,19

#3 13 genes 2 ,4 ,5 ,10 1 1 1 1 7
#4 11 genes 4 ,6 ,13 ,14 ,

19 ,20 ,X
2 , 1 7

#5 10 genes 2 ,3 ,4 ,6 ,10 ,
1 2

5 , 1 5

#6 10 genes
( 2 unknown)

2 , 1 1 3 , 4 , 1 0

#7 9 g e n e s
(1 unknown)

1 , 2 , 3 , 6 , 8 ,
10 ,11 ,19

#8 8 genes 3 ,9 ,10 ,15 ,
17 ,19

1

#9 7 genes
(2 unknown)

1 ,3 ,5 ,16 ,19

#10 6 genes
(1 unknown)

1 5 6 , 1 2

#11 5 genes
(1 unknown)

1 ,2 ,9 ,12

#12 5 genes 1 5 3 , 1 2
#13 5 genes 1 ,4 ,7 ,21 ,22
#14 4 genes 1 , 2 , 5 , 7

Table 1. List of chromosomal assignments of genes present in relevance networks
with high mutual information and with more than 3 genes. See further details in the
text.
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Figure 2. Relevance network #3. The gene accession number and the corresponding
chromosomal localization (in bold letters) is listed for each gene.
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