
A MODEL FOR PHYLOGENETIC INFERENCE USING
STRUCTURAL AND CHEMICAL COVARIATES

SIMON TAVARÉ
Departments of Biological Sciences, Mathematics and Preventative Medicine,

University of Southern California,
Los Angeles, CA  90089, USA

DEAN C. ADAMS, OLIVIER FEDRIGO, GAVIN J. P. NAYLOR
Department of Zoology and Genetics,

Iowa State University,
Ames, IA  50011, USA

We investigated whether or not evolutionary change in DNA sequence data was homogeneous across
different classes of base pairs. DNA sequences for eight protein-coding mitochrondrial genes were
obtained for 38 vertebrate taxa from GenBank. Each nucleotide site in the alignment was classified
according to a number of covariates, including its codon position, genetic code degeneracy, and
hydrophobicity.  The evolutionary transition matrix for each base was estimated by tracing implied
character changes under parsimony on a known phylogenetic tree.  Canonical variates analyses of the
inferred transition matrices were performed for each gene to determine whether or not different classes of
bases behaved similarly.  We found five distinct clusters of transition matrices that could be roughly
defined by combinations of codon position and degeneracy.  This pattern was consistent among all genes.
A stochastic model of rate variation based on the interaction of the covariates was developed to assess the
statistical significance of the clusters.  The five-group classification was found to explain significantly
more sequence variation than did a codon only classification, a codon degeneracy classification, or a
codon and degeneracy classification.  The same five-group classification was found for all genes tested,
suggesting a common process underlying the molecular evolution of the mitochondrial genome.  These
results confirm that there are classes of base pairs that evolve differently, and suggest that models of
sequence evolution that incorporate covariate information may be useful in developing nucleotide
substitution models that more accurately reflect evolutionary history.

1.  Introduction

Estimating the phylogenetic relationships of organisms is the first step of many
evolutionary studies.  Typically, DNA sequence data are collected for the taxa of
interest, and a phylogenetic relationship is estimated using a particular model of
evolutionary change.  The model is based on assumptions about the evolution of
DNA.  For example, maximum parsimony is based on the assumption that
evolutionary changes are rare, and therefore minimizes the number of substitutions
along the resulting phylogeny1. By contrast, maximum likelihood (ML) methods
identify the phylogeny from which the observed sequence data is most likely to
have evolved given a particular model of change2. In this approach parameters in
the substitution model, the tree topology and branch lengths can be estimated from
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the data. Several different models are used.  Most use a 4 × 4 transition matrix
describing the changes from A → C, A → G and so on. The Jukes-Cantor model is
the simplest, in that it assumes that all transformations among nucleotides are
equally likely.  Other models, such as K2P3, F814, TKF5, HKY6, variously account
for differences in base composition and the ratio of transitions to transversions.  The
General Time Reversible model (GTR) allows for 9 of the 12 possible parameters of
the nucleotide transition matrix7.

Among the critical assumptions in this likelihood approach are (i) that the
different base positions along the DNA sequence evolve according to the same
stochastic model, represented by a single transition matrix; and (ii) that substitutions
at different sites occur independently. It has long been known that these
assumptions can be unrealistic4,8, and several authors have proposed alternatives.
For example, a rate parameter having the gamma distribution is sometimes
incorporated in the models to account for rate variation across sites9,10,11, and
dependence among sites has been addressed as well12,13,14.  The reviews of Yang15

and Liò and Goldman16 provide a good introduction to these issues.
More recently, structural and functional information have been included in

models for DNA or protein sequence evolution.  For example, Goldman and
colleagues17,18,19, working at the level of amino acid replacements, have
incorporated secondary structure into phylogenetic estimation. Naylor and Brown20

made allowance for covariates such as hydrophobicity, charge and size. In this
paper, we introduce another approach to rate variation that can be used in
nucleotide-based substitution models.  Motivated by methods for analyzing
contingency tables using log-linear models (cf. Dobson21, Chapter 9), we
parameterize the rates at each site in terms of main effects and interactions of a set
of covariates.  The method appears to be useful for the systematic identification of
parsimonious classes of sites that have similar mutation rates.

2.  Methods

2.1  Canonical variates analysis

DNA sequences for eight protein-coding mitochondrial genes were obtained for 38
vertebrate taxa from GenBank.  For each gene we counted the number of changes
occurring at each site using parsimony on the known phylogenetic tree (Figure 1).
This yielded an evolutionary transition matrix for each site, which was used as input
data for exploratory multivariate analyses.  Each base was then assigned to one of
three codon positions, one of three degeneracy classes (2, 4, 6) based on the
redundancy of the genetic code at the amino acid level, one of two hydrophobicity
classes (hydrophobic/hydrophilic), and for Cytochrome b, one of three secondary
structure classes (helix, sheet, or neither). All of these classifications were
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determined using the modal value in the alignment.  The estimated transition matrix
for each site was then used in a canonical variates analysis (CVA) to determine
whether natural classes of sites with distinct modes of evolutionary change existed.
Separate CVA analyses were performed for each gene, and their results were
compared to one another.
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Figure 1.  Phylogenetic tree used in this analysis.  Tree was derived from both extant and fossil
comparative anatomical data.

2.2  Statistical approach

To evaluate the statistical significance of the rate classes found by the exploratory
CVA analyses, we use the following likelihood-based approach.  We assume
initially that the substitution matrix at site i has the form miQ, where the rate matrix
Q is common to each site, and mi ≥ 0 specifies the relative rate at site i. Suppose for
ease of exposition that each site can be classified according to a number of
categorical covariates, such as codon position and degeneracy. A given site is
therefore classified into one of J × K × ⋅⋅⋅ × L cells. For a main effects model, the
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rate parameter m of a site with covariate values j, k, …, l satisfying 1 ≤ j ≤ J, …, 1 ≤
l ≤ L is given by

log j k lm µ α β λ= + + + +L . (1)

Some care must be taken to ensure that the parameters are estimable. For the rooted
trees discussed below, we chose to fix the tree height at 1 (say), and we set α1 = β1

= ⋅⋅⋅  = λ1 = 0.  In this formulation, eµ represents the baseline rate for a site with
covariate values 1,1,…,1 and other covariate values affect this rate in a
multiplicative fashion. We note that (i) interactions among the covariates can be
modeled by adding appropriate terms like (αβ)jk, (αβγ)jkl on the right of (1); (ii) a
quantitative covariate x can be included by adding terms such as δx to the right of
(1); (iii) the link function log on the left of (1) can be replaced by linear or other
functions; (iv) the rate matrix Q can vary with the covariate class, and (v) the
method generalizes naturally to the simultaneous study of multiple genes.

In our application, we used the TKF5 model that allows for a transition-
transversion parameter κ > 0 (assumed to be the same at each site), and fixed base
frequencies as estimated from the data. Likelihoods, denoted by L, were obtained
for the model with no covariates, corresponding to constant rate across sites.
Covariates (codon position, codon degeneracy, hydrophobicity, and secondary
protein structure) were then added sequentially to the model, and the corresponding
likelihoods were found.  The covariate providing the largest increase in the
likelihood was determined.  This factor was added to the ‘null’ model, and the
remaining factors were added incrementally in a step-wise regression fashion.  The
differences in –2 log L values were calculated for each additional factor and
compared to a χ2 distribution to assess significance22.

3.  Results

3.1  Exploratory analysis

For all genes, CVA revealed highly significant differences in evolutionary transition
matrices for codon position and genetic code degeneracy groups, a slight effect for
hydrophobicity, and negligible effects for secondary structure for Cytochrome b.
Five distinct clusters were recognized in the ordination plot.  When bases were
assigned to one of these five groups using the canonical discriminant function,
approximately 45% were correctly classified.  Inspection of plots of canonical
scores revealed that several position/codon degeneracy groups that were
consistently close to one another, implying that their evolutionary transition
matrices were similar (Figure 2).  All second codon positions formed a distinct
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cluster, regardless of their degeneracy groupings.  First codon positions from 2-fold
and 4-fold groups were similar, as were third codon positions from 4-fold and 6-fold
groups.  These were therefore considered as two larger clusters rather than four
individual groups.  Thus, the nine (3 × 3) possible combinations of codon position
and codon degeneracy collapsed to five distinct modes of evolutionary change; a
pattern which was consistent among genes.  We calculated classification rates for
these five larger clusters and found that ≈ 65% of the sites were now correctly
classified, implying that many of the original misclassifications were sites assigned
to position-degeneracy groups that were part of a larger group.

3.2 Likelihood results

Results for the main effects models, based on a separate analysis of each gene, are
shown in Table 1.  These results correspond to statistical tests for the exploratory
CVA analyses, and reveal a similar pattern to that described above.  Likelihood
scores associated with different decompositions of covariate structure for codon
position and degeneracy are shown in Table 2.  It is clear that codon position and
degeneracy make an important contribution to the fit, whereas hydrophobicity and
structure are less important.  The five-group codon position/degeneracy model
suggested by the exploratory analysis includes interaction effects, and its likelihood
was also computed. A comparison of likelihoods shows that the five-group model is
better than the additive main effects model using degeneracy and codon position for
all genes (Table 2). We conclude that there is a significant interaction effect
between degeneracy and codon position in determining the rates at these sites. The
five-group model seems to capture much of the true biological signal in sequence
variation for all eight protein-coding genes evaluated.
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Figure 2. Canonical variates plots of all possible codon position-degeneracy combinations for eight
mitochondrial protein-coding genes.  Only group means are shown.  Labels for group means designate
codon position and degree of fold degeneracy (gray scale included to emphasize five-group
classification).
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Table 1.  Likelihood scores for main effects covariate models for the eight protein-coding genes.  Model
parameters are:  CR: constant rate, CD: codon, DG: degeneracy, HD: hydrophobicity, ST: structure.

Model  # Par -2logL Diff Df P Model  # Par -2logL Diff Df P
ATP6 Cyt b

CR 38 40317.6 CR 38 52983.1
+ CD 40 37806.6 2511.0 2 *** + CD 40 48470.9 3912.2 2 ***
+ DG 42 37757.8 48.8 2 ** + DG 42 47159.5 1311.4 2 ***
+ HD 43 37756.9 0.9 1 ns + HD 43 47125.6 33.9 1 *

CO 1 ND 1
CR 38 65621.5 CR 38 53128.6

+ CD 40 56364.1 9257.4 2 *** + CD 40 49215.5 3913.1 2 ***
+ DG 42 53213.5 3150.6 2 *** + DG 42 48936.5 279.0 2 ***
+ HD 43 53102.3 111.2 1 * + HD 43 48918.0 18.5 1 *

CO 2 ND 2
CR 38 29645.2 CR 38 51776.9

+ CD 40 26420.1 3225.1 2 *** + CD 40 48652.9 3124.0 2 ***
+ DG 42 26171.1 249.0 2 *** + DG 42 48389.0 263.9 2 ***
+ HD 43 26090.4 80.7 1 * + HD 43 48375.4 13.6 1 *

CO 3 ND 4
CR 38 39559.4 CR 38 74304.0

+ CD 40 35538.9 4020.5 2 *** + CD 40 69235.3 5068.7 2 ***
+ DG 42 34834.8 704.1 2 *** + DG 42 68922.6 312.7 2 ***
+ HD 43 34832.5 2.3 1 ns + HD 43 68918.7 3.9 1 ns

Table 2.  Likelihood scores for different decompositions of covariate structure.  Model parameters are:
CR: constant rate, C+D: codon plus degeneracy (additive), 5G:five codon/degeneracy group model.

Model  # Par -2logL Model  # Par -2logL Model  # Par -2logL
ATP6 CO 1 CO 2
CR 38 40317.6 CR 38 65621.5 CR 38 29645.2
C+D 42 37757.8 C+D 42 53213.5 C+D 42 26171.1
5G 42 37552.7 5G 42 52570.7 5G 42 25772.4
CO 3 Cyt b ND 1
CR 38 39559.4 CR 38 52983.1 CR 38 53128.6
C+D 42 34834.8 C+D 42 47159.5 C+D 42 48936.5
5G 42 34596.5 5G 42 46844.0 5G 42 48562.3
ND 2 ND 4
CR 38 51776.9 CR 38 74304.0
C+D 42 48389.0 C+D 42 68922.6
5G 42 48100.2 5G 42 68503.8
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4.  Discussion

The fact that the multidimensional ordination yielded five distinct clusters of
transition matrices, and that these clusters are statistically significant from one
another indicates that sequence evolution is far from homogeneous across sites.
Furthermore, the variation in rates is more complicated than that predicted by
considering codon position alone. A covariate model fitting separate parameters for
each class of sites is more likely to capture the diversity of molecular dynamics than
is a ‘one-model-fits-all’ approach.  While we acknowledge that complicated and
parameter-rich homogeneous models can outperform the covariate approach
advocated herein, such models have less biological explanatory power.

The five groupings we identified correspond closely to the combinatorial
freedom to vary that might be predicted from a careful study of the genetic code.
We found that all second position sites formed a distinct cluster: changes at those
sites involve a one-to-one mapping between nucleotide and amino-acid sequence,
because a second position change necessarily results in a change in amino acid
regardless of the amino acids’ degeneracy.  Similarly, changes at third codon
positions for both 4-fold and 6-fold degenerate amino acids involve a 4-to-1
mapping from the nucleotide sequence to the amino acid sequence at the third
codon position, and thus might be expected to have similar degrees of evolutionary
room to maneuver.  Finally, changes at first position sites for all but 6-fold
degenerate amino acids involve a one-to-one mapping, as they result in a change in
amino acid.  It might seem surprising that these first position sites, and second
position sites, fall out in separate clusters, given that they both involve a one-to-one
mapping. The explanation for this is that changes at first position sites generally
involve transformations among amino acids with similar properties, whereas those
at second positions do not.  Thus, from a functional perspective, first position
changes have more freedom to vary than do second position sites, even though both
have similar degrees of freedom from a purely combinatorial perspective.

We feel that this preliminary survey of the use of covariate models shows
promise for the systematic assessment of the role of chemical and structural features
in improving our understanding of molecular evolution and phylogenetic estimation
from sequence data.  Although maximum likelihood models that incorporate rate
classes have previously been used to accommodate rate variation among genes23,
the approach taken here exploits their use to account for rate heterogeneity among
classes of sites within genes.  We have not addressed the issue of goodness-of-fit
here, but we note that the fact that different classes of sites have significantly
different rates might reflect different underlying substitution models.  To explore
this possibility we estimated substitution models for several genes and found that
indeed, different models existed for each of the five classes of sites (Table 3).
These results imply that molecular data require approaches that incorporate not only
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different rate classes, but also different substitution models for the different classes
of sites.

Table 3.  Substitution models for the five classes are shown below for three representative genes.  The
best fitting GTR model with Γ  rate variation  estimated from the data was used to obtain branch lengths
for Figure 1, and the substitution models below were calculated from implied changes on that tree.
Model classes are:  Gp 1: 1_2, 1_4; Gp 2: 1_6; Gp 3: 2_2, 2_4, 2_6; Gp 4: 3_2; and Gp 5: 3_4, 3_6.

CO 3 Cyt b ND 1
Gp1 A C G T Gp1 A C G T Gp1 A C G T
A   - .057 .172 .059 A   - .089 .212 .132 A   - .092 .238 .146
C .050   - .065 .021 C .029   - .111 .020 C .067   - .100 .049
G .765 .600   - .609 G .783 .444   - .595 G .626 .333   - .815
T .090 .052 .103   - T .200 .055 .103   - T .166 .071 .212   -
Gp2 A C G T Gp2 A C G T Gp2 A C G T
A   - .028 .045 .031 A   - .083 .109 .080 A   - .040 .041 .037
C .132   - .258 .185 C .132   - .232 .155 C .123   - .200 .215
G .052 .000   - .261 G .060 .056   - .143 G .107 .083   - .074
T .097 .017 .172   - T .081 .054 .448   - T .179 .042 .333   -
Gp3 A C G T Gp3 A C G T Gp3 A C G T
A   - .016 .020 .042 A   - .015 .031 .042 A   - .023 .043 .062
C .036   - .355 .058 C .026   - .162 .065 C .038   - .311 .078
G .061 .333   - .130 G .051 .389   - .095 G .053 .361   - .074
T .200 .156 .207   - T .222 .349 .293   - T .172 .303 .212   -
Gp4 A C G T Gp4 A C G T Gp4 A C G T
A   - .054 .279 .059 A   - .050 .215 .034 A   - 0.053 .278 .066
C .064   - .032 .450 C .175   - .091 .484 C .177   - .167 .377
G .061 .000   - .000 G .030 .037   - .024 G .097 .028   - .000
T .124 .454 .138   - T .133 .363 .034   - T .199 .449 .121   -
Gp5 A C G T Gp5 A C G T Gp5 A C G T
A   - .845 .485 .809 A   - .763 .434 .712 A   - .793 .400 .689
C .719   - .290 .287 C .637   - .404 .275 C .595   - .222 .282
G .061 .067   - .000 G .077 .074   - .143 G .117 .194   - .037
T .490 .320 .379   - T .363 .179 .121   - T .285 .134 .121   -

It should be noted that all of the models used in this study were implemented for
rooted tree topologies and a molecular clock. We are currently extending and
generalizing these methods to accommodate more relaxed assumptions and more
complex biologically-based covariate structures.  We have also implemented a
covariate approach for gamma rate variation24 in which the mean rate at a site is
parameterized as in (1). It should not escape notice that all covariates used in this
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study were scored as the modal value in the alignment.  This is clearly a first
approximation and methods that allow time-varying covariate assignments for
individual sequences need to be developed.
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