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We present a polynomial time algorithm for estimating optimal HP sequences that fold to a
specified target protein conformation based on Sun et al’s Grand Canonical (GC) model.
Application of the algorithm to related proteins taken from the PDB allows us to explore the
nature of the protein genotype:phenotype map.  Results suggest: (1) that the GC model
captures important biological aspects of the mapping between protein sequences and their
corresponding structures, and (2) the set of sequences that map to a target structure with
optimal energy is affected by minor differences in structure.

1   Introduction

1.1  Background

A fundamental problem in biology is to understand the correspondence between the
genotype and phenotype.  Understanding the functions that constitute the genotype:
phenotype map (gp-map), would facilitate the prediction of genetic predisposition to
disease, the design of new drugs, and an understanding of the evolutionary origin of
the diversity of phenotypes.  The complexity of biological systems has made it
extremely difficult to elucidate the gp-map at the organismal level.  Our current
knowledge of this map is generally limited to a few alleles, most of which are
associated with human disease conditions.  Recent efforts by the biophysics
community to understand the gp-map at the level of proteins look particularly
promising [1,2], and may provide insight into higher levels of organization.

Proteins represent an excellent system in which to explore the gp-map for two
reasons:

1  They exhibit a broad range of functions (phenotypes) including cell
signaling, pathogen recognition, structural support, cellular scaffolding,
and molecular motors that move components around within the cell.

2  There is a large body of work devoted to solving the protein folding
problem, which is defined as follows: Given a protein sequence S, find the
conformation to which S folds under physiological conditions.  Research in
this area has led to an improved understanding of the rules that govern how
sequences map to their corresponding protein phenotypes.
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1.2  Redundancy and Accessibility

Studies of protein variation in nature indicate that there is extensive redundancy in
the mapping from sequence to structure [3,4]. It is likely that the highly redundant
mapping between sequence and structure has been important for the evolution and
diversification of proteins [5,6,7]. Structures with many sequences mapping to them
are predisposed to be more accessible through the evolutionary process than are
structures with fewer sequences.  For example, consider two sequences A and B,
each of which maps to a different structure, and which differ by 20 point mutations.
Changing one structure into the other would require the simultaneous mutation at
each of the 20 different sites. This is highly unlikely to occur. However, if the same
two structures are each represented by several thousand sequences, there is a higher
likelihood that some of the sequences mapping to A would be closer to some of the
sequences mapping to B .  Thus a high degree of redundancy in the mapping
between A and B promotes their mutual evolutionary accessibility.

A protein can be thought of as a cloud of points in a high dimensional space,
where each axis represents a separate amino acid position in the sequence.  This
space is non-Euclidean and is referred to as protein space [6,8].  Each point in the
protein space represents a unique sequence while a cloud represents the domain of
different sequences that map to a particular protein's function. When clouds
representing different proteins come into close proximity, a change from one protein
to another is facilitated.  Change is unlikely when clouds are distant.  Just as
spherical clouds will lead to less connectivity than will dendritic clouds in
Euclidean space, the multidimensional shape of protein clouds will affect the degree
of connectivity and accessibility among proteins.  Comparable dendritic clouds have
been investigated as sparse random networks [9] and as neutral networks [4,10].

In this paper we set out to use the redundancy in the mapping of sequence to
structure to explore the question: "How easy is it to turn one kind of protein into
another, and are there paths of least resistance that would allow us to best account
for the diversity of proteins observed in nature?"  More formally, what is the
evolutionary inter-accessibility among proteins? We call this the minimum
evolutionary distance (MED) problem. To solve the MED problem and examine the
structure of these protein clouds we need to have access to a large percentage of all
of the sequence variants that occur in nature.

1.3  Previous Results

It is not yet possible to empirically collect all sequence variants that occur in nature
to solve MED.  Given this we generate sequence variants based on an abstract
folding model.  There is a natural inverse of the protein folding problem, called the
inverse protein folding problem (IPF), which has been used by many researchers to
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tackle protein design problems [11].  For our purposes it is sufficient to describe the
problem as follows: Given a native protein conformation C (known as a target
conformation), find a sequence that folds to C with the minimal energy.  For more
detailed information the reader is referred to references [11,12,13].  A variety of
methods have been described that attempt to solve IPF [14,15,16]. Their utility
varies with their ability to capture different aspects of the problem and their
computational complexity. Only a few of the approaches used are computationally
solvable in polynomial time. Almost all are based on Dill’s HP-lattice model [17].
In Dill’s model a protein conformation is a self-avoiding walk on a regular lattice,
and amino acids are classified as either hydrophilic (P), or hydrophobic (H). Two
amino acids are assumed to be in contact if they are close in space, but not adjacent
on the self-avoiding walk. The energy function rewards only H-H contacts. A
considerable body of work suggests that this abstraction can capture important
aspects of protein structure [12, 16, 17].  Following earlier models proposed by
Shaknovich and Gutin [2], Sun et al. [1] introduced the Grand Canonical (GC)
model. This model accommodates important aspects of the 3D conformation of real
proteins by relaxing the regular lattice constraint and incorporating solvent
accessibility. When applied to real proteins the GC model yields HP-sequences that
closely match the HP representation of real sequences [1]. Kleinberg [18] showed
that IPF for the GC model can be solved in polynomial time by transforming it into
a bipartite network flow problem.

1.4  Contribution of this Paper

In this paper we introduce the MED problem. We present and study aspects of the
MED problem as it applies to biological evolution and the “interaccessibility” of
proteins. Our approach builds on solutions to IPF based on the GC model and uses
network flow techniques initiated by the work of Kleinberg. We apply the
mathematical structure and efficient algorithms associated with network flow
problems to address issues related to the MED problem. We report the following:
Computational advances:

• An improvement in the running time of Kleinberg’s algorithm.
•  An efficient representation and algorithm to find all HP-sequences that

optimally solve IPF for the GC model.
Evolutionary advances:

•  Comparable accuracy to Sun et al.’s model [1] when estimated HP-
sequences are contrasted with the corresponding real sequences.

•  A demonstration that minor changes in protein structure can have
important consequences for the sequences that map to them with minimum
energy.
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• The surprising finding that the evolutionary information inherent in minor
structural differences is reflected in HP-sequences that solve IPF for the
GC model.

2.  Solving the Inverse Folding Problem in “Computer Space”

The GC model as proposed by Sun et al. [1] is a HP-model that abstracts physico-
chemical and geometrical features of real proteins into a contact graph G.  Amino
acids of the protein correspond to the nodes of G, and distances between amino
acids below a given threshold correspond to edges of G. Edges are weighted by
distance, and nodes are weighted by the solvent accessibility. The contact graph
represents the target conformation. Hs of a HP-sequence map to a subset of the
nodes of the contact graph and are referred to as an H-assignment. An H-assignment
has an energy value given by an energy function that balances the competing cost of
solvent accessibility and H-H contacts. H-H contacts are rewarded proportional to
their distance, while H assignments are penalized proportional to their solvent
accessibility.

In this section we provide a definition of the GC model that we use as the basis
of our work. We then define IPF under the GC model and refer to it as GC-IPF. HP-
sequences that solve GC-IPF are referred to as optimal HP-sequences.  The
definitions we give follow Sun et al. [1] and are presented in subsection 2.1.  In
subsection 2.2 we review the conceptual basis of Kleinberg’s algorithm to solve IPF
under the GC model, and introduce an algorithm that is asymptotically more
efficient. In subsection 2.3 we show that the work of Picard et al. [19] can be
applied to reveal the intrinsic structure of all IPF solutions.  This intrinsic structure
is also used to enumerate all IPF solutions.  For a background in standard network
flow concepts the reader is referred to [20].

2.1  Grand Canonical (GC) Model

Definition (contact graph): Let C be a protein structure. A contact graph Gc =(V, E,
s, d) is a simple undirected graph, with vertices V, edges E, node weights s: V → R,
and edge weights d: E →  R. Vertices in V correspond to the amino acids of the
conformation. Edges in E correspond to non-covalent binding amino acids, whose
Cα positions are at most 6.5Å apart. The node weight s(v) represents the “solvent
accessibility” of the corresponding amino acid v and the edge weight d({v,w})
represents the “distance” between the amino acid residues corresponding to v and w.
(In subsection 3.1 we will specify "solvent accessibility" and "distance".)  An
example for a Contact Graph is shown in Figure 1.
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Figure 1: Contact Graph to Network Flow Graph Conversion

Definition (H-assignment): Let GC =(V, E, s, d) be a contact graph. An element
H∈℘(V) is called an H-assignment.

Definition (energy): Let G = (V,E,s,d) be a contact graph.  EG: ℘(V) → R is the
energy function for G, where EG(H) = - α Σe∈E’ d(e) + β Σv∈H s(v) and E’ = (H ×
H) ∩ E.

Definition (optimal H-assignment): An optimal assignment for a contact graph G is
an H-assignment X, such that E(X)=min{ EG(X’)∈R | X’ is an H-assignment}.

Definition (GC-IPF):
Given: A contact graph GC

Find: An optimal H-assignment for GC

2.2  Algorithms for GC-IPF

Herein, we review the conceptual basis for Kleinberg’s approach and introduce an
improved algorithm. Let GC=(V, E, s, d) be a contact graph.
Overview of Kleinberg’s algorithm:

1. The contact graph G is transformed into a bipartite network flow graph
N(G) = (V’, E’), where V’={s,t}∪E∪V s,t∉E∪V and E’ = ({s} × E) ∪ (V ×
{t}) ∪ {(e,v)∈ E × V | ∃ w∈ e: {v,w}∈E}. The capacity for an edge (s,e)∈
E’ is αd(e), the capacity for an edge (v,t)∈E’ is βs(v), and all remaining
capacities are infinite. An example for N(G) is shown in Figure 1.

2. Find a minimum cut C=(X, Y) in N(G), where s∈X, t∈Y.

It can be shown that the H-assignment H=X∩V is an optimal assignment [18].
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To describe the running time we define n=|V| and m=|E|. Step 1 needs O(n+m)
time and the running time of step 2 depends on the network flow algorithm used.
Kleinberg applies an algorithm designed for general flow networks [21,22]. This
approach solves step 2 in O((n+m)2 log(n+m)) time, which is also the overall
running time.  Modification of Kleinberg’s approach: The network flow algorithm
used is designed for general flow networks, but the network flow graph that is
calculated in step 1 is bipartite. For a bipartite network flow graph B = (X, Y, EB) a
minimal cut can be found in O(nx m log(nx /mB)), where nx=|X|, ny=|Y|, x≤ y, and
mB=| EB |  as shown by Ahuja et al. [23]. Thus by using the Ahuja et al. algorithm in
step 2 GC-IPF can be solved in O(nm log(n/m +2)) time.

Kleinberg [18] assumes that in practice volume constraints in three dimensions
imply that the number of possible contacts has a constant upper bound. From this
assumption follows the running time of O(nlog n) for Ahuja et al., algorithm and
O(n2log n) for Kleinberg’s algorithm.

2.3  Optimal Assignments: Structure and Algorithm

Clearly, there can be 2n different optimal H-assignments for a contact graph GC =
(V,E), where n=|V|. In practice, it is most unlikely that this would result when the
input is based on a contact graph for a PDB structure.  As shown by Picard et al.
[19], minimal cuts in a network flow graph are structured.

Theorem: If ( , )S S and ( , )′ ′S S  are minimal cuts in a flow network, then ( , )S S S S∩ ′ ∪ ′
and ( , )S S S S∪ ′ ∩ ′  are also minimal cuts.

As stated in section 2.2, minimal cuts represent optimal assignments. Thus, for
all optimal assignments the assignments with minimal and maximal cardinality,
denoted as Hmin and Hmax, are unique. All optimal assignments are contained in Hmax

and contain Hmin.

Biologically this implies that there exists a core pattern of H-assignments that
must be present in all of the sequences mapping to a particular structure, and that
evolutionary forces will be constrained to maintain this pattern so long as the
structure does not change. Conversely it implies that changes in structure can have
significant effects on evolutionary opportunity. This is because the constraints
associated with maintaining a particular protein structure affect the shape of clouds
in protein space thereby affecting MED.  Picard et al. [18], proved that all minimal
cuts can be computed linear in the output size, when the maximal flow is given.

3.  Implementation

In this section we describe details of our implementation for the MED problem.
Our implementation takes as input a file from the Protein Data Bank (PDB) [24]
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containing the 3D coordinates of each Cα atom in a protein, and outputs the set of
optimal HP sequences.

3.1  Parameters and Performance

Parameters: For a contact graph GC=(V,E,s,d) we specify the distance function d,
the solvent accessibility s, and the scaling parameters α and β, following Sun et al.
[1]. The distance function d is given by the following equation:

d({i,j}) = 
1

1 6 5+ −
e

dij( . )Å
(3.1)

The value dij is the distance between the C α atoms of the amino acids
corresponding to the nodes i and j in the contact graph G.  The function s is given
by DSSP [25]. The range of α is provided by the user, while β=1/3.

Performance: The algorithms were implemented in C++ and compiled with
Visual C++ 6.0 using the standard debug mode.  We ran our software on a 700 MHz
PC with 256 MB of RAM under Windows 2000 Professional Edition.  The running
time for each of the 15 globin structures was usually less than three minutes.

4.  Application to Real Data

In this section we report results for a trial of our approach.  We applied the method
to a test set of 15 globin structures taken from the PDB (Table 1).  The test set was
chosen to represent a diverse sampling of structures within a protein family and
included myoglobins, leghemoglbins, clam hemoglobin, ferric hemoglobin and
several hemoglobins from the following animals: human, goose, turtle, trout, shark,
skate, lamprey, and the sea cucumber.  Selection was restricted to monomeric
globins and alpha chains of multimeric globins.

4.1  A Test Run Using Globins

We obtained a total of 19 optimal HP-sequences when we subjected the test set to
the GC model at near optimal α values. The number of sequences generated from
each structure varied from 1 for several of the taxa to 4 for soybean leghemoglobin.
The optimal α values were estimated by comparing α values from 1 to 15 at 0.5
increments.  We converted the amino acid sequences associated with each structure
in the test set to their HP equivalents following Sun et al. [1]. The resulting HP
strings are denoted transformed sequences.  To explore the effect that changing α
had on the output of the model we explored two parameters: The accuracy and the
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energy difference.  The accuracy is measured as the percent sequence similarity
between the estimated and transformed sequences and the energy difference is
measured as the difference between the energy of the estimated and transformed
sequences.  When we plotted both parameters against α we found that the energy
difference behaved in a concave manner, while the accuracy behaved convexly.

We compared the set of sequences obtained from the GC model with the HP
transformed sequences taken from nature for each of the 15 conformations.  Our
results indicate that many of the estimated assignments are close to those of the
transformed sequences.  In general the real sequences exhibit a finer grained
sequence variation than the HP sequences generated by the GC model.  Sequences
produced by the GC model tended to have larger uninterrupted "runs" of H's and P's
than were observed in the real sequences (sequences available on request).

The accuracies we obtained at optimal α values for each of the 15 globin
structures were comparable to those obtained by Sun et al. ranging from 66.4 to
78.4% (Table 1).

Table 1: Globin structures used in test case. The number of optimal HP sequences
is indicated in column 4. Percent accuracy reflects the similarity between the
optimal HP-sequences and their counterpart transformed sequences.

The ClustalW [26] alignment of the 19 optimal HP-sequences was subjected to
UPGMA cluster analysis. Optimal HP-sequences clustered according to the
structure from which they were derived as shown in Figure 2.  These results imply
that although the various different globins are structurally similar, the minor

PDB ID Structure Species # seqs. % accy
1A3N human hemoglobin Homo sapiens 1   66.7
1HV4 goose hemoglobin Anser indicus 1   67.4
1OUT trout hemoglobin Onchorhynchus mykiss 1   69.0
1GCV shark hemoglobin Mustelus griseus 1   71.1
1CG5 stingray hemoglobin Dasyatis akajei 1   70.2
3LHB lamprey hemoglobin Petromyzon marinus 1   70.5
1LHT sea turtle myoglobin Caretta caretta 1   77.8
1VXB sperm whale myoglobin Physeter catodon 1   78.4
1GDJ yellow lupine leghemoglobin Lupinus luteus 2   72.2
1BIN soybean leghemoglobin Glycine max 4   66.4
1MOH clam ferric hemoglobin Lucina pectinata 1   72.5
1BOB clam hemoglobin Lucina pectinata 1   73.2
1HLM sea cucumber hemoglobin Caudina arenicola 1   70.9
1 H97 Trematode hemoglobin Paramphistomum 1   77.6
1DLY unicellular alga hemoglobin Chlamydomonas 1   70.2
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structural differences that do exist are sufficient to affect the set of optimal HP-
sequences.

This observation is consistent with the theoretical prediction described in
section 2.3.  This finding has potentially important implications for phylogenetic
analysis. If minor differences in protein structure are responsible for significant
changes in constraints in nature, then the models of evolution used to estimate
phylogenetic trees from naturally occurring sequences must incorporate the changes
if they are to avoid yielding misleading results.  Put another way, if the models used
to estimate phylogenetic trees do not accommodate the non-stationarity in the
process caused by constraint changes, the resulting trees will be misleading.

The relationships among the 15 clusters of HP sequences resulting from the
application of CG-IPF, mirrored the cluster structure obtained when each of the
transformed sequences was examined using a cluster analysis (Figure 2).  This adds
further weight to the idea that the representation we used is capturing something
natural about the mapping between sequence and structure.  While we acknowledge
that considerable differences exist between the optimal HP-sequences and their
transformed counterparts, we find it interesting that the patterns of similarity among
the HP-sequences show such correspondence to that of the real sequences.

4.2  Exploring Sub-Optimal α Values

We computed optimal HP-assignments at 90% and 80% of the optimal energy using
a α value of 0.1.  As expected, the number of optimal HP-sequences increased as
the optimal energy criterion was relaxed. 40 optimal HP-sequences resulted at 90%
of the energy while 48 resulted at 80%.  UPGMA cluster analysis of these
sequences yielded a similar cluster structure to that obtained with the optimal
energy (Figure 2).  Note that the sequences generated at near optimal energy values
are a subset of those generated at sub-optimal energy levels.  We did not encounter
any cases where sequences from different structures clustered together to the
exclusion of sequences from the same structure.  Presumably, there would be a
point at which clusters start to overlap.  This point would represent the "bridge
point" at which different protein structures become inter-accessible.

4.3  Scope of the Model

This approach and our implementation of it face several potential problems and
limitations.  Our results show that our model tends to over specify the problem to
the point that only a few optimal HP sequences are produced out of an exponential
potential number of possible mappings.  This problem, however, is tied directly to
our implementation and can be solved by reducing the specificity of the distance
and solvent accessibility functions.
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Our approach is also limited by a dependency on a distance measure for
comparing sequences between proteins.  Finding an appropriate distance measure
for comparing diverse proteins is a challenging problem that has not yet been
adequately solved.

5.  Outlook

Sequences that map to a particular protein structure form a cloud of points in protein
space.  The shape of such clouds reflects the structural and functional constraints of
the protein [18]. As structures and functions change over the course of evolution, so
does the shape of the corresponding cloud.  When one cloud comes close to another,
the two protein structures represented by the clouds, become evolutionarily inter-
accessible.   If a mutation occurs that allows a sequence in one cloud to be
converted into a sequence in another, a conformational change in the protein will
result.  Recent empirical evidence suggests that these conversions occur in nature
[27,28,29,30].

The protein space representation provides a clear insight into the redundancy of
the gp-map.  It explains how resilience in the phenotype can be reconciled with a
genotype that is free to explore different configurations [31].  Redundant mappings
promote evolutionary access to new phenotypes and are predisposed to yield
discrete changes at the phenotype level.   We conjecture that some of the abrupt
morphological changes seen in the fossil record represent discrete transitions caused
by redundant mappings at higher levels of biological organization.  An
understanding of the gp-map at the organismal level will likely remain beyond our
reach for some time to come.  However, we believe that advances in algorithmic
approaches combined with representations that meaningfully capture biology at the
molecular level, promise to bring an understanding of the gp-map at the protein
level within grasp in the near future.
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Figure 2: UPGMA of 48 optimal HP assignments resulting from the application of
the GC-IPF to 15 globin structures (right). The UPGMA for the transformed
sequences is shown at top left. The Maximal Agreement sub-tree shows groupings
with a common cluster structure between the two analyses.
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