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Linkage disequilibrium mapping is an important tool in disease gene mapping. Recently,
Toivonen et al. [1] introduced a haplotype mining (HPM) method that is applicable to data
consisting of unrelated high-risk and normal haplotypes. The HPM method orders haplotypes
by their strength of association with trait values, and uses all haplotypes exceeding a given
threshold of strength of association to predict the gene location. In this study, we extend the
HPM method to pedigree data by measuring the strength of association between a haplotype
and quantitative traits of interest using the Quantitative Pedigree Disequilibrium Test
proposed by Zhang et al. [2]. This family-based HPM (F-HPM) method can incorporate
haplotype information across a set of markers and allow both missing marker data and
ambiguous haplotype information. We use a simulation procedure to evaluate the statistical
significance of the patterns identified from the F-HPM method. When the F-HPM method is
applied to analyze the sequence data from the seven candidate genes in the simulated data sets
in the 12th Genetic Analysis Workshop, the association between genes and traits can be
detected with high power, and the estimated locations of the trait loci are close to the true
sites.
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1 Introduction

Linkage disequilibrium mapping (LDM) is a powerful method for the identification
of disease genes. With the completion of the Human Genome Project, many genetic
markers can be identified and genotyped within a very short physical distance, and
LDM methods that use a set of markers simultaneously through the consideration of
haplotypes across a set of markers may be more powerful than the methods that
examine each individual marker separately. Various statistical methods have been
proposed to locate disease mutation site based on LD around a disease susceptibility
(DS) gene [3, 4, 5, 6, 7, 8]. The power of these methods, as well as their ability to
identify the correct position of the DS gene, has been shown to be better than the
traditional method based on the LD of two markers. However, most of these
methods have been developed under explicit assumptions on the mode of
inheritance of the disease and the population history of the studied population, and
the effects of violations of these assumptions on the analysis of real data are not
well understood. Recently, Toivonen et al. [1] proposed haplotype pattern mining
(HPM), a technique that uses data mining methods in LD-based gene mapping. The
HPM method aims to identify recurrent haplotype patterns and the haplotype
patterns are sorted by the strength of their association to the disease. This method,
applicable to data consisting of independent high-risk and normal haplotypes, works
with a non-parametric statistical model without any genetic model assumption and
allows for missing and erroneous markers within the haplotypes. Toivonen et al. [1]
showed that the localization power of the method is high, even when the association
is weak. However, there are three limitations for the method described by Toivonen
and colleagues. First, related individuals cannot be analyzed in the same analysis
because their method is only applicable to case-control data. Secondly, the method
is only applicable to binary trait. Thirdly, their approach is purely descriptive and
the statistical significance of the observed patterns cannot be assessed.

In this article, we introduce a Family-based Haplotype Pattern Mining (F-HPM)
method that extends the HPM method. To allow simultaneous use of related
individuals with quantitative trait from an extended pedigree, we employ the
Quantitative Pedigree Disequilibrium Test (QPDT) statistic [2] to measure the
strength of association between a haplotype and a quantitative trait. We then use a
simulation method to assess the statistical significance for the observed patterns.
When we apply the F-HPM method to analyze the sequence data of the seven
candidate genes from the simulated data sets in the 12th Genetic Analysis Workshop
(GAW12), the estimated locations of the trait loci are very close to the true sites and
the genes having association with certain traits can be detected with high power.
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2 Methods

The idea behind the F-HPM method, as well as the HPM method, is that haplotype
patterns close to the DS locus are likely to have stronger association than haplotypes
further away. Based on pedigree data that includes genotypes at a set of markers and
the quantitative traits with possible missing values of the individuals, there are four
steps in the F-HPM method: (1) reconstruct each individual's haplotypes across a set
of markers and define the haplotype patterns; (2) for each haplotype pattern P,
calculate the QPDT statistic [2] to detect if there is a strong association between P
and a quantitative trait; (3) calculate the proportion of strongly associated
haplotypes around a candidate locus L; and (4) use a simulation procedure to
estimate the statistical significance for the observed association. We describe these
four steps in detail in the following discussion.

2.1 Haplotype inference and haplotype pattern

Even with large pedigrees, we may not be able to infer the haplotypes of the
individuals unambiguously, especially for the case that the haplotypes are across a
large number of markers and there are missing genotype data for some individuals
in the pedigree. For uncertainties in haplotype inferences, one method would be to
estimate the probabilities for all compatible haplotypes.  However, such
probabilities depend on many parameters related to the population structure under
study, as well as the parameters related to the disease model that we usually have
little knowledge about. In our haplotype inference, we use the program HAPLORE
(unpublished results; http://bioinformatics.med.yale.edu) to reconstruct each
individual's haplotypes that include possible ambiguous data at certain markers. The
algorithms implemented in HAPLORE are similar to those discussed by Wijsman
[9]. Suppose that chromosome region we examine consists k markers, we denote a
haplotype of an individual by a vector H = (b1,… ,bk), where bi is either an allele at
marker i if the haplotypes can be reconstructed unambiguously at this marker, or is
a symbol “*” if the haplotypes cannot be reconstructed unambiguously.

We example the association by looking for haplotype pattern that consists of a
set of nearby markers, not necessarily consecutive ones. A haplotype pattern  P
around marker L is defined as a vector P=(pL-l,…, pL-1, pL, pL+1…,pL+r), where each
pi is either an allele of the ith marker or the “don’t care” (missing symbol) “*” ,
however, the candidate marker L cannot have a missing symbol. A haplotype
pattern  P occurs in a given haplotype H = (b1,… ,bk) if  1≤L-l< L+r≤k and  pi =bi
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or  pi =*  for all i, L-l≤i≤L+r.  We use three parameters, the candidate marker L, the
number of markers included in haplotype pattern N and the maximum number of the
markers with missing  data or “don’t care”  M to control the haplotype pattern.  For
example, for a given haplotype vector (2, 3, 5, 7, *, 6, 5, 8, 9, 1), all the haplotype
patterns with parameters L=6, N=3 and M=2 that occur in this haplotype are (7, *,
6), (*, *, 6), (*, 6, 5), (*, 6, *), (6, 5 ,8), (6, *, 8), (6, 5, *) and  (6, *, *).

2.2 Quantitative pedigree disequilibrium test (QPDT)

The QPDT is a TDT type test that allows quantitative traits and arbitrary pedigree
structures [2].  The QPDT uses the following three types of nuclear families in an
extended pedigree:

(I) Families with both parents available and at least one parent being
heterozygous at the marker being studied.

(II) Families with one available parent and one or more offspring where all
the offspring have the same genotypes.

(III) Families with at most one available parent and multiple offspring
where at least two siblings have different genotypes.

When a haplotype pattern P is studied, we treat P as one allele, denoted by A, and
the other haplotype patterns as another allele, denoted by B.  Let Xi denote the
number of A alleles carried by the ith child and X denote the mean number of A
alleles among all the offspring in this nuclear family. For the first type of nuclear
families, define Xim = 1 (or -1) if the mother is heterozygous and transmits allele A
(or B) to the ith child, and Xim = 0 if the mother is homozygous. We similarly define
Xif for the father.  For the second type of nuclear families, we only consider
offspring-parent pairs with genotypes (BA, BB) or (AA, AB), and offspring-parent
pair with genotypes (BB, BA) or (BA, AA). The first genotype in the bracket is the
offspring's genotype and second genotype in the bracket is the available parent's
genotype. We define X(1) = 1 if the genotypes for the offspring-parent pair are (AB,
BB) or (AA, AB), X(1) = -1 if the genotypes for the parent-offspring pair are (BB, AB)
or (AB, AA), and X(1) = 0 for other genotypes of the offspring-parent pair. For the
details on the analysis of the second type of nuclear families, see Sun et al. [10, 11].
Define random variables U1, U2, and U3 as the covariance between the trait values
and the genotypes for the first, second, and third types of nuclear families:
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where t is the number of offspring in a nuclear family, and iY is the trait value of the
ith child for a quantitative trait of interest. Under the null hypothesis of no linkage
or no linkage disequilibrium, E(U1) = E(U3) = 0. However, under null hypothesis of
no linkage or no linkage disequilibrium, E(U2) is equal to 0 under one of the
following two conditions:

A1. Males and females with the same genotype at the marker locus have the same
mating preference.
A2. Father and mother in each nuclear family are equally likely to be missing given
that one parent is missing.

Even if both of the above two assumptions are violated, we can modify U2 such that
E(U2) = 0 under the null hypothesis [11]. In what follows, we assume E(U2) = 0.

 For an extended pedigree, let n1, n2, and n3 denote the number of the first,
second, and third types of nuclear families, respectively. Define
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is asymptotically normally distributed with mean 0 and variance 1. This test statistic
is the QPDT introduced by Zhang et al. [2].

2.3 Measure of degree of association at a locus L

For a marker location L, we measure the degree of association between the
haplotypes nearing L and the trait of interest as follows. Let N denote the number of
markers we include in a haplotype pattern (including locus L), and M denote the
maximum number of missing markers allowed in a haplotype pattern. Define Ω  to
be the set of haplotype patterns with respect to parameters N, M, and marker
location L. We say that haplotype pattern P is “strongly associated” with the trait if
|T| ≥ x, where T is the QPDT statistic and x is an association threshold. In our
analysis, we set 1.96x = so that a strong association is approximately equivalent to
setting statistical significance level at 5% for each haplotype pattern P. Intuitively,
haplotype patterns near the trait locus are likely to have stronger association than
haplotype patterns further away from the trait locus. Therefore, the trait locus is
likely to be located at the site, where there is a high proportion of strongly
associated haplotype patterns [1].

For a given marker L, we compute the frequency of strongly associated
haplotype patterns around this marker as

The number of strongly associated haplotype patterns in ( ) .
The number of haplotype patterns in 

f L Ω=
Ω

          (1)

For each marker L, we use f(L) as a measure of the degree of evidence for
association. If we assume that a trait locus exists in the region being examined, we
can predict the location of the trait locus to be close to the markers with higher f(L)
values.  In our analysis, we estimate the trait locus at the marker that gives the
largest value of f(L).

2.4 Statistical significance assessment of the observed measure of association

To test the null hypothesis that the region being examined is not associated with the
trait of interest, we use Tmax=maxLf(L) as the test statistic for the null hypothesis. We
adopt the simulation procedure proposed by Monks and Kaplan [12] to evaluate the
statistical significance of the test statistic, and note that simply permuting trait
values among the individuals is not a valid procedure. We describe the procedure in
the following. For the first type of the nuclear families, under the null hypothesis of
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no association, the probability that a heterozygous parent transmits marker allele A
and B with equal probabilities. Thus, if the mother is heterozygous, then, Xim is
equally likely to be 1 and –1. If there is only one child, then our simulation
procedure randomly assign Xim as being equal to 1 or –1 with equal probability.
Complications arise when more than one child in the family is available. These
complications are a result of linkage between the marker and the trait locus. In the
presence of linkage, children with shared marker alleles will have similar
quantitative traits, even in the absence of association. This can be taken into account
by simultaneous randomization of Xim  (and, similarly, of Xif), for heterozygous

parents across the sibship. Let 1 1
1 1

( )  and ( )
t t

m i im f i if
i i

U Y Y X U Y Y X
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This procedure is equivalent to randomizing the sign of U1m and the sign of U1f with
equal probability and then calculate the value 1 1 1f mU U U= + .  Similar procedures

are used to simulate genotypes under the null hypothesis for the other two types of
families that is equivalent to randomization of the sign of U2 and the sign of U3 with
equal probability.  For each simulated data set, we randomly give the sign of U1m,
U1f, U2, and U3, and recalculate test statistic T and then f(L) and Tmax. Note that U1 =
U1m + U1f. We can then derive the empirical distribution of Tmax based on the
calculated test statistics through a set of simulated data sets.

3 Results

3.1 Data Sets

We evaluate the performance of the proposed F-HPM method using the sequence
data from the seven candidate genes (G1,…,G7) in the simulated data sets in
GAW12 for the isolated population scenario. Two of the seven candidate genes
affect one or two of the five quantitative traits (Q1,…,Q7).  Table 1 summarizes the
relationships between the genes and the traits and the sites of the functional alleles.
There are multiple functional alleles within G2, with changes in either regulatory
elements or in the first or second base-pair of a codon, leading to amino acid
substitutions. The simulation data set in GAW12 contains 50 replications for the
isolated population. For each replication, the data consists of 23 pedigrees with
1497 individuals in total.
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Table 1.  The relationships between the candidate genes and the quantitative traits.

Gene Length (kb) Influence on the
quantitative trait(s)

Location(s) of the functional
allele(s)

G1 20 None None
G2 13 Q5 Multiple sites
G3 16 None None
G4 20 None None
G5 17 None None
G6 17 Q1 and  Q2 5782
G7 20 None None

3.2 Results on the associations between candidate genes and traits

We apply the F-HPM method to analyze associations between the seven candidate
genes and the five quantitative traits. All of the 50 replications of the simulated data
sets in the isolated population are used to investigate the false-positive rates and the
power of the F-HPM method. Only polymorphic markers whose major allele
frequency is less than 95% are used.  In the F-HPM method, we set the association
threshold at x = 1.96, set the maximum number of markers in a haplotype pattern
(including marker L) to be 7 (N = 7), and allow up to 6 markers with missing
information (denoted by “*”) in a haplotype pattern (M = 6). For example, the
haplotype may contain locus L and 6 markers on either side of L. We vary L from
the first polymorphism to the last one in the entire gene, and calculate f(L) for every
marker and Tmax for the gene. For each gene and each replication, we simulate 200
samples to evaluate the statistical significance of the observed test statistic. The
power comparisons between the F-HPM method and two other methods, the QPDT
[2] and QST [12] (a score test of linkage for quantitative traits using haplotypes in
extended pedigrees and using hierarchical clustering method to group the
haplotypes into two groups), based on these 50 replications are summarized in
Table 2. Because Q3 and Q4 have no associations with any of the genes, they are not
shown in Table 2.

 According to Table 1, G1, G3, G4, G5, and G7 have no association with all the
quantitative traits, G2 is associated with Q5 only and G6 is associated with Q1 and
Q2.  It can be seen from Table 2 that the false positive rate of our method is within
the 95% confidence interval of the nominal level, i.e. 5%. For the power
comparison, the QPDT testing one marker at a time has the lowest power in all the
cases.  For testing the association and linkage between G1 with single mutation and
the traits Q1 and Q2, the two haplotype methods F-HPM and QST have similar
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power. However, for detecting G2 with multiple functional mutations, the F-HPM is
more powerful.

Table 2. The power comparisons of the three tests: F-HPM and QPDT (after Bonferroni correction)
for the associations and QST for linkage between the seven candidate genes and the five quantitative
traits at statistical significance level 5%. There are three true gene-trait associations and the power for
these three pairs is denoted in bold face font.

1Q 2Q 5Q
 Gene

F-HPM QPDT QST F-HPM QPDT QST F-HPM QPDT QST

1 0.04 0 0.08 0.10 0 0.14 0.06 0 0.14
2 0.10 0 0.02 0.08 0 0.04 0.68 0.16 0.54
3 0.00 0 0.02 0.02 0 0 0.10 0.02 0.02
4 0.08 0 0 0.02 0 0.10 0.02 0 0
5 0.04 0 0 0.06 0.02 0.02 0.08 0 0.08
6 0.92 0.64 0.98 0.82 0.26 0.80 0.04 0 0.04
7 0.08 0 0.02 0.02 0 0.06 0.08 0 0.02

For every candidate gene, as we vary the marker location along the gene, we
obtain a curve of f(L) for each replication. In Figure 1(a), we present the f(L) curves
for the association test between G6 and Q1 using the first five replicated samples.
Although there are variations, the highest peak is near the true site of the functional
allele. In Figure 1 (b), we present the f(L) curves for the association test between G2

and Q5. Because there are multiple functional polymorphisms in G2, the signal is not
as strong as that in Figure 1 (a).

We estimate the trait locus at the marker L with the highest f(L). The
histograms for the estimated locations for Q1 in G6 and Q5 in G2 for those
replications in which the trait value has significant associations with the gene are
given in Figure 2.  For G6, the estimated locations of the trait locus for Q1 are at site
6805 for 32 replications out of 46 significant samples. This estimate is ~ 1kb from
the true location site 5782.  For G6, the estimated locations of the trait locus for Q2

have a similar pattern. For G2, the estimated locations of the trait locus for Q5 are in
sub-regions around sites 715, 4977, and 12411. The three sites are all within the
regulatory regions where the true functional alleles are. Therefore, even there are
multiple functional alleles in this gene, the F-HPM method is able to identify the
locations of these functional alleles.
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Figure 1. Frequency of strongly associated (with Q1 for G6 and with Q5 for G2) haplotype patterns
versus polymorphic site location.

4 Discussion

We have proposed the F-HPM method to allow simultaneous use of related
individuals with quantitative trait from an extended pedigree. This method works
with a non-parametric statistical model without any genetic model assumption and
allows for missing and erroneous markers within the haplotypes. It tests the
association between a set of markers and the quantitative traits and predicts the
location of the DS gene at the same time. When we apply the F-HPM method to
analyze the sequence data of the seven candidate genes from the simulated data sets
in GAW12, the estimated locations of the trait loci are very close to the true sites
and the genes having association with certain traits can be detected with higher
power comparison with the QPDT [2], the single marker method. For detecting
genes with multiple functional mutation, the F-HPM method is more powerful than
the QST, another haplotype method.
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In the application of the F-HPM method, we need to specify the number of
markers included in a haplotype pattern, the number of missing data markers
allowed, and the association threshold. The optimal choices of these parameter
values need further study, although the method seems to be quite robust with respect
to the parameter values for the data analyzed here. From the applications of the F-
HPM method to the simulated data sets, we feel that this approach represents a
promising method to map complex disease genes.

Figure 2. Histograms of estimated locations for Q1 versus G6 and Q5 versus G2.
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