
A  C E L L U L A R  A U T OM A T A  A P P R OA C H T O D E T E C T IN G
IN T E R A C T ION S  A M ON G S IN GL E - N U C L E OT ID E

P OL Y M OR P HIS M S  IN  C OM P L E X  M U L T IF A C T OR IA L
D IS E A S E S

J ASON H.  MOORE,  Ph . D. ,  LANCE W.  HAHN,  Ph . D.
Program in Human Genetics, Department of Molecular Physiology and Biophysics,

519 Light Hall, Vanderbilt University Medical School, Nashville, TN 37232-0700, USA
Moore@phg.mc.Vanderbilt.edu

The identification and characterization of susceptibility genes for common complex
multifactorial human diseases remains a statistical and computational challenge.  Parametric
statistical methods such as logistic regression are limited in their ability to identify genes
whose effects are dependent solely or partially on interactions with other genes and
environmental exposures.  We introduce cellular automata (CA) as a novel computational
approach for identifying combinations of single-nucleotide polymorphisms (SNPs) associated
with clinical endpoints.  This alternative approach is nonparametric (i.e. no hypothesis about
the value of a statistical parameter is made), is model-free (i.e. assumes no particular
inheritance model), and is directly applicable to case-control and discordant sib-pair study
designs.  We demonstrate using simulated data that the approach has good power for
identifying high-order nonlinear interactions (i.e. epistasis) among four SNPs in the absence
of independent main effects.

1   Introduction

The idea that epistasis or gene-gene interaction plays an important role in human
biology is not new.  In fact, Wright1 emphasized that the relationship between genes
and biological endpoints is dependent on dynamic interactive networks of genes and
environmental factors.  This idea holds true today.  Gibson2 stresses that gene-gene
and gene-environment interactions must be ubiquitous given the complexities of
intermolecular interactions that are necessary to regulate gene expression and the
hierarchical complexity of metabolic networks.  Indeed, there is increasing statistical
and epidemiological evidence that epistasis is very common3.  For example, in a
study of 200 sporadic breast cancer subjects, Ritchie et al.4 demonstrated a
statistically significant interaction among four polymorphisms in three estrogen
metabolism genes in the absence of any independent main effects.  Further, Nelson
et al.5 found that epistatic effects of lipid genes on lipid traits was very common.

Despite the importance of epistasis in human biology there are few statistical
methods that are capable of identifying interactions among more than two
polymorphisms in relatively small sample sizes.  For example, logistic regression
is a commonly used method for modeling the relationship between discrete
predictors such as genotypes and discrete clinical outcomes6.  However, logistic
regression, like most parametric statistical methods, is limited in its ability to deal
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with high dimensional data.  That is, when high-order interactions are modeled,
there are many contingency table cells that have no observations.  This can lead to
very large coefficient estimates and standard errors6.  One solution to this problem
is to collect very large numbers of samples to allow robust estimation of interaction
effects.  However, the magnitudes of the sample sizes that are often required are
prohibitively expensive.  An alternative solution is to develop new statistical and
computational methods that have improved power to identify multilocus effects in
relatively small sample sizes.

Several groups have addressed the need for new methods by developing data
reduction approaches4,5.  These approaches reduce the dimensionality of the data by
pooling multilocus genotypes into a smaller number of groups.  For example, the
multifactor dimensionality reduction (MDR) method of Ritchie et al.4 pools
multilocus genotypes into high risk and low risk groups effectively reducing the
dimensionality of the genotype predictors from n dimensions to one dimension.
The new one-dimensional multilocus genotype variable is evaluated for its ability
to classify and predict disease status using cross-validation and permutation testing.
This has been shown to be an effective strategy for identifying gene-gene
interactions, however, there is a loss of information in the data reduction step.  An
alternative strategy is to use pattern recognition that has the advantage of
considering the full dimensionality of the data.  In this paper, we describe a new
pattern recognition approach for identifying gene-gene interactions that takes
advantage of the emergent computation features of cellular automata and intelligent
search features of parallel genetic algorithms.  Using simulated single-nucleotide
polymorphisms (SNPs) in a discordant sib-pair study design, we demonstrate that
the CA approach has good power for identifying high-order nonlinear interactions
with few false-positives.

2   Overview of Cellular Automata

Cellular automata (CA) are discrete dynamic systems that consist of an array of
cells, each with a finite number of states.  The state of each cell changes in time
according to the local neighborhood of cells and their states as defined by a rule
table.  The simplest CA consist of one-dimensional arrays, although some, such as
the Game of Life7, are implemented in two or more dimensions.  Figure 1A
illustrates an example of a simple one-dimensional CA iterated through several time
steps along with the simple rule table that governs its behavior.  In this section, we
review how CA can be used to perform computations and then how we exploit this
feature to perform multilocus pattern recognition.

2.1  Emergent Computation in Cellular Automata
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An intriguing feature of CA is their ability to perform emergent computation8,9.
That is, the local interactions among spatially distributed cells over time can lead to
an output array that contains global information for the problem at hand.  For
example, Mitchell et al.9 have used CA to perform density estimation.  In that
application, a one-dimensional, two-state (1 or 0) CA is given an initial array of
states.  The goal is to identify a CA rule set such that the CA converges to an array
of all 1's if the density of 1's is greater than 0.5 and to an array of all 0's if the
density of 1's is less than 0.5.  They found that the CA is able to perform this
computation through a series of spatially and temporally extended local
computations.  This emergent computation feature of CA forms the basis of our
proposed method for identifying patterns of genotype variations associated with
common complex multifactorial diseases.

2.2  Description of our Cellular Automata Approach to Pattern Recognition

We begin with a description of the discordant sib-pair study design, a commonly
employed design for identifying common complex disease susceptibility genes using
single-nucleotide polymorphisms in human populations.  With this approach, sib-
pairs in which one sibling is affected with the disease and the other is unaffected are
ascertained and genetic variations measured in each.  The benefits of this study
design are twofold.  First, many common complex diseases have a late age of onset
thus limiting the ability to collect parental samples which are useful for some types
of statistical tests.  Second, using unaffected sibs as controls instead of unrelated

A B

Figure 1.  (A) The rule table, cells, and cell states for a simple one-dimensional CA iterated through
four time steps.  Note that the state of a given cell at time t is determined by the states of that cell and
the states of adjacent cells at time t-1 as defined by the rule table. (B) General approach to using CA
to perform emergent computation on combinations of genetic variations from affected and unaffected
siblings.  The goal is to identify a CA model that is able to produce one type of output (e.g. all black
cells states) if the genetic variation input is from an affected sibling and another type of output (e.g. all
gray cell states) if the input is from an unaffected sibling.
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subjects prevents false-positive results due to population stratification (e.g. by
chance you select unaffected controls of a different ethnic/genetic background).  This
is because, by definition, unaffected sibs come from the same ethnic or genetic
background as the affected sib.  Traditional statistical methods such as the sibship
transmission/disequilibrium test (Sib-TDT)10 compare observed differences in the
frequencies of alleles (i.e. a single genetic variation from one of the two
chromosomes) or genotypes (i.e. combination of two alleles) among affected and
unaffected sib-pairs with the expected difference of zero under the null hypothesis
that the particular genetic variation is not associated with the disease.  TDT-type
statistics have reasonable power for identifying genetic variations that have moderate
to large effects on disease risk.  This is evident from studies of linkage
disequilibrium among single-nucleotide polymorphisms in and near the APOE gene
in Alzheimer disease25.  However, TDT statistics have low power for identifying
genetic variations whose effects on disease risk are fully or partially through
interaction with other genetic variations.  This is because, in its original form, the
TDT is a univariate statistic that considers only one genetic variation at a time.

We have developed a CA approach to identifying patterns of genotype variations
associated with disease using the discordant sib-pair, or case-control, study design.
The general approach is to identify a set of CA operating features that is able to take
an array of genotypes as input and produce an output array that can be utilized to
classify and predict whether siblings are affected or unaffected (see Figure 1B).  In
this initial study, we fixed the number of cells in the CA to five.  Thus, the CA is
presented with a maximum of five unique and/or redundant genotypes.  We also
allowed ‘don’t care’ or wildcard cells to be included.  This permits less than five
genotypes to be evaluated.  Wildcard cells all have the same state and do not
contribute any information for discriminating affected from unaffected sib pairs.
Assuming each genetic locus has only three possible genotypes, we used a binary
encoding with ‘01’ for the first genotype, ‘10’ for the second genotype, ‘11’ for the
third genotype, and ‘00’ for the wildcard.  Thus, each array presented to the CA
consisted of 10 bits with two bits encoding the state of each of the five cells.  We
used a simple nearest-neighbor rule table that is implemented by looking at the state
of the cell in question and the adjacent cell states as is illustrated in Figure 1A.
With three cells forming a rule and four different states per cell, there are 43 or 64
possible rule inputs with four possible output states for each.  An important feature
of CA is the number of time steps or iterations.  This will govern the amount of
spatial and temporal information processing that can performed.  In this study, we
allowed a maximum of 128 iterations for each CA.  This maximum number of
iterations was selected to allow enough time for parallel processing of all the
information in an input array without an excessive number of iterations that might
complicate interpretation.  Thus, there are three essential components to the CA
model.  First, the correct combination of genetic variations must be selected for
initiating the CA cell states.  Second, the appropriate rule table that specifies the
information processing must be selected.  Finally, the number of time steps or
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iterations for the CA must be selected.  We used the genetic algorithm machine
learning methodology to optimize selection of these three model components
(described below).

How is the output array of the CA used to perform classification and prediction?
We first count the number of 1s in the binary encoded output array of the CA run on
each set of genotypes for each affected and each unaffected sib in the sample.  A
classifier is formed by using a frequency histogram of the number of 1s among
affected sibs and unaffected sibs.  Each histogram bin is labeled affected or unaffected
depending on whether the number of 1s represented by that bin were more frequently
observed among affected or unaffected sibs.  For example, consider the case where
100 discordant sib pairs were evaluated.  Suppose the number of CA output arrays
that contained three 1s was 20 for affected sibs and 10 for unaffected sibs.  This bin
would be labeled affected and thus the 10 unaffected sibs would be misclassified.
This would contribute 0.05 to the overall misclassification rate.  This is performed
for each bin and a total classification error is estimated by summing together the
individual rates for each bin.

3   Cellular Automata Optimization using Parallel Genetic
Algorithms

3.1  Overview of Parallel Genetic Algorithms

Genetic algorithms (GAs), neural networks, case-based learning, rule induction, and
analytic learning are some of the more popular paradigms in machine learning11.
Genetic algorithms perform a beam or parallel search of the solution space that is
analogous to the problem solving abilities of biological populations undergoing
evolution by natural selection12, 13.  With this procedure, a randomly generated
‘population’ of solutions to a particular problem are generated and then evaluated for
their ‘fitness’ or ability to solve the problem.  The highest fit individuals or models
in the population are selected and then undergo exchanges of random model pieces, a
process that is also referred to as recombination.  Recombination generates
variability among the solutions and is the key to the success of the beam search,
just as it is a key part of evolution by natural selection.  Following recombination,
the models are reevaluated and the cycle of selection, recombination, and evaluation
continues until an optimal solution is identified.

As with any machine learning methodology11, GAs are not immune to stalling
on local optima14.  To address this issue, distributed or parallel approaches to GAs
have been implemented15.  Here, the GA population is divided into sub-populations
or demes.  At regular iterative intervals, the best solution obtained by each sub-
population is migrated to all other sub-populations.  This prevents individual sub-
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populations from converging on a locally optimum peak because new highly fit
individuals are periodically arriving to increase the population diversity.  In biology,
it is believed that evolution progresses faster in semi-isolated demes than in a single
population of equal size16.  Indeed, there is some evidence that parallel GAs actually
converge to a solution much faster than serial or single-population GAs15.  This
superlinear speedup may be due to additional selection pressure from choosing
migrants based on fitness15.

Genetic algorithms have been applied to microarray data analysis17, 18 and are
ideally suited for selecting polymorphisms and optimizing CA9.

3.2  Solution Representation and Fitness Determination

The first step in implementing a GA is to represent the solution or model to be
optimized as a one-dimensional binary array or chromosome.  For the CA, we
needed to encode five genetic variations and/or wildcards, the CA rule table, and the
number of CA iterations (see Figure 2).  Each of the genetic loci and the number of
CA iterations were represented using a total of six 32-bit integers with a modulo
operation used to constrain the integer to the desired range (0-19 for the genetic loci
(described in Section 4) and the wildcard and 0-127 for the number of iterations.)  As
previously described, each CA cell has four possible states and each rule depends on
the state of three cells.  Encoding this set of 64 rules, with each rule producing one
of four two-bit states as output, requires four 32-bit integers.  In total, the GA
manipulated 10 32-bit integers for a total chromosome length of 320 bits (see
Figure 3).  Fitness of a particular CA model is defined as the ability of that model
to classify siblings as affected or unaffected.  Thus, the goal of the GA is to identify
a CA model that minimizes the misclassification error.  Implementation using cross
validation is described below.

3.3  Parallel Genetic Algorithm Parameters

32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits

         320 bits

         Genetic
Var ia t ions

        Rule Table

       Iterations

Figure 2.  Encoding of the genetic algorithm chromosome.  The first five 32-bit segments encode
genetic variations and/or wild cards while the sixth 32-bit segment encodes the number of iterations.
The last four 32-bit segments encode the CA rule table.
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We implemented a parallel genetic algorithm with two sub-populations or demes
undergoing periodic migration.  Each GA was run for a total of 200 iterations or
generations with migration of the best solutions to each of the other sub-
populations every 25 iterations.  Sub-population or deme sizes of 10, 50, 100, 200,
500, and 1000 were used for the analysis of all 50 simulated datasets (see Section 4).
We used a standard recombination frequency of 0.6 and a standard mutation frequency
0.0213.

3.4  Hardware and Software

The parallel GA used was a modification of the Parallel Virtual Machine (PVM)
version of the Genetic ALgorithm Optimized for Portability and Parallelism System
(GALLOPS) package for UNIX19.  This package was implemented in parallel using
message passing on a 110-processor Beowulf-style parallel computer cluster running
the Linux operating system.  Two processors were used for each separate run.
Information about obtaining the CA and GA software can be found at
http://phg.mc.vanderbilt.edu/software.

3.5  Implementation

The goal of the GA is to minimize the classification error of the CA model.
However, from a genetics perspective, the goal is to identify the correct functional
genetic variations.  That is, from a pool of many candidate genes, the goal is to find
those that play a role in influencing risk of disease.  We used a 10-fold cross-
validation strategy24 to identify optimal combinations of genetic variations.  Cross-
validation has been a successful strategy for evaluating multilocus models in other
studies of common complex diseases4.  Here, we ran the GA on each 9/10 of the
data and retained the CA models that minimized the misclassification rate.  Across
the 10 retained models, we selected the combination of polymorphisms that was
observed most frequently.  The reasoning is that the functional set of genetic
variations should be identified consistently across different subsets of the data4.  To
determine statistical significance of the observed cross-validation consistency, we
permuted the data 1,000 times to determine the empirical distribution of cross-
validation consistency were the null hypothesis true.  We rejected the null
hypothesis of no association when the upper-tail Monte Carlo p-value was ≤ 0.05.
We also estimated the general prediction error of the best set of retained models
using each of the independent 1/10 of the data.

4   Data Simulation
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The goal of the simulation study was to generate a series of datasets in which the
probability of a sibling being affected is dependent on epistasis or interaction among
a set of genetic variations.  We first simulated 100 sibling pairs each with 20
unlinked (i.e. on different chromosomes) genetic variations using the Genometric
Analysis Simulation Program (GASP)20.  Each genetic variation had two alleles
with frequencies 0.6 and 0.4.  Four of the 20 genetic variations served as the
functional genetic loci.  The remaining 16 genetic variations serve as potential false-
positives.  Thus, the goal of the CA was to identify the correct four functional
genetic variations from the total of 20 candidates.

The epistatic interaction among the four functional genetic variations was
accomplished using a Boolean network (Figure 3).  Alleles (e.g. A1 and A2) were
encoded as either 1 for an A allele or 0 for an a allele.  The allele combinations at
each genetic locus (A-D) that contribute to disease risk were as follows; A1 = 1 and
A2 = 1, B1 = 1 and B2 = 0, C1 = 0 and C2 = 0, D1 = 0 and D2 = 0.  The logic
functions AND, NOR, INHIBITION, and XOR26 were selected such that the Boolean
network would produce a one or affected status if a particular subject had one and
only one of the four specified allele combinations.  The XOR function has been
described as an epistasis model21 and is often used to evaluate pattern recognition
approaches because of its inherent nonlinearity.  With this model, the probability of
being affected is one if the sibling has one and only one of the allele combinations
or genotypes listed above.  Inheriting more than one of the allele combinations
listed above is protective against disease.  The independent main effects of each
genetic variation are minimal under this epistasis model.

Figure 3.  Boolean network used to simulate the epistasis effects on disease risk.  The alleles of each
single-nucleotide polymorphism combine to form genotypes using the AND, NOR, and INHIBITION
functions.  The genotypes are then combined using XOR functions that output affected status.  Each
sibling is at increased risk of being affected if they inherit one, and only one, of the four genotypes.
Inheriting more than one of the particular genotypes is considered protective.  With this epistasis model,
the independent main effects of each genotype are minimized.
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5   Data Analysis

The goal of the statistical analysis was to determine whether the cross-validation
consistency (see Section 3.5) for a particular combination of genetic variations is
expected by chance if the null hypothesis were true.  A particular genetic variation
was considered statistically significant if it was identified in six or more of the 10-
fold cross-validation datasets.  As described, this decision rule was determined
empirically by permuting the data 1,000 times and selecting the number of 10-fold
cross-validation datasets for which loci would be identified less than 5% of the time.
This corresponds to a statistical significance level of 0.05.  The power of the CA
approach is reported as the number of simulated datasets out of 50 in which the
correct four functional genetic variations were identified in six or more of the cross-
validation datasets as described above.

6   Results

We first analyzed the single-locus effects of each of the 20 simulated SNPs in each
dataset of 100 discordant sib-pairs using the traditional Sib-TDT statistic10.  The
power to detect the independent effects of each of the four functional loci was less
than 50% while the power to detect each of the false-positive loci was close to the
expected false-positive rate of 5%.  Thus, a traditional approach would have missed
each of the four functional loci more than half the time with occasional false-
positives.  This indicates that none of the four SNPs have a large independent main
effect on disease risk.  This is consistent with the simulation strategy used (see
Section 4).

Table 1.  Power (datasets out of 50) of CA to identify each locus.

Sub-Population
Size Locus A Locus B Locus C Locus D

False
Positives

10 4 0 16 1 27

50 50 20 50 34 0

100 50 26 50 33 0

200 50 32 50 37 0

500 50 30 50 40 0

1000 50 34 50 40 0

   Table 1 summarizes the number of datasets (out of 50 total) in which each of
the functional loci (A-D) were identified using the multi-locus CA approach.  For
GA deme sizes of 50 or greater, the CA yielded 100% power for identifying loci A
and C.  That is, these two genetic loci were always found.  When the deme sizes
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were 1000, the power to detect locus B was 68% while the power to detect locus D
was 80%.  The power to detect the four functional loci was greatly improved over
that of the Sib-TDT by considering combinations of SNPs using the CA approach.
It should be noted that a GA deme size of 10 yielded low power and many false-
positives.  However, when a GA deme size of 50 or greater was used, no false-
positives were identified.  These results suggest that the CA pattern recognition
approach is useful for identifying combinations of genetic variations that influence
disease risk primarily through gene-gene interactions.

7   Discussion

We have introduced a cellular automata (CA) approach to identifying patterns of
variations in multiple SNPs associated with risk of common complex multifactorial
diseases.  The development of this CA approach was motivated by the limitations of
the generalized linear model for detecting and characterizing gene-gene3 and gene-
environment22 interactions.  

The CA approach shares many of the same advantages of the multifactor
dimensionality reduction (MDR) approach4.  For example, the CA approach is
nonparametric.  As Ritchie et al.4 describe, this is an important distinction from
traditional parametric statistical methods that rely on the generalized linear model.
For example, with logistic regression, as each additional main effect is included in
the model, the number of possible interaction terms grows exponentially.  The
number of orthogonal regression terms needed to describe the interactions among a
subset, k, of n biallelic loci is n choose k multiplied by 2 raised to the power of k23.
Thus, for 20 polymorphisms we would need 40 parameters to model the main
effects (assuming two dummy variables per biallelic locus), 1,560 parameters to
model the two-way interactions, 79,040 parameters to model the three-way
interactions, 1,462,240 parameters to model the four-way interactions, etc.  Thus,
fitting a full model with all interaction terms and then using backward elimination
to derive a parsimonious model would not be possible.  The CA approach avoids the
pitfalls associated with using parametric statistics such as logistic regression for
modeling high-order interactions.

An additional advantage of the CA approach is that it assumes no particular
genetic model (i.e. model-free).  That is, no mode of inheritance needs to be
specified.  This is important for diseases such as cardiovascular disease and
depression in which the mode of inheritance is unknown and likely very complex.
In its current form, this approach can be directly applied to case-control and
discordant sib-pair study designs.  Extension to other family-based control study
designs such as triads should also be possible.

As with MDR4, an advantage of the CA approach is that false-positive results
due to multiple testing are minimized.  Indeed, we detected no false-positives in the
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present study when a GA deme size of 50 or greater was used.  This is primarily due
to the cross-validation strategy used to select optimal models.  Data reduction and
pattern recognition approaches are good at identifying complex relationships in data,
even when those relationships are due to chance or false-positive variations.
However, the real test of any approach is its ability to make predictions in
independent data24.  Cross-validation divides the data into 10 equal parts allowing
9/10 of the data to be used to develop a model and the independent 1/10 of the data
used to evaluate the predictive ability of the model24.  Optimal models are selected
solely on their ability to make predictions in independent data.  Once a final
predictive model has been selected, only then is the null hypothesis of no
association tested via permutation testing.  It is this combined cross-validation and
permutation testing approach that minimizes false-positives due to multiple looks at
the data4.

There are several advantages of the CA approach over data reduction approaches
such as MDR.  First, there is no loss of information.  The CA considers the full
dimensionality of the data whereas methods such as MDR seek to reduce the
dimensionality of the data and in doing so lose information.  Additionally, the CA
does not have the same limitation as MDR for making predictions during cross-
validation in high-dimensional data4.  This is because the rule set that is generated is
general enough to accept any combination of genotypes to make a prediction of
disease risk.

Despite these important advantages, there are also several disadvantages to the
CA approach.  Most importantly, CA models are very difficult to interpret.
Understanding the relationship among the multilocus SNP genotypes requires
interpreting the spatial and temporal information processing that is occurring in the
CA to produce a predictive output.  Although Mitchell et al.9 have made progress in
this area, there is clearly a lot of work remaining.  An additional disadvantage over
traditional methods is that the CA approach is very computationally intensive.
Selection of SNPs and optimization of the CA parameters requires a machine
learning strategy such as the parallel GA.  Effective implementation of GAs requires
at least several workstations that are part of Beowulf-style parallel computer system.
However, it should be noted that these systems are very inexpensive to set up since
they use commodity-priced off-the-shelf components and freely available software.

In conclusion, we have introduced a new approach to identifying patterns of
SNP variations in complex multifactorial diseases.  This approach takes advantage
of the emergent computation features of one-dimensional CA and the intelligent
search features of parallel GAs.  We anticipate that the results of this study will
open the door for investigations of using CA to identify combinations of SNPs that
interact in a non-additive or nonlinear manner to influence risk of common complex
multifactorial diseases.
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