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The Structural Genomics Initiative promises to deliver between 10,000 and 20,000 new 
protein structures within the next ten years.  One challenge will be to predict the functions of 
these proteins from their structures.  Since the newly solved structures will be enriched in 
proteins with little sequence identity to those whose structures are known, new methods for 
predicting function will be required.  Here we describe the unique structural characteristics of 
O-glycosidases, enzymes which hydrolyze O-glycosidic bonds between carbohydrates.  O-
glycosidase function has evolved independently many times and enzymes that carry out this 
function are represented by a large number of different folds.  We show that O-glycosidases 
none-the-less have characteristic structural features that cross sequence and fold families.  The 
electrostatic surfaces of this class of enzymes are particularly distinctive.  We also 
demonstrate that accurate prediction of O-glycosidase function from structure is possible. 

1 Introduction 

1.1 Structural genomics 

The completion of the sequencing of entire genomes has tremendously increased 
our knowledge of biology.  It has also revolutionized our thinking about the scale at 
which is possible to make inquiries and has created new challenges.  One of these 
challenges is the determination of the three dimensional structures of a large, 
representative set of proteins.  This endeavor, called structural genomics, aims to 1) 
understand the basis of disease at the atomic resolution level of detail, 2) provide 
homology modeling scaffolds for all proteins, 3) obtain structures for the targets of 
structure-based drug discovery, and 4) map out protein fold space to better 
understand sequence-structure relationships1. Within the next ten years, between 
10,000 and 20,000 new structures are expected to be solved as a result of the 
structural genomics initiative2. 

It is well established that the proteins that are similar in sequence are likely to 
have evolved from a common ancestor and thus retain similar functions.  However, 
in order to sample protein structure space broadly, the structures selected as targets 
for structural genomics will primarily be those with little or no sequence identity to 
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proteins whose structures have already been solved. Many of these proteins are 
expected to have unknown functions.  

1.2 Predicting function from structure 

In the absence of sequence identity, how is it possible to predict function from 
structure?  It has been noted that proteins that adopt similar folds often have similar 
functions3.  However, there are many well known examples, such as the SH3 fold 
and the TIM barrel4, which are used for many different functions.  It is also often 
possible to predict the functions of enzymes based on the spatial arrangement of 
catalytic residues5. However, some functions (e.g. proteolysis) have evolved 
multiple times and can not be accounted for by any single set of residues.  

To account for the likelihood that entirely new folds and catalytic mechanisms 
will be discovered through structural genomics, it will be necessary to develop new 
methods of function prediction that do not rely on existing examples of known 
sequences, folds or catalytic residue arrangements.  We have demonstrated recently 
that proteases as a group (including those with very different folds and catalytic 
mechanisms) share common structural features6.  These features include smaller 
surface areas, higher packing densities, and less helical structure.  We speculate that 
these features arose independently as mechanisms to avoid autolysis.  More 
importantly, we are able to use these identifying features to train a neural network to 
predict protease function with high accuracy even in the absence of related 
structures being present in the training set6.  More recently, we have tackled the 
problem of nucleic acid binding protein function prediction7.  In this case, 
discrimination of the nucleic acid binding proteins (again at high accuracy) relied on 
a novel method using positive electrostatic patch analysis.  

1.3 The O-glycosidases 

We now turn our attention to identifying the characteristic features of O-
glycosidases.  These enzymes hydrolyze linkages between carbohydrate molecules.  
We chose this class of enzymes for several reasons.  First, oligosaccharides play 
critical roles in a variety of biological processes including viral invasion and cell 
signaling events8.  Thus O-glycosidases represent an important class of enzymes for 
drug discovery, especially with regard to antiviral and anticancer agents.  Second, 
the O-glycosidases are structurally diverse and include members of at least six 
different folds ranging from all alpha to all beta9, 10.  This enzyme family is 
therefore  an excellent test case for fold independent function prediction methods.  
O-glycosidases are also well represented in the existing Protein Data Bank11, 
allowing us to build a substantial representative data set.  Finally, O-glycosidases 
were frequent false positives in our protease prediction effort6.  We speculated that 
this is because they are also hydrolases, and may have been subjected to similar 
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anti-autolysis evolutionary pressures.  Identification of the unique features of O-
glycosidases should improve prediction on both classes of enzymes. 

We have gleaned a set of identifying features of O-glycosidases.  Like with 
nucleic acid binding proteins, we again used electrostatic patch analysis, this time 
concentrating on the negatively-charged surface patches to help characterize O-
glycosidases.  Using an ensemble of features, we were able to train a neural network 
to predict O-glycosidase function with over 87% accuracy.  We are also now able to 
better discriminate between O-glycosidases and proteases. 

2 Methods 

2.1 Data Set Construction 

Representative data sets of both O-glycosidase and non-O-glycosidase protein 
structures from the Protein Data Bank (PDB)11 were constructed. These data sets 
consisted of proteins that were solved by X-ray crystallography and had an atomic 
resolution of better than 2.5 Å.  Within the sets, sequence identity cutoffs were used 
such that no two members in any one data set contained more than 25% sequence 
identity within the non-O-glycosidase data set and 35% sequence identity for the O-
glycosidases. The O-glycosidase set was constructed by mining the PDB for the 
Enzyme Commission (EC) number 3.2.1.x (x stands for substrate specificity) and 
consisted of 39 proteins.  The non-O-glycosidase data set consisted of 258 
monomeric proteins and was constructed from Hobohm’s and Sander’s “pdb select” 
list of proteins12.  A description of the glycosidase data set along with the PDB 
codes for the non-glycosidase data set can be found at : 
http://www.chemistry.ucsc.edu/gregoret/PSB_supp.html. 

2.2 Electrostatic Patch Analysis 

The UHBD13 program was used to derive a continuum electrostatic description for 
each protein, using the Poisson-Boltzmann equation.  For all UHBD calculations the 
grid dimensions were set to 65x65x65 with 2.0 Å distance from each grid point to 
another.  Dielectric constants of 2.0 and 80.0 was used for the protein and the 
solvent, respectively. Other parameters for UHBD were set to their default values.  
Patches were constructed based on UHBD output with an in-house program, 
PATCHFINDER. Continuum negative electrostatic patches, mapped to the protein 
surface, were constructed by assembling adjacent surface points, which possessed a 
negative potential less than or equal to -5 kT. The patch size was defined as the 
number of surface points within a continuous cluster of points. The largest negative 
patch was used to extract sequence and structural information. 
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2.3 Sequence Conservation 

For each protein in the data set, a multiple sequence alignment (MSA) was 
constructed using PSI-BLAST version 2.1.114 to search the non-redundant NCBI 
data base for similar sequences that were significant (E-value <0.001). Since we 
wanted to include only sequences that are likely to be structurally related to the 
representative sequence we eliminated sequences with <35% identity. In addition, to 
reduce redundancy from very close homologous sequences, only sequences with 
<90% identity were included in the MSAs.  

The conservation of specific residues within the negative electrostatic patch 
was analyzed, including residues which were occupied by Glu, Asp and Asn. In 
addition to the simple amino acid conservation we also calculated the conservation 
of aromatic residues as a group.  A residue position was considered to be conserved 
when ≥75% of the sequences in the MSA contained the same amino acid (for amino 
acid conservation) or property (for property conservation) as in the representative 
sequence.   For each of the amino acids above, the normalized frequency of 
conserved residues in the electrostatic patch was calculated. 

2.4 Cleft Detection 

The program SURFNET15 was used to analyze protein clefts. The residues 
identified within the largest two clefts of each protein were examined and the 
number of residues that overlapped with the largest negative patch were calculated.  
The cleft identified as having the largest overlap with the patch was further 
examined to confirm whether it had potential residues that could participate in a 
glycolysis reaction.  Only Asp and Glu were considered for donation of the acid or 
base atoms for the reaction. All distances between carboxylate groups of ASP and 
GLU residues were calculated.  The two carboxylate atoms with a distance closest 
to either 5 or 9.5 Å of each other, were identified as possible catalytic residues.  

2.5 Calculation of Other Structural Features 

A protein’s solvent accessible surface area was calculated by using Lee and 
Richards method16 as implemented in the program CALC-SURFACE17 with a 
default probe radius of 1.4 Å. The program DMS under the UCSF MidasPlus 
software package18 was used to calculate molecular surface. The roughness, or 
fractal dimension, D, of the surface19 was calculated using equation 1: 

 1.  D = 2 - 
dlogAs
dlogR    

where R is the probe radius and As is the molecular surface area. In this case, radii 
of 1.25,1.5, 1.75 and 2.0 Å were used. A perfectly smooth surface will not depend 
on the probe size, and will thus have a fractal dimension of two.  
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2.6 Machine learning 

For function prediction, we applied the Nevprop4 neural network package20. The 
neural network consisted of a single hidden layer with 3 nodes and a single output 
node. All training was performed with a standard feedforward, error 
backpropagation algorithm. The cross validation scheme used was to train on all but 
one member of the data set, which was withheld from training and subsequently 
tested. This was done for each of the members of the O-glycosidase data set.  For 
the non-glycosidase set, in each training session a random sample of 10% of the 
data set was withheld and subsequently tested. For the false set the average 
performance over all runs was reported. 
 

3 Results and Discussion 

3.1 Identifying Characteristics of O-glycosidases 

Based on general properties of the proteins structures, we wanted to identify unique 
features that could be used to distinguish O-glycosidase proteins from other classes 
of proteins. To do this, two representative data sets of crystallographically-
determined three-dimensional protein structures were constructed as described in 
Methods. The O-glycosidase data set consisted of 39 proteins and the non-O-
glycosidase proteins (including a full spectrum of different proteins except those  
with glycosidase function) had 258 members. A list of the proteins in the  
glycosidase data set and their structural classification (based on SCOP 
classification) is given at: http://www.chemistry.ucsc.edu/gregoret/PSB_supp.html. 
For the two data sets we calculated both global and local structural features that 
could potentially distinguish between them.  Although most of the features analyzed 
did not show statistically significant differences between the O-glycosidases and 
other group of proteins, when combined, these inputs were successfully used in 
predicting glycosidase function. 

3.1.1 Surface features 

We have previously shown that electrostatic patch analysis, a combination of 
structural and sequence features extracted from a distinct region on the protein 
surface defined by electrostatic potential, can help to distinguish nucleic acid 
binding proteins from other  proteins7. Surface electrostatics have previously been 
used to help indicate potential protein functions based on their structure21. O-
glycosidases mostly use Glu and Asp residues for catalysis, and as a result usually  
have a negatively-charged surface associated with their active sites9. To characterize 
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the O-glycosidase protein family, we performed our analysis on negatively-charged 
electrostatic patches on the protein surface (similar to the analysis performed for 
nucleic acid binding proteins7). As a first step the continuum electrostatic potential 
was calculated for the whole protein using UHBD13 software package, negative 
surface electrostatic patches were then assembled using an in house program 
PATCHFINDER (as described in methods) and the largest negative patch of every 
protein structure was analyzed.  

O-glycosidases were found to have, on average, larger negative surface patches 
than non-O-glycosidases.  The average size of the negative patch is 229 ± 163 
surface points (compared to 86 ± 110 surface points for the non-O-glycosidases).  In 
O-glycosidase enzymatic hydrolysis, one negative residue typically acts as a base 
and another as an acid22. We found that in 33 out of 39 proteins (85%), the largest 
negative patch contains at least one of the two residues (base or acid), which are 
known to be involved in  the O-glycosidic reaction.  In some cases where the patch 
did not contain either the acid or the base, these patches were found to be in close 
proximity to other functionally important residues. The high overlap between the 
surface patch and the O-glycosidases active site allows us to conclude that the 
region we are analyzing is directly involved in the function of these proteins. 

As shown in Figure 1, the amino acid distribution in the negatively-charged 
patches of O-glycosidase proteins also differs from that of other proteins.  The 
differences observed are mostly found in the aromatic amino acids Trp and Tyr and 
in Asn. All three amino acids show higher frequency in the O-glycosidase proteins 
than in all other proteins. Aromatic amino acids are known to commonly act as 
docking sites for the non-polar inner portion of cyclic carbohydrate molecules23. 
Since our negative patches are derived from  Asp and Glu residues on the protein 
surface, the normalized percentage of these two amino acids was roughly the same 
in all proteins.  

Because of the high correlation between the active site and the negative patch, 
we also expected the residues within the patch to be functionally important and thus 
more conserved7, 24. To examine that we analyzed the frequency of conserved 
residues within the negative patch. Specifically we were interested in the 
conservation of Asn, Glu, Asp, Tyr and Trp, which were highly frequent in the O-
glycosidase negatively-charged patches. In addition to analyzing the conservation of  
the individual residues we also looked at the conservation of the aromatic amino 
acids when grouped together.  As summarized in Table 1, we found that Asp, Glu, 
Asn, Tyr and Trp are on average more conserved (though not significant)  within 
the negative patches of the O-glycosidase family than in the non-O-glycosidases. 
These differences were more obvious when we grouped the aromatic residues 
together. O-glycosidases have on average more conserved aromatics (6.9±4.6 
residues) than do the non-O-glycosidases (1.3±2.0 residues). 
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Figure 1.  The normalized frequency of  the 20 amino acids within the largest negative patch for O-
glycosidases (black) and non-O-glycosidases (gray).   
 

 
 
 

Table 1. Frequency*  and conservation of specific amino acids in the negative surface patches of O-
glycosidase and non-O-glycosidase proteins 

 
 O-glycosidase Non-O-glycosidase 

 Total 
number of 
residues in 

patch 

Number of 
conserved 
residues in 

patch 

Total 
number of 
residues in 

patch 

Number of 
conserved 
residues in 

patch 
GLU 4.5 (2.9) 2.3 (1.6) 2.1 (2.5) 0.7 (1.2) 
ASP 4.8 (3.9) 2.5 (2.3) 2.2 (3.1) 1.0 (1.5) 
ASN 3.4 (2.0) 1.7 (1.3) 1.1 (1.9) 0.4 (0.9) 
TRP 3.4 (2.0) 1.7 (1.1) 1.1 (1.8) 0.4 (0.9) 
TYR 3.7 (2.8) 2.0 (1.5) 1.1 (1.8) 0.5 (0.9) 

 
                                                           
  *Frequency is averaged over all proteins, the average number and standard deviation are shown. 
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3.1.2 Structural  features 

Laskowski et al., have previously shown that amongst enzymes, a protein’s largest 
and second largest clefts are bound to the ligand 84% and 9% of the time, 
respectively25.  To see if information on protein clefts could help us to further 
discriminate O-glycosidases, we first identified the clefts belonging to each protein 
in both our datasets, using the program SURFNET15.  For each protein structure, we 
identified the two largest clefts.  We then extracted the residues associated with 
each cleft, and calculated how many of the residues within the cleft were also in the 
largest negative patch of the protein.  Similar to the correlation between the cleft 
and the active site found by Laskowski et al., we found that 82% of O-glycosidases 
proteins contained the  negative patch in their largest cleft, and 10% of the proteins 
showed an overlap between the patch and the second largest cleft.  The overlap 
between the patch and the largest cleft is much less frequent in non-O-glycosidases 
(58% showed overlap between the patch and the largest cleft and 21% showed 
overlap between the patch and the second largest cleft).  

It is known that amongst O-glycosidases, there are two types of possible 
reactions, an inversion or retention reaction22.  The difference between the reactions 
is whether they invert or retain the anomeric configuration of the sugar at the 
cleavage site. The acid and base residues involved with the enzymatic reaction, have 
been found to be predominantly Glu and Asp residues, although exceptions 
involving His and Ser have been found26.  For a retention reaction, the average 
spacing between the two participating carboxyl groups is 5.5 Å, and for an inversion 
reaction, the spacing is 9.5 Å.  Although there are exceptions to these reaction 
geometry distances27, they serve as a general guideline for glycosidic hydrolysis.   

We examined the cleft that had the highest patch overlap and identified the 
candidate residues that could be involved in a glycosidic reaction (see Methods).  In 
general, the O-glycosidases have only slightly “better” putative catalytic residues 
(determined by the smallest difference in distance between two negative residues in 
either 5 or 9.5 Å) within their clefts (90% less than 0.24 Å) than other classes of 
proteins (59% less than 0.24 Å). The relatively large number of  potential binding 
residues in non-O-glycosidase proteins are most likely due to the high frequency of 
Asp and Glu in the negative patches.  

Lewis and Rees originally proposed that roughness may be associated with 
ligand binding, since a greater surface area allows more possibilities for van der 
Waals contacts19. Indeed, it has been found that functional sites in proteins (e.g. 
enzyme active sites) are rougher than other parts of the protein’s surface28. To see if 
roughness could further discriminate the negative patches within our data set, we 
calculated the fractal dimension (D) for each protein patch.  Although not 
significant, the O-glycosidase patches had slightly rougher surfaces  (2.67 ± 0.25) 
than the non-O-glycosidase patches (2.52 ± 0.41).  Interestingly the 6 O-
glycosidases whose catalytic residues were not in the patch showed a lower degree 
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of a roughness 2.46 ± 0.05 which is comparable to the roughness of the non-O-
glycosidases.  This again strengthens the idea that the patches are associated with an 
O-glycosidase active site. 

We have previously shown that other hydrolases (the proteases), have less 
accessible surface area per molecular weight as compared to other types of 
proteins6. Since a large number of the false positives in this experiment were O-
glycosidases, we examined the accessible surface area per molecular weight 
amongst our glycosidase data set.  Interestingly, O-glycosidases were also found to 
have strikingly less accessible surface area per molecular weight than non-O-
glycosidases. As shown in Fig. 2, nearly 84% of the O-glycosidase data set falls 
below the line that represents the best fit for the non-O-glycosidase proteins. 
Moreover, the majority of the O-glycosidase proteins fall at the lower limit for 
accessible surface area per molecular weight.  For proteases, we speculated that the 
lower solvent accessible surface area per molecular weight may have evolved to 
prevent self-cleavage.  It has previously been proposed that different types 
hydrolases have evolved from a common ancestor29. O-glycans are also known to 
inhibit proteolysis30. O-glycosidases may therefore have to work in coordination 
with proteases to remove O-glycans from proteins in order to make them accessible 
to protein degradation.  We again speculate that O-glycosidases may be under 
similar types of evolutionary pressure and hence show similar structural properties 
to proteases.  

3.2 Prediction of O-Glycosidases vs. Non-O-Glycosidases 

Although most of the features characterized above were not individually sufficient 
to discriminate O-glycosidases from other non-O-glycosidase proteins, we wanted 
to see if we could use them collectively to infer function.  To do this we created a 
feature vector consisting of the following 10 inputs: surface area per molecular 
weight, negative patch size, patch-cleft overlap booleans (1 for true) for the largest 
and second largest cleft, sequence conservation within the patch (aromatics, Asn, 
Glu, and Asp), roughness of patch, and the best distance for a putative active site.  
We used this feature vector to train a neural network (see Methods), to distinguish 
O-glycosidase proteins from non-O-glycosidase proteins. 

Using the cross validation scheme as described in Methods, we were able to 
predict O-glycosidase proteins with 87% accuracy and  non-O-glycosidase proteins 
with 93% accuracy.  When we examined the relevance of the inputs, defined as the 
sum of the square weights for a given input group, divided by the sum of all input 
groups, the most relevant inputs were the frequency of conserved aromatics, the 
SA/MW, patch size, conservation of Glu, and geometry of the putative active site. 

Pacific Symposium on Biocomputing 7:637-648 (2002) 



0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 9
Molecular Mass (kDa)

Su
rf

ac
e 

A
re

a 
(Å

2 )

0

Figure 2. Molecular mass vs. surface area for O-glycosidases (♦) and non-O-glycosidases (•).  The solid  
line  is the best fit for the non-O-glycosidases.  The average surface area to molecular mass ratio for O-
glycosidases is 0.36 ± 0.04 and 0.46  ± 0.08 for the non-O-glycosidases. 
 

3.3 Discriminating Glycosidases and Proteases 

Since we found some similar structural properties to exist between proteases 
and O-glycosidases, we were interested to see if we are now able to distinguish 
between these two classes of proteins. From the output of the neural net discussed 
above, we were able to correctly identify over 80% of the proteases as being non-O-
glycosidases. The biggest difference between the two data sets arises from the  
electrostatic patch analysis (data not shown).  One feature that differs between the 
two groups, that was not addressed earlier, is the presence of the TIM fold.  The 
TIM barrel is a common fold amongst O-glycosidases, but is absent amongst  
proteins with protease function.  This could further help to differentiate between the 
two. We predict that similar approaches could be used for distinguishing between 
other protein classes which possess different functions, yet retain some similar 
structural characteristics.   
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4 Conclusions 

We have shown that O-glycosidases possess some unique global and local 
properties that can be distinguished from other proteins with different functions.  
Like proteases, O-glycosidases have less accessible surface area per unit molecular 
weight. We speculate that as for the proteases, this structural property can be 
involved in preventing proteolysis.  Beyond this we have shown that O-glycosidases 
have characteristic electrostatic features.  Most O-glycosidases have large negative 
patches on their surface that are highly correlated with active sites. This could help 
to identify putative active sites, which could be targeted for molecular based drug 
design.  We have also shown for the second time that electrostatic patch analysis, 
using a combination of structural and sequence analysis, can be used to characterize 
a class of proteins.  We believe that electrostatic patch analysis should therefore be 
a common tool in the characterization of the relationship between a protein’s 
structure and its function.  

Using this combination of global and region-specific features, we were able to 
successfully train a neural network to predict O-glycosidase function with high 
accuracy.  Since the O-glycosidase data set used in this study was comprised of 
many different folds and had little sequence homology amongst them, we propose 
that the neural net would potentially be able to identify a protein having an O-
glycosidase function even if it possessed a novel fold.  This could be particularly 
useful for products of the structural genomic initiative.  Here, for the first time, we 
show that prediction of protein function from structure can be improved by the 
ability to identify a class of proteins that was a common false positive prediction of 
another protein family.  We suggest that protein function prediction, may be 
improved by analyzing common themes amongst classes of proteins that are 
incorrectly identified.  Multi-class automated protein function prediction based on 
structure, may therefore be close at hand.  
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