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Structural genomics initiatives are beginning to rapidly generate vast numbers of protein
structures.  For many of the structures, functions are not yet determined and high-throughput
methods for determining function are necessary.  Although there has been extensive work
in function prediction at the sequence level, predicting function at the structure level may
provide better sensitivity and predictive value.  We describe a method to predict functional
sites by automatically creating three dimensional structural motifs from amino acid
sequence motifs.  These structural motifs perform comparably well with manually
generated structural motifs and perform better than sequence motifs.  Automatically
generated structural motifs can be used for structural-genomic scale function prediction on
protein structures.

1 Introduction

1.1 Structural Genomics

With the sequencing of the human genome and many other organisms, rapid
determination of gene and protein function is becoming increasingly important.
Structural genomics initiatives are helping elucidate the function of these gene
products by developing high-throughput methods for determining structures for all
unique protein folds.  These new structure targets are specifically selected not to
have sequence similarity to existing proteins1-4.  With the anticipated explosion of
available structures, it is imperative to develop computational methods for high-
throughput function prediction on protein structures.

1.2 Sequence Motifs

There has been extensive work in identifying conserved residues in protein
sequences with similar function.  Amino acid sequence patterns that represent these
conserved residue positions can be created from multiple alignments of sequences
with similar function.  These patterns, or sequence motifs, can be used to assign
function to sequences that contain the pattern.

Numerous sequence motif databases have been established with different
methods for creating sequence motifs.  Some of the databases are manually curated
by experts, while others are automatically derived.  The BLOCKS+ database
provides an integration of many sequence motif databases by generating blocks of
ungapped alignment of sequences from families in the databases5, 6.



The eMotif database uses sequence alignments from the BLOCKS+ database to
create sequence motifs (eMotifs) at various specificities for a family of protein
sequences.  By providing motifs at different specificities for a block of sequences,
eMotifs can represent families with high specificity and yet provide sensitivity by
combining multiple motifs7, 8.

Although sequence motifs can provide insight into protein function, when new
proteins do not have significant sequence similarity with known proteins, using
only sequence information fails.  Proteins that do not have high sequence similarity
may still have similar function because of conservation of physicochemical
properties at the structural level9, 10.

1.3 Structural Motifs

Analogous to sequence motifs, structural motifs provide a description of conserved
properties in the three dimensional structure of proteins sharing molecular function.
Investigators have devised different techniques to construct and define structural
motifs; each technique emphasizes different conserved properties.

Wallace et al have developed a system, PROCAT, for identifying catalytic sites
by geometric orientation of residues with known functional importance.  By using
previous knowledge of the critical residues involved in the catalytic activity, a
structural motif representing the conserved relative positions of those residues is
constructed.  This motif can be used to scan a new protein structure for occurrence
of the catalytic site using a geometric hashing algorithm11, 12.

Fetrow and Skolnick have developed Fuzzy Functional Forms (FFF) for
representing distances between interesting residues.  The critical residues involved
in a functional site are identified by careful examination of the literature.  Examples
of known structures containing these residues are used to find mean distance and
variance between the residues.  The structural motif representing the conserved
distance and variance of the residues is used to identify functional sites on protein
structures13, 14.

Wei and Altman have developed the FEATURE system that describes the
physicochemical environment around functional sites.  The environment,
characterized by observing the frequency of physicochemical properties in radial
shells around the site of interest, represents a structural motif used for predicting the
functional sites15, 16.

Unlike PROCAT and FFF, FEATURE does not require the conserved
properties to be known in advance, but can discover them automatically given a
training set.  Once a set of examples of the functional site and a background control
set is provided, FEATURE can automatically build the structural motif without
having to manually identify which residues are considered important.

We introduce a new method, SeqFEATURE, that automatically creates
structural motifs around functional sites by characterizing the structural environment
around sequence motifs using FEATURE.  Since the three dimensional structures
of protein are more conserved than the sequence of amino acids10, focusing on the
protein structure should provide better sensitivity in identifying protein function.



2 Methods

2.1 SeqFEATURE overview

SeqFEATURE is a method for automatically building a structural motif from
sequence motifs (Figure 1).  The sequence motifs can be obtained from any of the
sequence motif databases; here we use the eMotif database.  Protein structures that
contain the sequence motif are identified and a training set for the FEATURE
system is automatically generated.  FEATURE then uses the training set to
construct a structural motif describing the physicochemical environment around the
sequence motif.
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Figure 1: Data flow diagram for SeqFEATURE.  Sequence motifs are selected by querying a
sequence motif database.  These motifs are fed into SeqFEATURE for automatic selection of sites and
non-sites to create a training set.  The training set is used by FEATURE for creating a model of the
microenvironment around the functional site.  The model is used to predict functional sites on new
protein structures.

2.2 FEATURE system

The FEATURE system is detailed and evaluated elsewhere16; here we describe it
briefly.  The FEATURE system is used to build structural motifs and predict
functional sites.  FEATURE builds a physicochemical model of the environment
around functional sites.  The model represents the statistical distribution of
physicochemical properties at radial distances from the site of interest.  The
physicochemical properties range from atom names and atom properties to residue
names and secondary structure (Table 1).  By using properties at the atomic level
and not just at the residue level, FEATURE provides a closer view of the chemistry
necessary for function.



FEATURE requires a training set composed of positive examples of the
functional site and negative background control examples.  Each example is a
specific 3D coordinate in a protein structure locating the site of interest.  The
environment around each site of interest is divided into radial shell volumes.
FEATURE then creates a feature vector v for each site by counting the occurrence of
physicochemical properties within each volume around the site.

The structural motif of the functional site is constructed by comparing the
distribution of feature vectors from the positive examples (sites) with those from
the negative examples (non-sites).  Properties at each volume are evaluated as
statistically more present or absent in the functional site by using the Wilcoxon
rank sum test.

 Finally, using a Bayesian inference method, FEATURE predicts functional
sites at specific locations on protein structures.  It places a 3D grid over the new
protein structure and calculates the feature vector described above from the
environment around each grid point.  The grid point is given a score proportional to
the likelihood that it is a functional site given its feature vector v.
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By assuming that the components of the feature vector are independent, i.e. the
property-volume values vi are independent, the score can be broken down to
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Table 1: List of FEATURE’s physicochemical properties

AtomName C N O S
ANY OTHER

ChemicalGroup Hydroxyl Amide Amine Carbonyl
RingSystem Peptide

AtomProperties VDWVolume Charge NegCharge PosCharge
ChargeWithHis Hydrophobicity Mobility SolventAccessibility

ResidueName ALA ARG ASN ASP
CYS GLN GLU GLY
HIS ILE LEU LYS
MET PHE PRO SER
THR TRP TYR VAL
HOH OTHER

ResidueProperties Hydrophobic Charged Polar NonPolar
Basic Acidic

SecondaryStructure 3Helix 4Helix 5Helix Bridge
Strand Turn Bend Coil
Het Unknown



2.3 eMotif database

Here we use the eMotif database8 as the source of sequence motifs for automatic
creation of structural motifs, although any of the other sequence motif databases
would be acceptable.  The eMotif database provides a broad collection of sequence
motifs, each representing functional signatures or domains built from BLOCKS+.

eMotif takes advantage of predefined conserved residue substitution groups
based on shared chemical or physical properties of the amino acids, such as size or
hydrophobicity.  The resulting motifs represent variation in motif positions that are
biologically meaningful.

In addition, multiple eMotifs are built for a block of sequences with different
levels of specificity and sensitivity.  These properties make eMotif particularly
amenable to predicting functional sites at a proteomic level.

2.4 Training set selection

We select sequence motifs related to the functional site from the eMotif database
using a keyword search.  A training set of positive example sites and negative
control non-sites is automatically generated from the sequence motif.

Structures from the Protein Data Bank17 (PDB) whose sequence contains the
sequence motifs are selected.  Bennett et al. have created a database of all structures
containing eMotifs (3MOTIF) along with accompanying tools for visualizing the
eMotifs on the 3D structures18, 19.

To pick a positive site example, the residues matching the sequence motif are
extracted from the structure and the geometric center of their alpha carbons is
selected.

To pick a control non-site example, the atom density around the selected
positive sites is calculated and a random point on the same protein structure with
similar atom density is selected.  Points within a particular distance from the
positive site are excluded.

2.5 Evaluation metrics

The performance of a structural motif or sequence motif is measured by its
sensitivity and positive predictive value.

Sensitivity is the true positive rate, representing how many of the true sites are
detected by the motif.  It is calculated by taking the ratio of the number of sites that
are predicted correctly (TPsites) to the total number of sites (TPsites + FNsites).

sitessites

sites
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ySensitivit

+
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Positive predictive value (PPV) measures how often the positive predictions are
correct.  Positive predictions (hits) are predictions that a functional site occurs at a
particular location.  Positive predictive value is calculated by taking the ratio of the
number of hits that are near true sites (TPhits) to the total number of hits (TPhits +
FPhits).

hitshits

hits

FPTP

TP

Hits ofNumber  Total

Sites Truenear  Hits ofNumber 
PPV

+
== (4)

It is important to point out that the units for sensitivity and PPV are not
interchangeable.  Sensitivity is a ratio of sites, whereas PPV is a ratio of hits.
Because hits detect the area around a single point representing the site, there could
be more than one predicted location per actual site.

3 Results

3.1 EF-Hand calcium binding sequence motif

Calcium ions have a spectrum of essential biological roles, affecting a myriad of
regulatory processes, enzymatic activity, and protein stability.  The EF-Hand is the
most common motif for binding calcium in proteins20, 21.

Sequence motifs for the EF-Hand family of calcium binding sites were selected
from eMotif by keyword search.  Thirteen motifs were found with specificity
ranging from 10-3 to 10-9 (Table 2).  The motifs were 12 to 13 residues in length.

Table 2: EF-Hand family eMotifs at varying specificities

eMotif specificity
d.[dn]........[de] 10- 3

[dn].[dn]....[ilmv]...[de][filvy] 10- 4

d........[filmv].e[fwy] 10- 4

d.[dn]..g.[ilmv]...[de] 10- 5

[dn]...d....[fly].e[fwy] 10- 5

d.[dn]..g.[ilmv]...e[fly] 10- 6

d.[dn].d..[iv]...[de][fly] 10- 6

d.[dn].[dn]....[filmv].e[fwy] 10- 6

d.[dn].dg.[ilv]...[de][fly] 10- 7

d.[dn]..g.[ilmv].[fly].e[fwy] 10- 7

d.[dn].d..[ilv].[filmv].e[fwy] 10- 7

d.[dn].dg.[ilv].[filmvy].e[fwy] 10- 8

d.[dn].dg.[iv]..[de]ef 10- 9



3.2 Automated construction of structural motif

The 13 EF-Hand motifs had a total of 1374 hits on 62 structures.  These were
automatically selected and fed into the training set generator.  The positive and
negative examples were selected as described in the methods generating a total of
220 sites and 119 non-sites.  Figure 2 shows the automatically constructed
structural motif.
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Figure 2: SeqFEATURE model of calcium binding automatically generated from EF-Hand sequence
motifs.  This model describes the 3D environment around the sequence motif.  Each row represents the
distribution of properties in increasingly larger spherical shell around the site.  Properties significantly
present are shaded darker and properties significantly absent are shaded lighter.

3.3 Manual construction of general calcium binding motif

A general calcium binding structural motif was created by manual generation of
a training set for FEATURE.  Forty protein structures from the PDB with unique
folds for binding calcium were manually selected.  The calcium ions in the protein
structures were used as sites for the training set.  In addition, random backbone
atoms in 14 structures known not to have calcium binding activity were used as
non-sites.

3.4 Performance on general calcium binding proteins

In the following performance figures, the presence of calcium ion in the crystal
structure is used as the gold standard for identifying true sites.

The general calcium binding site test set had 54 structures containing 91 true
sites.  The number of hits from FEATURE is varied by adjusting the cutoff
threshold for the score.  The eMotif sequence motifs predicted 81 of 98 hits near
sites, detecting 14 unique sites (15% sensitivity, 83% PPV).  At similar
sensitivity, SeqFEATURE with score cutoff at 115 had 23 of 24 hits near sites,
detecting 14 unique sites (15% sensitivity, 96% PPV).  The manual FEATURE
with score cutoff at 65 had 17 of 18 hits near sites, detecting 16 unique sites (18%
sensitivity, 94% PPV).  Figure 3 shows the performance over varying sensitivity.
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Figure 3: Performance of SeqFEATURE, FEATURE, and eMotifs on general calcium binding sites.
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Figure 4: Performance of SeqFEATURE, FEATURE, and eMotifs on NCBI’s non-redundant PDB.



3.5 Performance on non redundant database

The non-redundant PDB set from NCBI with Blast e-value of 10e-7 was used as
another test set.  There were a total of 2122 structures in the non-redundant PDB.
131 structures contained calcium ions, making 398 true sites.

The eMotif sequence motifs predicted 1376 hits of which 514 were near sites,
detecting 99 unique sites (25% sensitivity, 37% PPV).  At similar sensitivity,
SeqFEATURE with score cutoff at 110 had 284 of 415 hits detect 96 unique sites
(24% sensitivity, 68% PPV).  Manual FEATURE with score cutoff at 60 had 137
of 195 hits detect 98 unique sites (25% sensitivity, 70% PPV).  Figure 4 shows the
performance over varying sensitivity.

4 Discussion

In both the general calcium binding sites and the non-redundant PDB test sets, the
automatically generated EF-Hand structural motif from SeqFEATURE had
comparable performance to manual construction of a calcium binding site from
FEATURE.  The FEATURE calcium binding site performed better in the general
calcium binding test set, with higher positive predictive value across the sensitivity
range.  This is expected since the SeqFEATURE model was created from only
examples of EF-Hand calcium binding whereas the manual FEATURE model was
trained on a variety of different calcium binding structures.

The SeqFEATURE model of the EF-Hand was able to have better PPV and
sensitivity than the EF-Hand sequence eMotifs in both test cases.  This
demonstrates how observing the three dimensional environment around sequence
motifs can provide more information in predicting function than just using the
sequence information.

SeqFEATURE and FEATURE use a discriminative method for learning the
model for a functional site.  By taking positive examples and negative control
examples, these methods identify what shared attributes in the positive examples
make them different from the control examples and filter out attributes and noise
common to both sets.  The eMotifs use a generative method for representing the
conservation of residues.  They only use a set of positive examples, identifying the
properties conserved in the set and filtering out those that have too much variance.
If the eMotifs are created using discriminative methods, they may provide more
power in predicting function than the current generative methods.

In the evaluation of the structural and sequence motifs for calcium binding, we
used the presence of calcium ion in the crystal structure as a gold standard.  This
standard may be subject to errors as some calcium ions may have been missed in
the structure determination due to different experimental conditions.  By taking a
large set of examples, we hope these errors will be averaged out.



5 Conclusion

The three dimensional structure of the proteins provide more information for
predicting functional sites than does sequence homology.  A structural motif for
calcium binding was automatically created from sequence motifs of the EF-Hand
calcium binding family.  By using structural information, the structural motif had
better performance in detecting calcium binding than the sequence motif.  This
method for automatic construction of structural motifs from sequence motifs can be
used to build a library of models for performing genomic-scale prediction of
functional sites.  Structural motifs for other types of functional sites, such as
catalytic sites and small molecule binding sites, will be tested in the future.

Acknowledgments

This work was supported by the National Institute of Health (NIH) grants LM-
05652, LM-07033, GM-63495, and HG-02235.  We thank Rey Banatao, Liping
Wei and Soumya Raychaudhuri for helpful discussions.



References

1. Brenner, S.E., "A tour of structural genomics". Nat Rev Genet. 2, 10
(2001) pp. 801-9.

2. Burley, S.K., et al., "Structural genomics: beyond the human genome
project". Nat Genet. 23, 2 (1999) pp. 151-7.

3. Baker, D. and A. Sali, "Protein structure prediction and structural
genomics". Science. 294, 5540 (2001) pp. 93-6.

4. Skolnick, J., J.S. Fetrow, and A. Kolinski, "Structural genomics and its
importance for gene function analysis". Nat Biotechnol. 18, 3 (2000) pp.
283-7.

5. Henikoff, J.G., et al., "Increased coverage of protein families with the
blocks database servers". Nucleic Acids Res. 28, 1 (2000) pp. 228-30.

6. Henikoff, S., J.G. Henikoff, and S. Pietrokovski, "Blocks+: a non-
redundant database of protein alignment blocks derived from multiple
compilations". Bioinformatics. 15, 6 (1999) pp. 471-9.

7. Nevill-Manning, C.G., T.D. Wu, and D.L. Brutlag, "Highly specific
protein sequence motifs for genome analysis". Proc Natl Acad Sci U S A.
95, 11 (1998) pp. 5865-71.

8. Huang, J.Y. and D.L. Brutlag, "The EMOTIF database". Nucleic Acids
Res. 29, 1 (2001) pp. 202-4.

9. Chothia, C. and A.M. Lesk, "The relation between the divergence of
sequence and structure in proteins". Embo J. 5, 4 (1986) pp. 823-6.

10. Chothia, C. and A.M. Lesk, "The evolution of protein structures". Cold
Spring Harb Symp Quant Biol. 52,  (1987) pp. 399-405

11. Wallace, A.C., N. Borkakoti, and J.M. Thornton, "TESS: a geometric
hashing algorithm for deriving 3D coordinate templates for searching
structural databases. Application to enzyme active sites". Protein Sci. 6,
11 (1997) pp. 2308-23.

12. Wallace, A.C., R.A. Laskowski, and J.M. Thornton, "Derivation of 3D
coordinate templates for searching structural databases: application to Ser-
His-Asp catalytic triads in the serine proteinases and lipases". Protein Sci.
5, 6 (1996) pp. 1001-13.

13. Fetrow, J.S. and J. Skolnick, "Method for prediction of protein function
from sequence using the sequence-to-structure-to-function paradigm with
application to glutaredoxins/thioredoxins and T1 ribonucleases". J Mol
Biol. 281, 5 (1998) pp. 949-68.

14. Fetrow, J.S., A. Godzik, and J. Skolnick, "Functional analysis of the
Escherichia coli genome using the sequence- to-structure-to-function
paradigm: identification of proteins exhibiting the
glutaredoxin/thioredoxin disulfide oxidoreductase activity". J Mol Biol.
282, 4 (1998) pp. 703-11.



15. Bagley, S.C., et al., "Characterizing oriented protein structural sites using
biochemical properties". Proc Int Conf Intell Syst Mol Biol. 3,  (1995) pp.
12-20

16. Wei, L. and R.B. Altman, "Recognizing protein binding sites using
statistical descriptions of their 3D environments". Pac Symp Biocomput.,
(1998) pp. 497-508.

17. Berman, H.M., et al., "The Protein Data Bank". Nucleic Acids Res. 28, 1
(2000) pp. 235-42.

18. Bennett, S.P., C.G. Nevill-Manning, and D.L. Brutlag, "3MOTIF:
Visualizing Conserved Protein Sequence Motifs in the Protein Structure
Database". Submitted for Publication (2002)

19. Bennett, S.P. and D.L. Brutlag, "Protein Sequence Motifs in the Protein
Structure Database". Personal Communication (2002)

20. Donato, R., "Functional roles of S100 proteins, calcium-binding proteins
of the EF- hand type". Biochim Biophys Acta. 1450, 3 (1999) pp. 191-
231.

21. Lewit-Bentley, A. and S. Rety, "EF-hand calcium-binding proteins". Curr
Opin Struct Biol. 10, 6 (2000) pp. 637-43.




