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Abstract

Gene expression of a cell is controlled by sophisticated cellular processes.
The capability of inferring the states of these cellular processes would provide
insight into the mechanism of gene expression control system. In this paper,
we propose and investigate the cooperative vector quantizer (CVQ) model for
analysis of microarray data. The CVQ model could be capable of decomposing
observed microarray data into many different regulatory subprocesses. To make
the CVQ analysis tractable we develop and apply variational approximations.
Bayesian model selection is employed in the model, so that the optimal num-
ber processes is determined purely from observed micro-array data. We test the
model and algorithms on two datasets: (1) simulated gene-expression data and
(2) real-world yeast cell-cycle microarray data. The results illustrate the abil-
ity of the CVQ approach to recover and characterize regulatory gene expression
subprocesses, indicating a potential for advanced gene expression data analysis.

1 Introduction

Current DNA microarray technology allows scientists to monitor gene expression at
genome level. Although microarray data are not direct measurements of activity of
cellular processes (or signal transduction pathways), they provide opportunities to in-
fer the states of the cellular processes and study the mechanism of gene expression
control at the system level. When a cell is subjected to different conditions, the
states of the processes controlling gene expression change accordingly and result in
different gene expression patterns. One important task for system biologists is to
identify the cellular processes controlling gene expression and infer their states un-
der a specific condition based on observed expression patterns. Different approaches
have been applied in order to identify the cellular processes by decomposing (de-
convoluting) the observed microarray data into different components. For example,
singular value decomposition (SVD)1, principal component analysis (PCA)2, inde-
pendent component analysis (ICA)3,4, Bayesian decomposition5 and probabilistic

aTo whom correspondence should be addressed.



relation modeling (PRM)6 have been used to decompose observed microarray data
into different processes.

The problem of identifying hidden regulatory processes in a cell can be formu-
lated as ablind source separationproblem, where distinct regulatory processes, which
we would like to identify and characterize, are modeled as hidden sourcesb. The task
is to identify the source signals purely based on observed data. An additional chal-
lenge is that the separation process must be performed fully unsupervised - the number
of sources is not known in advance.

To facilitate biological interpretation, the originating signals of the processes in
a system should be identified uniquely. Some of the aforementioned models, such as
SVD and PCA, restrict the components to be orthonormal, thus they are not suitable
for blind source separation. Independent component analysis (ICA), independent fac-
tor analysis (IFA) and various vector quantization models7,8,9,10 are among the mod-
els used for blind source separation. In this work we develop an inference algorithm
for one such model – thecooperative vector quantizer(CVQ) model. The main ad-
vantage of the CVQ model over other blind source separation models is that it mimics
the switching-state nature of the regulatory processes; consequently, the results of the
analysis can be easily interpreted by biologists.

Fully unsupervised blind source separation requires learning the model structure.
In microarray data analysis, one needs to infer the optimal number of latent regula-
tory processes in the system. The parameters of a latent variable model with a fixed
structure (known number of processes) can be learned using maximum likelihood es-
timation (MLE) techniques, e.g. the expectation maximization (EM)11 algorithm, as
in Segal et al6. Unfortunately, the value of likelihood by itself is not suitable for
model selection. The main reason is that MLE prefers more complex models and
tends to over-fit the training data. That is, more complex models return higher likeli-
hood scores for the training data, but they do not generalize well to future, yet to be
seen, data. On the other hand, the methods used in the studies by Alter et al1 and
Liebermeister3 simply dictate the number of processes of the model and do not have
the flexibility of model selection. Model selection can be addressed effectively within
the Bayesian framework12,13,14. Bayesian selection penalizes models for complexity
as well as for poor fit, therefore it implements Occam’s Razor. In this work, we in-
vestigate the Bayesian model selection framework in the context of the CVQ model.
More specifically, we derive and implement a variational Bayesian approach which
can automatically learn both the structure and parameters of the CVQ model, and thus
perform full-scale blind source separation.

In the following sections, we first present the CVQ model. After that, we discuss
the theory of the Bayesian model selection and its approximations. We derive and
present a variational Bayesian approximation for learning the CVQ model from data.

bWe use “sources” and “processes” interchangeably throughout the rest of paper.
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Figure 1: A directed acyclic graph (DAG) representation of the cooperative vector quantizer (CVQ) model.
The square corresponds to an individual data point which consists of observed variablesy and latent vari-
abless. W, γ, τ andπ are model parameters.

Finally, we test the model and algorithms on (1) a simulated gene expression data (2)
yeast cell-cycle microarray data20 and discuss the results.

2 The CVQ Model

In the CVQ model, the states of the cellular processes are represented as a set of binary
variabless = {sk}K

k=1 referred to as sources, whereK is the number of processes in
a given model. Each source assumes a value of 0/1, which simulate the “off/on” state
of cellular processes. Each microarray experiment is represented as aD-dimensional
vectory, whereD is the number of genes on a microarray. An observed data point
y(n) is produced cooperatively by the sources depending on their states. When a
sourcesk equals 1, it will output aD-dimensional weightwk to y. We can think
of the source variablesk as a switch which, when turned on, allows the outflow of
weightswk to y. More formally

y =
K∑

k=1

skwk + ε P (y|s) ∼ N
(

y|
K∑

k=1

skwk,Λ

)

whereN (.|µ,Σ) denotes a multivariate Gaussian distribution;sk is an index func-
tion; wk is the weight output by sourcesk; ε ∼ N (0,Λ) is noise of the system.
Parameters (θ) of the model are:π = {π1, π2, . . . , πK} whereπk is the probability
of sk = 1; a D ×K weight matrixW whose columnwk corresponds to the weight
output for sourcesk; γ = {γ1, γ2, . . . , γK} whose components are the precision (1

σ2 )
of columns of the weight matrix; the covariance matrixΛ = τ−1I whereτ is the
precision of noiseε. The graphic representation of the model is shown in Figure 1.
The learning task includes the parameter estimation and model selection based on the
Bayesian framework.



3 Bayesian Model Selection

The main task of model selection in the VBCVQ model is to determine the number
of processes (sources) in the model. In the Bayesian model selection framework, we
choose the modelMi with the highest posterior probabilityP (Mi|Y) among a set
of models, (M = {Mj}M

j=1), based on the observed data. Therefore the selection of
the model is dictated by observed data, not arbitrarily by the modeler. According to
Bayes’ theorem, the posterior probability of a model equals:

P (Mi|Y) =
P (Y|Mi)P (Mi)

P (Y)
(1)

P (Y|Mi) =
∫

θ

P (Y|θ,Mi)P (θ|Mi)dθ (2)

whereY = {y(n)}N

n=1 are the observed data;P (Y|Mi) is the marginal likelihood
or “evidence” for the model;P (Mi) is the prior probability for the modelMi. If no
prior knowledge is available, we use an uninformative priorP (Mi) and the model
selection is determined byP (Y|Mi).

Variational approximations. The evaluation of equation (2) is often intractable
in practice. Various techniques are used to approximate the integration, e.g., Laplace
approximation, Bayesian information criteria (BIC) and Markov Chain Monte Carlo
(MCMC) simulation13. Recently, the variational Bayesian approach has been used
in various statistical models to approximate the integration in equation (2)15,16,12,10.
The approach takes advantage of the fact that, for a given modelMi, the log marginal
likelihood, ln P (Y|Mi), can be bounded from below15,12 as:

ln P (Y|Mi) = ln
∫

θ

∑

H

P (Y,H|θ, Mi)P (θ|Mi)dθ (3)

≥
∫

θ

∑

H

Q(H, θ) ln
P (Y,H|θ,Mi)P (θ|Mi)

Q(H, θ)
dθ ≡ F (4)

whereQ(.) is an arbitrary distribution,H andθ denote sets of hidden variables and
parameters of a given model respectively. The inequality is established by Jensen’s
inequality. Thus, one can treat the lower boundF as the function of the free distribu-
tion Q(H, θ) and maximizeF with respect toQ(H, θ). The best result is achieved
if Q(H,θ) equals the posterior joint distribution over hidden variablesH and pa-
rametersθ. However, the evaluation of the true posterior distribution is intractable
in most practical cases. To overcome the difficulty, a variational approximation can
be achieved by restricting the maximizationQ(H, θ) to a smaller family of distri-
butions chosen for convenience. A common approach is to use the mean-field ap-
proximation, which maximized on the family of models in which hidden variables



and parameters are independent. Then the joint distribution can be fully factored:
Q(H,θ) =

∏K
i=1 QH(Hi)

∏P
j=1 Qθ(θj). RestrictingQ(H, θ) to this family gives a

less tight bound in equation (4), but one can analytically maximize the lower bound
of the log marginal likelihood with respect to the factorized family of distributions by
an iterative algorithm similar to the EM algorithm12.

In the Bayesian framework, the parameters of a given model are treated as ran-
dom quantities, requiring us to specify prior distributionsP (θ|Mi) for all model
parameters. We choose the following conjugate priors to facilitate the estimation of
approximate posterior distributions:

P (π) =
K∏

k=1

Beta(πk|α, β); P (W|γ) =
K∏

k=1

N (wk|0, γk);

P (γ) =
K∏

k=1

G(γk|aγ , bγ); P (τ) = G(τ |cτ , dτ );

whereBeta(.|α, β) is a beta distribution;G(.|a, b) is a gamma distribution. We use
the following set of values of hyper-parameters:α = β = 1, aγ = bγ = cτ = dτ =
10−3 during training sessions.

4 Variational Bayesian Learning

In the variational Bayesian approach, we maximize the lower boundF of the marginal
log likelihood ln P (Y|Mi) with respect to a set of parameterized variational distri-
butionsQ(Hk), k = 1, 2, . . . , K andQ(θp), p = 1, 2, . . . , P , which are approximate
posterior distributions of hidden variables and parameters15,12. The process of max-
imizing the lower boundF and learning parameter is very similar to conventional
expectation-maximization (EM) algorithm11. We adopt iterative variational approx-
imation principle15,12, which maximizes the functionF by iterating over two alter-
nating re-estimation steps:

• Estimation of hidden source distributionsQH(H):

Q∗
H(H) ∝ exp 〈ln P (Y,H|θ)〉Qθ(θ) (5)

• Estimation of parameter posteriorsQθ(θ)

Q∗
θ(θ) ∝ P (θ) exp 〈ln P (Y,H|θ)〉QH(H) (6)



where〈.〉Q(.) denotes the expectation w.r.t. distributionQ(.).
Expanding and evaluating the equations (5) and (6), we obtain a set of approx-

imate posterior distributions of the hidden sourcesH and parametersθ. Thus, the
variational Bayesian approach allows us not only to approximate the log marginal
likelihood ln P (Y|Mi) to achieve model selection, but also to learn the approxi-
mate distributions of the parameters. In the following, we summarize the form of
the approximate posterior distributions and rules of updating the parameters of the
distributions. Complete derivations can be found in the separate report17.

Q(s) =
K∏

k=1

Be(sk|λk); Q(π) =
∏K

k=1 Beta(πk|α̃k, β̃k);

Q(W) =
D∏

d=1

N
(
wd|m̃(d)

w , Σ̃
(d)

w

)
; Q(γ) =

∏K
k=1 G(γk|ãγk, b̃γk);

Q(τ) = G(τ |c̃τ , d̃τ );

whereBe(.|λ) is a Bernoulli distribution. One can maximize the lower boundF by
initializing the parameters of the model with a suitable guess, then iteratively update
the parameters for individual approximate distribution using following updating
rules untilF converges to a local maximum.

ln
λk

(1− λk)
=

〈
ln

πk

(1− πk)

〉
+ yT

〈
Λ−1

〉 〈wk〉 −
∑

j 6=k

λjtr
(〈

wjwT
k

〉 〈
Λ−1

〉)

−1
2
tr

(〈
wkwT

k

〉 〈
Λ−1

〉)
;

α̃k = αk +
N∑

n=1

〈
s
(n)
k

〉
; β̃k = βk + N −∑N

n=1

〈
s
(n)
k

〉
;

Σ̃
(d)

w =

(
diag(〈γ〉) + 〈τ〉

N∑
n=1

〈
s(n)s(n)T

〉)−1

; m̃(d)
w = Σ̃

(d)

w 〈τ〉∑N
n=1

〈
s(n)

〉
y
(n)
d ;

ãγk = aγk +
D

2
; b̃γk = bγk + 〈||wk||2〉

2 ;

c̃τ = cτ +
ND

2
;

d̃τ = dτ + 1
2

∑N
n=1

{
||y(n)||2 − 2y(n)T 〈W〉 〈s(n)

〉
+ tr

(〈
WT W

〉 〈
s(n)s(n)T

〉) }
;



Figure 2: Left panel: Original source images used to generate data.Middle panel: Observed images
resulting from mixture of sources.Right panel: Recovered sources

5 Analysis of Simulated Data

We have implemented the variational Bayesian inference algorithm for the CVQ
model. To demonstrate the capability of the model to identify the source processes
uniquely, we first applied the model to a simulated microarray data.

In this experiment, we used 8 hidden sources to simulate cellular processes that
control expression of 16 genes. The left panel of Figure 2 depict the components
of the model, where genes are represented by pixels of a 4×4 image. Each of the
8 sources controls a subset of 16 genes, where the intensity of the pixels reflect the
degree of influence by the source. As the figure shows, some genes are controlled by
multiple sources. We generated 600 images (experimental data) by setting sources to
be “on/off” stochastically, summing the weight output by sources and adding random
noise into the images. The middle panel of Figure 2 illustrates some of the data images
generated during the process. We run our program to test its ability of automatically
recovering the number of sources and their patterns. The right panel of Figure 2
shows the result of an experiment where the algorithm is initialized with 16 hidden
sources. The program correctly identified all 8 sources that were used to generate the
data and eliminated the rest 8 unnecessary sources. The experiment demonstrates an
excellent performance of the variational Bayesian approach on blind source separation
for simulated gene expression data.

Figure 2 also shows an interesting characteristic of our Bayesian CVQ model –
its ability to eliminate unnecessary sources automatically, thus, achieving the effect of
model selection. Such an ability is due to the introduction of hierarchical parameters
γ (see Section 2) into the model. The approach is referred to as automatic relevance
determination (ARD). It has been used in a number of Bayesian linear latent variable
models to determine model dimension automatically.16,18,10.

When variational Bayesian ICA model with mixture of Gaussian sources was
first tested to perform a similar image separation task19,10, recovery of source images
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Figure 3: Source processes recovered from the training data containing a background signal and both
positive and negative weight sources. The first image captures the background signal. Black pixels capture
negative weights.

from the mixed image data was hindered by contamination with negative “ghost” im-
ages. In order to prevent “ghost” images, special constraints on distributions were
incorporated into the ICA model. Specifically, the use of rectified Gaussian distri-
butions priors10 restricted both the source and weight matrix to the positive domain.
In contrast, the CVQ model performs blind source separation without special con-
straints. Adopting Bernoulli distributions for sources in the CVQ model naturally
constrains the sources to the non-negative domain, preventing “ghost” images. No
constraint on the weight matrix appears necessary. This flexibility allows the cap-
ture ofgenuinenegative influences of sources on the observed data, which is a highly
desirable characteristic for detecting the repressive effects of signal transduction com-
ponents on gene expression. To test the model’s ability to capture repressive effects,
we generated 600 training data with 8 sources similar to those described earlier with
one exception: weight outputs for two sources are negative on some of the pixels.
We randomly initialized parameters for hidden sources, and then ran the algorithm
to recover the sources. Once again our variational Bayesian algorithm was able to
identify correctly not only the number of underlying regulatory signals but also their
weight matrices, including their repressive (negative) components. Figure 3 shows
the sources and weights recovered by the algorithm for the simulated data. Black
pixels correspond to negative weights.

6 Application in Microarray Data Analysis

In this section, we present the result of applying the CVQ data analysis to the yeast
cell cycle data by Spellman et al20. These cell cycle data has been widely used to test
different algorithms, including SVD and ICA1,3. The data set contains a collection
of the whole yeast genome expression measurements (77 samples) across the yeast
cell cycle. During the cell cycle, the states of the cellular processes that controls



progression of cell cycle switch “on/off” periodically. Thus, these data are suitable
to test the ability of the CVQ model to capture such periodical behavior of cellular
processes.

We have extracted expression patterns of 697 genes that are documented to be
cell-cycle dependent20 and used the CVQ to model the data. Original data is in
the form of log ratio of fluorescence of labeled sample cDNA and control cDNA.
Before fitting the model, the log ratio of the data was transformed to positive values by
subtract the minimum ratio of each gene. In order to determine the optimal model that
fit the data well, we tested CVQ models setting the initial number of sources to values
ranging from 8 to 30. We ran each model 30 times. Figure 4 shows the results of
experiments. We can see that the lower boundF for log marginal likelihood reaches
a plateau between the models with 12 to 20 sources. Inspecting the recovered models,
we found that most of these models have 12 working sources; excess sources were
eliminated by the ARD phenomenon. Note that models initialized with more than 20
sources are penalized by the Bayesian approach in that theF values begin to drop.
Thus, the variational Bayesian approach consistently returned models with 12 sources
as the most suitable model for the observed data. In comparison to the models studied
by Alter et al1 and Liebermeister3, where the number of processes was determined
by the number of samples, our approach determines the number of processes based
on the sound statistical foundation of the Bayesian framework. In addition, the larger
number of processes in their model significantly increases the number of parameters
to estimate – about 50,000 more parameters would be needed to carry out a similar
experiment. It is well known that the models with a large number of parameters are
prone to over-fitting the training data, especially with a training set of a small size
like the one used in our experiment. The full Bayesian treatment of the CVQ model
implicitly penalizes models with too many parameters, thus making it less likely to
over-fit the data.

We have studied the recovered CVQ model to see if it can capture the periodic
behaviors of the processes. The middle and right panel of the Figure 4 show one
of the recovered models with the highestF . The middle panel shows the state of
12 hidden sources across the experiment conditions, in this case, a times series of
gene expression observations. One can clearly see the cyclic “on/off” pattern of the
sources which are far from being random. This is not surprising and encouraging,
as we are modeling expression control processes of cell cycle related genes. For
each of the cell cycle time points, we can see sources cooperatively contributing to
observations. Thus, the CVQ model provides another approach to decomposing the
overall observation at genome level into different processes, which may reflect the
state of different cellular signal transduction components. A more detailed biological
analysis of the results is being carried out and will be reported separately.
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Figure 4: Left panel: Mean and standard deviation ofF of models initialized with different number of
sources.Middle panel:Top: States of hidden sources (rows) of each time series observations (columns).
Black blocks indicate the source is “on” and white blocks indicate the source is “off”.Bottom: Correspond-
ing cell cycle phase for each observation.Right panel: The weights associated with sources (columns).

7 Discussion

One important aspect of systems biology is to understand how information is orga-
nized inside the cell. For example, an interesting question is: what is the minimum
number of central signal transduction components needed to coordinate the variety of
cellular signals and cellular function. A cell is constantly bombarded by extracellu-
lar signals; many of these signals are eventually propagated to the nucleus in order
to regulate gene expression. It would be surprisingly inefficient for nature to endow
every receptor at the plasma membrane with a unique pathway to pass its signal from
plasma membrane to the promoter of a gene. Rather more plausible is a minimum
set of partially shared signal transduction components that play central role in coor-
dinating signals from extracellular environment and disseminating the signals to the
transcription factor level. These components work as encoders that compress a large
amount of information from extracellular and intracellular environments to minimum
length, then pass the information to gene expression regulating components such as
transcription factors or repressors. To model these signal transduction components,
model selection becomes a key issue, which has not been well addressed previously.
Bayesian model selection respects Occam’s razor, to minimize a fitted model’s com-
plexity, potentially increase the interpretability of the data in terms of information
organization and flow inside living cells. These characteristics put the model a step
ahead of some commonly used models for modeling cellular processes controlling
gene expression.

Like most other models used to decompose observed microarray data into com-
ponents, the CVQ model is a linear model. In microarray data analysis, measure-
ments are usually transformed by the logarithm, so that cooperative effects that com-
bine multiplicatively at the raw data level can be handled as additive. This simplifies



model-fitting but may be too restrictive. To capture nonlinear relationships in the
log space, the CVQ model could naturally be extended to mixtures of CVQ models.
This extension will be studied in the future. Another possible improvement of the
model includes more sophisticated approximation methods, such as Minka’s expec-
tation propagation method21, to obtain a better approximation of the log marginal
likelihood, and thus, better model selection and optimization.
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