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We suggest a method implemented in a computer program, immodestly dubbed TSUNAMI,
that allows us to compare two homologous protein subfamilies with respect to the distribution
of substitution rates along sequences. This study furthers our earlier work on a wavelet model of
rate variation (1). The current approach allows sensitive detection of subtle discordances in the
selection patterns between two protein subfamilies. In addition to performing fast computation
of the maximum posterior probability estimates of the relative substitution rates, the method can
select the most appropriate number of wavelet parameters for a particular dataset. TSUNAMI is
based on a Markov chain Monte Carlo technique, and appears to be more applicable to larger
datasets than is the full likelihood-based approach.

1. Introduction

Amino-acid sites in real protein sequences differ in their degree of reluctance to
accept an amino-acid substitution; furthermore, a particular site’s degree of conserva-
tion is usually correlated with its functional importance. Therefore, analysis of rela-
tive rates of amino-acid substitution along a protein sequence is essential to our
understanding of the evolution of protein function and to our ability to reconstruct
phylogenetic trees.

Numerous mathematical models have been suggested to describe substitution rate
variation (e.g., Durbin and colleagues (2) and the currently popular gamma-model (3,
4)). In a recent paper (1), we presented two alternative models — a wavelet and a
Fourier model — that have the attractive property of flexibility in the number of
parameters required to describe the rate variation across sites in a particular dataset.
Here, we suggest a few enhancements that speed up computation under these models.
We also demonstrate how to implement a Bayesian model-selection approach with
regard to the wavelet model.

We use Markov chain Monte Carlo (MCMC) simulation to compute the posterior
distributions of parameter estimates, the posterior-probability confidence intervals for
substitution rates, and the maximum posterior density estimates of the parameter val-
ues. We speed-up the MCMC computation by fitting the estimates of posterior density
to a three-parameter gamma distribution for each rate parameter separately. We
implement an MCMC model-selection procedure and apply it to analysis of real
sequence data.
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2. Trees, likelihood, and pseudolikelihood

Before we specify the proposed modifications, we outline the conserved core of the
accepted mathematical model of protein evolution.

Each set of truly homologous present-day sequences is a product of whole-gene
duplications of a whole ancestral gene and local amino-acid substitutions, deletions,
and insertions. For many reasons, deletion and insertion events are often excluded
from the inference of a phylogeny for a set of homologous proteins, and the statistical
modeling and data analyses both concentrate on only substitution events. In practice,
the result is that the sites of a multiple alignment that contain at least one deletion
character are excluded from analysis, so that the remaining differences among
sequences can be explained completely by amino-acid substitution alone.

Researchers usually assume that amino acid substitution at each site of a protein
sequence follows a Poisson process, whereas the rate of this process varies from site
to site. For mathematical description, it is convenient to work with the relative substi-
tution rates for sites, rather than with the absolute rate. The relative rates are simpler
because the absolute expected number of amino substitutions per given protein site
varies from one branch of the tree to another, whereas the relative substitution rate at
each site can be conveniently assumed constant for all branches of the tree. The rela-
tive substitution rates for a dataset are usually defined such that the average relative
substitution rate over all sites of each dataset is equal to 1. Then, the expected number
of substitutions per a unit time at each individual site of the dataset is equal to the
product of the relative rate for this site and to the average number of substitutions per
site per unit time over all sites.

In a typical model, the substitution process is assumed to be homogeneous over
time; that is, the intensity matrix, Q, is postulated to be the same for all branches of
the true evolutionary tree. Traditionally, the branch lengths of a tree are measured in
terms of the number of amino-acid substitutions per site. As long as Q remains con-
stant, the expected lengths of edges are allowed to deviate from the molecular-clock
behavior (when all expected root-to-tip distances are equal). The matrix of probabili-
ties of substituting any amino acid for another amino acid over a time interval t at the
ith site of protein alignment is computed as a matrix exponential of the product Q t ri,
where ri is the relative substitution rate at the ith site. Since Q and t appear in the like-
lihood equation as an inseparable product, it is convenient to scale Q such that the
mean number of substitution per a unit of time is equal to 1 (e.g., see ref. 4). We com-
pute the full likelihood of a tree as a conditional probability of the data given the
model and a set of parameter values. In the case of just two sequences, 1 and 2, we
compute the likelihood for the xth site as

In this equation, is the expected frequency of ith amino acid in the common
ancestor of sequences 1 and 2, respectively; s1(x) and s2(x) are the integers (with

Lx πiP i s1 x( ) t1rx,→( )P i s2 x( ) t2rx,→( )
i
∑=

πi
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value between 1 and 20) corresponding to amino acids at the xth site of sequences 1
and 2, respectively, and notation indicates substitution of amino acid with label
i with amino acid with label j. is the probability of observing the
ancestral amino acid i substituted with amino acid s1 after time t; and rx is the relative
substitution rate at the xth site. Under a time-reversible model equation for likelihood
over all sites simplifies to .

When we consider more than two sequence simultaneously, the equation for the
likelihood function follows the tree topology. We must compute and multiply the
probabilities of transitions along each branch of the tree, and then sum such products
over all possible values of the unknown amino acids that belong to unobservable
ancestral sequences in the interior nodes of the tree. There is a simple and elegant
mapping from a ‘parentheses’ encoding of a tree to the matrix equation for Lx. For
example, for a hypothetical tree with just four pending vertices - 1, 2, 3, and 4,

- we obtain ,
where ppppx is a row vector of expected frequencies of amino acids at the root of the tree,

is 20-by-20 matrix of transition probabilities corresponding to the
ith branch of the tree, is the jth column of this matrix, indicates a regular
matrix product, and indicates an elementwise product of two matrices of equal
dimensionality, . In complex expressions, operators of elementwise
multiplication have a precedence higher than that of operators of the regular matrix
multiplication. Clearly, the parentheses pattern is the same in both expressions, com-
mas in tree expression are mapped to pairwise multiplication operators, numerals that
represent pending vertices are mapped into corresponding column vectors, and empty
spaces between parentheses are mapped to operators of multiplication followed by a
full transition probability matrix corresponding to an interior branch. (Matrix notation
for likelihood computation comes in handy in MatLab programming, since MatLab
computes matrix expressions much faster than it does equivalent scalar expressions.)
For a more advanced description of maximum-likelihood analyses in phylogenetics
and of the substitution models, please refer to other sources (e.g., ref. 2, pp.192-232:
refs. 5, 6).

3. Wavelets and the wavelet model

A wavelet decomposition of a discrete function is a mathematical procedure that is
used frequently in signal processing and statistical modeling. In addition to their
abstract beauty, wavelets have the attractive property of allowing us to compress data
by identifying and setting to zero most of the wavelet coefficients that make only
small contributions to the signal (7).

We briefly introduce wavelets for readers new to this subject. Wavevelets are local
discrete functions. They are “local” in that each function has a well-defined domain,
and outside of each wavelet, there is a contiguous subset of sites that have zero val-
ues. We chose for this study the simplest Haar wavelet, which has value of +1 at the

i j→
P i s1 x( ) t1rx,→( )

L P s1 x( ) s2 x( ) t1 t2+( )rx,→( )=

1 2,( ) 3,( ) 4,( ) Lx πx Px
6( )

Px
5( )

pS1 x( )
1( )

pS2 x( )
2( )•( )× pS3 x( )

3( )•( ) pS4 x( )
4( )•×( )×=
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first half and a value of -1 in the second half of its domain. A wavelet domain length
is always a power of 2 (2, 4,..., full sequence) - which is why we had to extend the
actual protein sequences in this analysis to the nearest power of 2 by adding dummy
unvaried sites. Denoting by the l the sequence length, a complete set of wavelets in
our analysis contains l/2 wavelets with domain length 2, which cover the sequences
without overlapping way; l/4 wavelets with domain length 4, which again cover com-
plete sequence but do not overlap each other; and so on, until we reach two wavelets
with domain length l/2 and a single wavelet with domain length l.

In our previously described wavelet model (1), relative substitution rates, {rx},
where x indicates the site number, are assumed to be the following function of wave-
let parameters, {ai}:

In the present study, we change this definition slightly by dropping the normaliza-
tion:

We can make this change because, when all wavelet parameters, {aj}, are equal to
zero, the average relative rate for all sites is equal to 1, as required. Further, by adding
a padding of constant sites to the dataset to increase the total number of homologous
sites to the nearest power of 2, and by forbidding combinations of wavelet parameters
that produce negative relative rates, we can modify {aj} while still preserving the nor-
malization of the relative rates. (Do not worry about the dummy sites; at the end of
the analysis, they are discarded, and the relative rates for remaining true sites are
properly renormalized.) The possibility of avoiding renormalization speeds up the
probability computation significantly. We obtain this speedup because, in the absence
of renormalization, we have to recompute site likelihoods only for those sites that
have their rates changed and, due to local nature of wavelets, the number of such sites
is on average small. Renormalization of relative rates would force us to recompute all
site likelihoods.

In addition to computing the honest likelihood function, we will analyze another
objective function, pseudolikelihood (PL), which we define as follows:

Based on the observation that the pseudolikelihood is a product of honest two-
sequence likelihoods, we expect that the mean values of rate estimates that we obtain
by maximizing the pseudolikelihood function will be similar to those of the full likeli-
hood. Since pseudolikelihood has only one product - whereas the full likelihood has a
sum of numerous products - it is much faster to compute. Pseudolikelihood has the
virtue that it does not depend explicitly on the tree topology. Moreover, because the

rx 1 ayψ x y,( )
y
∑+ 

  1 aiψ i j,( )
j
∑

i
∑+ 

 ÷=

rx 1 ayψ x y,( )
y
∑+=

PL Lij( )
i j<
∏=
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computation of pseudolikelihood is much cheaper, we can increase the number of
sequences under analysis and thus can reach (almost) any desired level of precision of
relative-rate estimation.

The pitfall is that the pseudolikelihood function corresponds to a rigorous likeli-
hood function under a improbable model: Instead of assuming that the set of proteins
evolved according to a full tree, this model assumes that the proteins evolved as a set
of independent trees, each with two sequences. Since each sequence appears in (n-1)
pairs, each is treated as (n-1) independent sequences. As a result, the amount of infor-
mation obtained from the data is grossly overestimated, and estimates with perilously
narrow confidence intervals are obtained. Nevertheless, we conjecture that the
pseudolikelihood is appropriate for estimating wavelet parameters and for selecting
an appropriate wavelet model.

4. MCMC random walk

The idea of MCMC is startlingly simple yet powerful (8-11). We need only to orga-
nize a random walk through the space of parameter values such that a condition of
detailed balance (or reversibility) is satisfied. More specifically, for the Metropolis–
Hastings algorithm (8, 9), the system should go through a series of random states. We
denote by Xt the state of the system at iteration t. Then, for each state Xt, we define a
proposal distribution q(.|Xt) from which a new candidate state will be sampled ran-
domly. The candidate new state Y is accepted with probability

α (X,Y) = min[ 1, p(Y) q(X|Y) / {p(X) q(Y|X)}].

If the new state Y is not accepted, the system remains in the old state. To imple-
ment MCMC, we should be able to compute p(X) and p(Y) as the likelihood or
pseudolikelihood of the corresponding state, and to compute the proposal probabili-
ties q(X|Y) and q(Y|X). A healthy MCMC satisfies the reversibility condition
π(Y) q(X|Y) α (Y, X) = π(X) q(Y|X) α (X, Y), as a result of definition of α (X, Y).

In our case, the parameter space is defined by the tree branch lengths (or, in the
case of the pseudolikelihood, by the values of pairwise distances between sequences),
by the wavelet parameters, and (optionally) by additional parameters of the amino
acid substitution model chosen for simulation. In the data analysis described later in
this study, we used the simplest model of amino-acid substitution - the Poisson model
(12). The approach accommodates more sophisticated models easily.

A Bayesian statistical analysis requires explicit formulation of a prior distribution
on parameter values and alternative statistical models (in our case, the alternative
models are different tree topologies and distinct subsets of non-zero wavelet parame-
ters). In this study, we used uninformative prior distributions; that is, we assumed a
priori that all models and all parameter values are equally plausible. The posterior
probability that we obtain in the end is therefore essentially an integration under the
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likelihood function.
The restrictions on parameter values are as follows. Tree branch lengths (and,

obviously, distances between sequences) must be nonnegative. The wavelet parame-
ters in the general case can assume both positive and negative values. To restrict the
parameter space and to solve the normalization problem simultaneously, we intro-
duced a trick. We restricted values of the wavelet parameters to be nonnegative. Non-
negative values of wavelet parameters would roughly correspond to a set of models
where relative rates are non-increasing from the left to the right. (Obviously, it is
always possible to arrange sites of a sequence alignment to achieve a non-increasing
order of the relative substitution rates.) Simultaneously, we introduced a random
swapping of rates between pairs of sites.

In our MCMC sampling, we always update one parameter at a time. For each
parameter, we first define a proposal distribution, and sample a new value from this
distribution. Therefore, the old parameter-value vector, X, is different from the new
proposal vector, Y, by the value of only one parameter. Next, we compute pseudolike-
lihood values for X and Y, corresponding to probabilities π(X) and π(Y) in Equation 1,
and probabilities q(X|Y) and q(Y|X) (we give the details of this computation later in
this section). We accept the new state, Y, with probability α (X,Y) (see Equation 1); if
we do not accept it, we remain in state X. After we finish the update trials for all
parameters, we save the current vector of parameter values.

We can estimate the posterior densities of parameter values with precision that
depends on only the number of MCMC iterations – these posterior densities are com-
puted as the frequencies of the parameter values that are observed in the random
walk.

The individual parameter values in our analysis are updated in the following way.
Tree branch lengths (the computation is the same for pairwise distances).

Before simulation, we define the maximum-branch-length jump, δb. Given the current
state δold for a particular branch length, we select either the plus or the minus direc-
tion with probability 0.5. If the direction is minus, we sample a uniformly distrib-
uted value from interval [max(0, δold – δb), δold], then set q(X|Y)/q(Y|X) = [1/min(δold,
δb)]/[1/(1/δb)]. If the direction is plus, we sample a uniform random value (δnew)
from interval [δold, δold + δb], and set q(X|Y)/q(Y|X) = [1/min(δb, δnew)]/[1/δb].

Wavelet parameters.We define the maximum jump for the ith wavelet parameter
as δa/∆i, where ∆i is the total number of sites where the ith wavelet has a nonzero
value, and δa is a parameter common for all wavelets. Further, we define as ∆i

- and
∆i

+ the sets of sites where the ith wavelet is negative and where it is positive, respec-
tively. We define ρ- as the currently minimal relative substitution ρ for the set of sites
belonging to ∆-

, and we define ρ+ as the current minimal relative substitution rate for
∆+. We further define A1 = min(ρ+, δa/ ∆i, aold), and A2 = min(ρ-, δa/ ∆i).

We begin sampling the new value of each wavelet parameter by selecting, with
equal probability, the positive or the negative direction of parameter-value change. If
the direction is negative, we sample a random uniformly distributed value, anew,
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from interval [max(0,aold – A1), aold]. The ratio of probabilities q(X|Y) and q(Y|X) is
computed as [1/min((∆i

+ + anew – aold), anew, δa/∆i)]/[1/A1]. If the direction is posi-
tive, we sample a uniformly distributed value (anew) from interval [aold, aold + A2],
then set q(X|Y)/q(Y|X) = {1/ min([(∆i

+ + anew– aold), anew, δa/∆i])}/{1/A2}.
Permutation of the sites. Although the order of the sites is not a parameter of the

model, performing site permutation without changing wavelet coefficients does affect
values of the likelihood and pseudolikelihood and helps us to increase significantly
the speed at which we reach the equilibrium distribution. As we go through all current
occupants of the sites, we attempt to interchange each site with some other randomly
chosen site. If change is accepted, the swapped sites inherit each other’s relative rates.
In this case, state X differs from state Y by the positions of only two sites. Clearly, in
this case, q(X|Y) = q(Y|X) and the acceptance ratio in Equation 1 depend on only π(Y)
and π(X).

Jumps between trees. MCMC analysis of phylogenetic trees was first imple-
mented relatively recently. In their this original application (13), Mau, Newton, and
Larget used an ingenious tree-encoding scheme, where stochastic changes in tree
branch lengths led to changes in tree topology. It appears to us that this method can
change no more than one tree partition at a time. (Each tree can be represented as a set
of partitions of leaves of the tree. Elimination of any interior branch of the tree gener-
ates two disjoint subsets of the leaves, and every such pair of subsets is called a parti-
tion. A set of n-3 partitions uniquely defines the topology of an unrooted bifurcated
tree with n leaves.) In our computer application, we allow the user to specify the max-
imum number of tree partitions that can be changed in one step. The actual number of
the tree partitions to be changed at each tree update was drawn from a uniform distri-
bution between zero and the maximum. This strategy allowed the MCMC process to
make either large or small changes to the tree topology, as required by the particular
dataset. We implement generation of a random tree topology that differed from an
input tree topology by a specified number of partitions as a random grouping of sub-
trees that we generated by removing a set of adjacent partitions from a tree. In each
case, the partitions to be eliminated were chosen at random. Next, among the chosen
partitions, groups of adjacent partitions were identified. We repeated the process of
partition removal and generation sequentially for such partition groups, considering
one group at a time.

Avoidance of entrapment in local optima. In all analyses of data with our
MCMC method, we used multiple distinct starting points for each simulation type to
avoid the danger of the stochastic process becoming trapped in a local maximum,
leading to extremely biased estimates of the posterior probability.

5. Model selection

The wavelet model has a pleasing property that it allows us to drop unimportant
parameters without renormalizing relative rates. But which parameters are unimpor-
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tant?
One way to make this determination is to extend our MCMC simulation to make

reversible jumps between alternative models (14). In our case, the reversible jump is
relatively easy to implement, because we can generate models nested to the full wave-
let model by changing to zero those parameter values that are near zero, and holding
them at zero until the random process reverts. (Recall, that in the full model, the num-
ber of wavelet parameters is equal to the number of alignment sites minus 1.)

We perform the walk through the models by switching the relative rate-variation
parameters on and off using the MCMC scheme just described. That is, we go through
the list of all wavelet parameters and try to change each one’s state (on to off or vice
versa).

For each switched-on wavelet parameter, we first determined whether we can
switch it off — that is, whether we can set it to zero without generating negative rela-
tive-rate values. We cannot switch off parameter ai if the result would be negative val-
ues of relative rates. In other words, we are not allowed to eliminate the parameter if
ai > min(∆i

+, δa/∆i), where the values of ∆i
+ and δa/∆i are defined for each rate

parameter as described previously.
If we are allowed to switch off a parameter, we do switch it off with probability

poff (usually set to 0.5). We denote by qon the probability of switching parameter on.
We set q(X|Y) / q(Y|X) = (qon/min(δa/∆i, ∆- + aold)) /poff.

If the parameter is switched off, we switch it on with probability qon (usually also
0.5). Further, we sample a new parameter value from interval [0, min(δa/∆i, ∆i

-)] and
set q(X|Y) / q(Y|X) = poff/(qon/ min(δa/∆i, ∆i

-)).
To test the described methodology, we applied it to the data that we used in our

earlier study (1).

6. Data analysis

Being a bit unimaginative, we applied the new tools to exactly the same data that we
used in our earlier work (1). Here, space permits us to describe the analysis of only
one of the datasets in detail. Curious readers will find in our earlier paper (1) a
detailed discussion of the origins and genesis of the datasets. We implement the
MCMC with true likelihood and pseudolikelihood calculation, as well as the model
selection, in a set of programs - collectively dubbed TSUNAMI (a name inspired by
the association with the wavelet models). TSUNAMI is written for MatLab 5.3.1
(R11) and is available on request from the authors.

6.1. Immunoglobulin datasets

Originally, we selected the immunoglobulin variable regions datasets for κ and λ sub-
families of light chains for two reasons (1). The first reason is that such variable
regions of immunoglobulins are notorious for extreme variation in substitution rates.
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All sites in the variable regions are classified into two major groups: the hypervari-
able sites that define the specificity of the antibody, and the framework-region sites
that bear responsibility for maintaining the basic structure of the variable domain. AS
their name suggests, hypervariable sites are expected to have an extremely high rela-
tive substitution rate, whereas framework-region sites are expected to have, on aver-
age, a low rate. The second reason for our choice is that we hoped to show a
significant difference between substitution rates distribution in k and λ subfamilies of
immunoglobulins. In the previous study (1), although we demonstrated the first point
successfully, we were not able to show a significant difference between two datasets.

To our delight, the pseudolikelihood rate-variation plots for the immunoglobulin
subfamilies κ and l were remarkably similar to those that we obtained with the hon-
est likelihood-based MCMC.

6.2. Confidence intervals for relative rates obtained with the pseudolikelihood are
narrower than those computed with the full likelihood

In contrast to our original results, which we obtained with the full likelihood-based
MCMC, pseudolikelihood-based confidence intervals for the relative substitution
rates in the κ and l immunoglobulin datasets indicated a significant difference
between two datasets. Direct comparison demonstrated that the posterior maximum
density confidence intervals are significantly narrower for the pseudolikelihood func-
tion. As we explained earlier, the pseudolikelihood computation implicitly assumes
an improbable mathematical model, so the confidence intervals computed with the
pseudolikelihood are misleading and should not be used for dataset comparison.

6.3. Marginal posterior distributions appear to be gamma-distributions

Using pseudolikelihood MCMC estimates of marginal posterior distributions for both
relative substitution rates and tree branch lengths we could afford the computation of
many thousands of MCMC iterations, and thus obtained very smooth estimates of
probability-density functions. We tried fitting these estimated density functions to
several potentially suitable density functions: lognormal, Weibull, extreme value, and
gamma. The three-parameter gamma density

gave a perfect fit to the posterior distributions for both types of parameter estimates .
Posterior distributions obtained with the full likelihood were similar to their pseudo-
likelihood-generated counterparts and also appeared to be perfect gamma-distribu-
tions, although they were based on an order of magnitude smaller number of MCMC
iterations and therefore were not as smooth (see Figure 1A-D).

The main use of the posterior distributions in our applications is for determining

p x( ) x γ–( )α 1–
x γ–( ) β⁄–( )exp

Γ α( )βα-------------------------------------------------------------------=
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the maximum posterior-probability estimates of parameters (each estimate of this
kind corresponds to the mode of a marginal posterior distribution) and for inferring
the maximum posterior density confidence intervals. Both inferences can be done
with far greater precision when results of MCMC computations are fitted to an analyt-
ically defined density function (see Figure 1E). This is especially important for the
inference of confidence intervals, because in the absence of an analytical function an
accurate analysis of the tails of posterior distributions requires an enormous number
of MCMC iterations.

Figure 1. Full likelihood MCMC-estimated marginal posterior density functions
(shown with continuous lines) (A and B) for relative rate variation parameters and C
and D for the branch-length parameters. The dotted lines show the fitted gamma-den-
sities functions. (E) Average error of estimation of maximum posterior density confi-
dence intervals with (dotted line) and without (solid line) gamma-density
approximation. Gamma-approximation significantly improved the precision of the
estimates for the same number of MCMC iterations. (F) Distribution of wavelet
parameter number in model selection with pseudolikelihood function; 19,000 MCMC
iterations were used for computing this distribution.

6.4. Model selection

The MCMC program designed for model selection behaved in a similar way with all
analyzed datasets. We describe in detail only the analysis of immunoglobulin κ
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sequences.
Pseudolikelihood-based MCMC iteration started with a large number of model

parameters (> 65 - for a set of sequences where only 57 sites were variable!). After
about a thousand burn-in iterations, the random walk reached what appeared to be an
equilibrium state. The mode of the rate parameter number distribution (see Figure 1F)
was equal to 47, which is intuitively a reasonable value. A few thousands more
MCMC iterations showed that the average pseudolikelihood slowly increased and
that the mode of the rate parameter number distribution moved steadily towards the
smaller values. Therefore, we concluded that we are looking at an example of patho-
logically slow convergence of an MCMC random walk.

Full likelihood-based model selection showed similar tendencies - it started with
large number of parameters (about 70) that, after approximately 500 iterations,
dropped below 57. We were not able to study full likelihood model selection for as
many iterations as we completed with the pseudolikelihood version, but we could see
that it would take hundreds, if not thousands, of additional iterations for the MCMC
random walk to reach equilibrium.

Although we are currently unable to prove this conjecture generally, we suspect
that the wavelet-model selection with pseudolikelihood-based MCMC gives results
similar to those of MCMC model selection with the full likelihood. We expect that the
pseudolikelihood version of model selection is slightly more conservative - that is, it
favors more parameter-rich models - than the full-likelihood version of the same pro-
cedure. We expect it to be more conservative because the pseudolikelihood function
corresponds to the assumption that data contain much more information than they do
under the full likelihood model. Therefore, we conjecture that it is acceptable to use
the pseudolikelihood function for the wavelet-model selection.

6.5. MCMC with jumps among alternative trees.

For all datasets that we analyzed with MCMC that involved jumps between phyloge-
netic trees, the optimal tree was reached surprisingly fast (usually in fewer than 100
MCMC iterations, even when the starting tree was different from the optimum tree at
every partition). After reaching the optimum tree, the MCMC process was always
trapped there permanently. There must exist datasets that contain little information
about the correct tree, however; for them, the MCMC process should switch indeci-
sively among alternative trees until the end of simulation.) Therefore, the results that
we obtained earlier (1) using MCMC with a fixed (optimum) tree should be identical
to the results obtained with full MCMC.

7. Conclusion

We developed and implemented a new computational tool that raises our hopes that
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we can make useful the wavelet model of rate variation. Although we displayed an
apparent obsession with the analysis of proteins in this study, the method presented
here is also applicable to evaluation of rate variation in nucleotide sequences.

In the future we could modify the model-selection routine to include reversible
jumps from a wavelet model to a gamma-model (15) and back. Such jumps should
make possible model selection in a more general framework.

The exercises that we performed in this study with the wavelet model should be
completely reproducible with a Fourier model (1), although the computational price
would be higher due to the non-local nature of the discrete Fourier decomposition.

The statistical comparison of rate variations in two homologous protein subfami-
lies appears to have been almost completely overlooked (one exception is Gu’s
method (16)) by other published mathematical approaches. Thus, our algorithm is an
important addition to the current arsenal of research tools in genomics and evolution-
ary biology.
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