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Abstract

Predicting the secondary structure of RNA molecules from the knowl-
edge of the primary structure (the sequence of bases) is still a challeng-
ing task. There are algorithms that provide good results e.g. based on
the search for an energetic optimal configuration. However the output
of such algorithms does not always give the real folding of the molecule
and therefore a feature to judge the reliability of the prediction would be
appreciated. In this paper we present results on the expected structural
behavior of LSU rRNA derived using a stochastic context-free grammar
and generating functions. We show how these results can be used to
judge the predictions made for LSU rRNA by any algorithm. In this
way it will be possible to identify those predictions which are close to
the natural folding of the molecule with a probability of 97% of success.

1 Introduction and Basic Definitions

A ribonucleic acid (RNA) molecule consists of a chain of nucleotides (there are
four different types). Each nucleotide consists of a base, a phosphate group
and a sugar group. The various types of nucleotides only differ from the base
involved; there are four choices for the base, namely adenine (A), cytosine (C),
guanine (G) and uracil (U). The specific sequence of the bases along the chain
is called primary structure of the molecule. It is usually modeled as a word
over the alphabet {A,C,G,U}. Through the creation of hydrogen bonds, the
complementary bases A and U (resp. C and G) form stable base pairs with
each other. Additionally, there is the weaker G-U pair, where bases bind in a
skewed fashion. Due to these base pairs, the linear chain is folded into a three-
dimensional conformation called tertiary structure of the molecule. For some
types of RNA molecules like transfer RNA, the tertiary structure is highly con-
nected with the function of the molecule. Since experimental approaches which
allow the discovery of the tertiary structure are quite expensive, biologists are
looking for methods to predict the tertiary structure from the knowledge of the
primary structure. It is the common practice to consider the simplified sec-
ondary structure of the molecule, where we restrict the possible base pairs such



that only planar structures occur. So far, several algorithms for the prediction
of secondary structures using rather different ideas were presented.1,2,3,4,5,6,7

However, the output of such algorithms cannot be assumed to be error-free, so
they might predict a wrong folding of a molecule. To have a tool to quantify
the reliability of the prediction would be helpful. In this paper we propose to
use a statistical filter which compares structural parameters of the predicted
molecule with those of an expected molecule of the same type and the same
size (number of nucleotides/bases), and we show that such a filter offers good
results.
In literature you find a lot of different results dealing with the expected struc-
ture of RNA molecules. Waterman6 gave the first formal framework for sec-
ondary structures. Later on, some authors considered the combinatorial and
the Bernoulli model of RNA secondary structures (where the molecule is mod-
eled as a certain kind of planar graph) and they derived numerous results like
the average size and number of hairpins and bulges, the number of ladders, the
expected order of a structure and its distribution or the distribution of unpaired
bases (see 8,9,10,11). In11 it was pointed out (by comparison to real world data)
that both models are rather unrealistic and thus the corresponding results can
hardly be used for our purposes. In this paper we will sketch one possible way
to construct a realistic model for RNA secondary structures which allows us to
derive the corresponding expectations, variances and all other higher moments
to be used according to our ideas. In the rest of this paper we assume that
the reader is familiar with the basic notions of Formal Language Theory such
as context-free grammars, derivation trees, etc. A helpful introduction to the
theory can be found in.12 We also assume a working knowledge on the notion
of secondary structures and the concepts like hairpins, interior loops, etc. We
refer to 13 for a related introduction.
Besides modeling a secondary structure as a planar graph, it is a slightly
different approach to model it by using stochastic context-free grammars as
proposed by.14 A stochastic context-free grammar (SCFG) is a 5-tuple G =
(I, T,R, S, P ), where I (resp. T ) is an alphabet (finite set) of intermediate
(resp. terminal) symbols (I and T are disjoint), S ∈ I is a distinguished inter-
mediate symbol called axiom, R ⊂ I×(I∪T )� is a finite set of production-rules
and P is a mapping from R to [0, 1] such that each rule f ∈ R is equipped
with a probability pf := P (f). The probabilities are chosen in such a way that
for all A ∈ I the equality

∑
f∈R pfδQ(f),A = 1 holds. Here δ is Kronecker’s

delta and Q(f) denotes the source of the production f , i.e. the first component
A of a production-rule (A,α) ∈ R. In the sequel we will write pf : A → α
instead of f = (A,α) ∈ R, pf = P (f). In Information Theory SCFGs were
introduced as a device for producing a language together with a corresponding



probability distribution (see e.g. 15,16). Words are generated in the same way
as for usual context-free grammars, the product of the probabilities of the used
production-rules provides the probability of the generated word. Note that this
does not always provide a probability distribution for the language. However,
there are sufficient conditions which allow us to check whether or not a given
grammar provides a distribution. First, one was interested in parameters like
the moments of the word and derivation lengths 17 or the moments of certain
subwords.18 Furthermore, one was looking for the existence of standard-forms
for SCFGs such as Chomsky normalform or Greibach normalform in order to
simplify proofs.19 Some authors used the ideas of Schützenberger20 to translate
the corresponding grammars into probability generating functions to derive
their results.17,18 However, languages resp. grammars were not used to model
any sort of combinatorial object besides languages themselves and therefore the
question on how to determine probabilities was not asked. In Computational
Biology SCFGs are used as a model for RNA secondary structures.2,14 In con-
trast to Information Theory not only the words generated by the grammar are
used, but also the corresponding derivation trees are taken into consideration:
A word generated by the grammar is identified with the primary structure of
an RNA molecule, its derivation tree is considered as the related secondary
structure.14 Note that there exists a one-to-one correspondence between the
planar graphs used by Waterman as a model for RNA secondary structures
and a certain kind of unary/binary trees (see e.g. 10). Thus the major impact
from using SCFGs is given by the way in which probabilities are generated.
Since a single primary structure can have numerous secondary structures, an
ambiguous SCFG is the right choice. The probabilities of such a grammar can
be trained from a database. The algorithms applied for this purpose are gen-
eralizations of the forward/backward algorithm used in the context of hidden
Markov models2,21 and are also applied in Linguistics, where one usualy works
with ambiguous grammars, too. At the end of the training the most probable
derivation tree of a primary structure in the database equals the secondary
structure given by the database. Applications were found in the prediction of
RNA secondary structure1,2 were the most probable derivation tree is assumed
to be the secondary structure belonging to the primary structure processed by
the algorithm. So far, no one used these grammars to derive structural results,
which in case of an ambiguous grammar is obvious since it is impossible to find
any sense in such results. In section 2 we provide the link between SCFGs and
the mathematical research on RNA. We use non-ambiguous stochastic context-
free grammars to model the secondary structures. This is done by disregarding
the primary structure and representing the secondary structure as a certain
kind of Motzkin language (i.e. a language over the alphabet {(, ), |} which en-



codes unary/binary trees equivalent to the secondary structure) which now is
the language generated by the grammar. After training the SCFGs it is used
to derive probability generating functions which enable us to conclude quan-
titative results related to the expected shape of RNA secondary structures.
Those results will be the basis for our quantitative judgement of predictions.
In order to train the grammar we derived a database of Motzkin words which
correspond one-to-one to the secondary structures contained in the databases
of Wuyts et al.22 We have also used the databases of Brown for RNase P se-
quences23 and of Sprinzl et al. for tRNA molecules,24 the corresponding results
are not reported here due to lack of space.

2 The Expected Structure of rRNA Molecules

In this section we will present our results concerning the expected structure of
rRNA molecules only with a few comments on how they were derived; tech-
nical details can be found in.25 As described in the first section, we used
a SCFG whose probabilities were trained on all entries of the database of
Wuyts et al. in order to derive our results. This grammar can easily be
translated into an equivalent probability generating function according to the
ideas of Schützenberger.20 From those generating functions we derived some ex-
pected values for structural parameters of large subunit (LSU) ribosomal RNA
molecules, like e.g. the average number and length of hairpin-loops or the aver-
age degree of multiloops. The corresponding formulæ are presented in Table 1,
where each parameter is presented together with its expected asymptotical
behavior, i.e. its expected behavior within a large (number of nucleotides)
molecule. Note that we have investigated all the different substructures which
must be distinguished in order to determine the total free energy of a molecule
which is necessary e.g. for certain prediction algorithms. Compared to all
previous attempts to describe the structure of RNA quantitatively (see for in-
stance 6,9,10,11,26), the results presented here are the most realistic ones. This
is in line with the positive experience of Knudsen et al. 2 and of Eddy et al. 1

with respect to the prediction of secondary structures based on trained SCFGs
(resp. covariance models). The results in Table 1 should be considered as the
structural behavior of an RNA molecule folded with respect to its energetic
optimum. Therefore, they are of interest themselves; for the first time we get
some (mathematical) insight on how real secondary structures behave. Besides
the application, which is the subject of this paper, the realistic modeling of the
secondary structures gives rise to further applications like the following: First,
we can use our results to provide bounds for the running-time of algorithms
working on secondary structures as their input. Second, when predicting a



Table 1: Expectations for different parameters of large subunit ribosomal RNA secondary
structures. In all cases n is used to represent the total size of the molecule.

Parameter Expectation
Number of hairpins 0.0226n
Length of a hairpin-loop 7.3766
Number of bulges 0.0095n
Length of a bulge 1.5949
Number of ladders 0.0593n
Length of a ladder (counting the number of pairs) 4.1887
Number of interior loops 0.0164n
Length of a single loop within an interior loop 3.8935
Number of multiloop 0.0106n
Degree of a multiloop 4.1311
Length of a single loop within a multiloop 4.3686
Number of single stranded regions 18.1679
Length of a single stranded region 18.1353

secondary structure, our results may provide initial values for loop lengths
etc. when searching for an optimal configuration such that a faster conver-
gence should be expected.
We used the following grammar to derive the results in Table 1 (all capital
letters are intermediate symbols):

f1 =S → SAC, f2 =S → C, f3 =C → C|, f4 =C → ε, f5 =A → (L),

f6 =L → (L), f7 =L → Mf8 =L → I, f9 =L → |H, f10 =L → (L)B|,
f11 =L → |B(L), f12 =B → B|, f13 =B → ε, f14 =H → H|,
f15 =H → ε, f16 =I → |J(L)K|, f17 =J → J |, f18 =J → ε,

f19 =K → K|, f20 =K → ε, f21 =M → U(L)U(L)N,

f22 =N → U(L)N, f23 =N → U, f24 =U → U |, f25 =U → ε.

The idea behind the grammar is the following: Starting at the axiom S a sen-
tential form of the pattern CACAC · · ·AC is generated, where each A stands
for the starting point of a folded region and C represents a single stranded
region. Applying production A → (L) produces the foundation of the folded
region. From there the process has different choices. It may continue build-
ing up a ladder by applying L → (L). It might introduce a multiloop by the
application of L → M or an interior loop by the application of L → I. A



Table 2: The probabilities for the productions of our grammar obtained from its training on
a database of large subunit ribosomal RNA secondary structures.

rule f prob. pf rule f prob. pf rule f prob. pf

f1 0.8628 f2 0.1372 f3 0.9477
f4 0.0523 f5 1.0000 f6 0.7612
f7 0.0402 f8 0.0662 f9 0.0941
f10 0.0207 f11 0.0176 f12 0.3730
f13 0.6270 f14 0.8644 f15 0.1356
f16 1.0000 f17 0.7401 f18 0.2599
f19 0.7461 f20 0.2539 f21 1.0000
f22 0.5149 f23 0.4851 f24 0.8137
f25 0.1863

hairpin-loop is produced by L → |H. Additionally, the grammar may intro-
duce a bulge by the productions L → (L)B| resp. L → |B(L) where the two
productions distinguish between a bulge at the 3’ resp. 5’ strand of the corre-
sponding ladder. An interior loop is generated by the production I → |J(L)K|
where J and K are used to produce the loops. The multiloop is generated by
the productions M → U(L)U(L)N , N → U(L)N and N → U , i.e. we have at
least three single stranded regions represented by U , by additional applications
of the production N → U(L)N the degree of the multiloop can be increased.
The other production-rules are used to generate unpaired regions in different
contexts. We used different intermediate symbols in all cases because otherwise
we would get an averaged length of the different regions instead of a distin-
guished length for all substructures considered. We first had to determine the
probabilities for this grammar in order to derive the results in Table 1. We
used a special parsing algorithm with all entries of the database as the input.
Table 2 presents the resulting probabilities. Then the grammar was translated
into a probability generating function from which our expectations were con-
cluded by using Newton’s polygon method and singularity analysis (details on
that can be found in.25) Table 3 compares the expected values according to our
formulæ to statistics computed from the database (archaea and bacteria data
only). For this purpose we have set the parameter n to the average length of
the structures used to compute the statistics. We observe that most parame-
ters are described pretty well by our formulæ (the root mean square deviation
of the statistics compared to our formulæ is given by 3.5260 . . .), so it makes
sense to use them according to our ideas.



Table 3: The average values computed statistically from the database compared to the values
implied by the corresponding formulæ in Table 1. All values were rounded to the second
decimal place.

Parameter Statistics Formula Quotient
number of hairpins 51.76 52.02 99.49%
length of a hairpin-loop 7.43 7.38 100.70%
number of bulges 20.94 21.87 95.78%
length of a bulge 1.59 1.59 99.88%
number of ladders 130.94 136.50 95.92%
length of a ladder 4.18 4.19 99.85%
number of interior loops 36.25 37.75 96.02%
length of single loop in interior loop 3.89 3.89 99.98%
number of multiloops 21.98 24.40 90.10%
degree of a multiloop 4.06 4.13 98.31%
length of single loop in multiloop 4.80 4.37 109.96%
number of single stranded regions 7.44 18.17 40.97%
length of single stranded regions 15.62 18.14 86.15%

3 Identifying Good Predictions

In order to see whether or not our expectations for certain structural param-
eters of RNA secondary structure can be used for identifying good or bad
predictions we continued in the following way. First we used the RNAStructure
software by Mathews, Zuker and Turner (version 3.71) in order to obtain pre-
dicted secondary structures for all sequences for archaea and bacteria in the
database of Wuyts et al.; the default settings of the program were used. We
decided to use those parameters for the judgement of the predictions where
according to Table 3 the relative error of the value of the formula compared to
the statistics computed from the database is at most 2%. Then the quality of
the predictions was quantified as follows:
For every prediction generated (for some sequences the software provides sev-

eral predictions) we computed the number of hairpins x1, the average length
of a hairpin-loop x2, the average length of a bulge x3, the average length of
a ladder x4, the average length of a single loop in an interior loop x5 and the
average degree of a multiloop x6. Furthermore we computed the corresponding
values yi from our formulæ, 1 ≤ i ≤ 6, setting n to the length of the sequence
under consideration. Let �z := (|x1 − y1|, . . . , |x6 − y6|) denote the vector of
the differences of these values (| · | denoting modulus) and let Z denote the set
of all vectors �z obtained by considering all predicted structures. In order to



endow every parameter with the same weight, every �z ∈ Z was normalized by
dividing each component by the maximal observed value for that component in
Z. Finally, assuming that the resulting vectors are denoted by (v1, v2, . . . , v6)
the corresponding structure was ranked by

∑

1≤i≤6

v2
i . (1)

Squares were used to amplify differences. This ranking must be considered
as the distance of the structure under investigation to some sort of consensus
structure implicitly provided by the expected values presented in section 2.
Therefore a small rank should imply a good prediction, high ranks should dis-
close bad results of the prediction algorithm.
In order to see whether it worked, we needed some notion for the similarity of
structures. We chose the most simple but also most stringent one: Two struc-
tures (the predicted structure and the corresponding structure in the database
of Wuyts et al.) are compared position by position (using the ct-files) counting
the number of bases which are bond to exactly the same counterpart in both
files. The total number is divided by the length of the related primary struc-
ture. We call the resulting percentage matching rate, a matching rate of 70%
or larger is assumed to be a successful prediction. For the data of archaea and
bacteria considered in our experiments a, all structures with a matching rate
greater or equal to 70% were rated 3.54 . . . or less. Additionally, only about
2.56% of all predictions had a rank of 3.54 . . . or less so that a rank of 3.54 or
less implies a successful prediction with a probability close to 98

100 .
Assuming a linear dependence between the matching rate of the predictions
and the rank according to (1) an ideal ranking would possess a correlation
coefficient of −1 when comparing the two. However, in our case we observed
a correlation coefficient of −0.3645235338. Furthermore, when looking at the
quantile-quantile plot which compares the distributions of ranking and match-
ing rates as shown in Figure 1 we observe a poor behavior especially for pre-
dictions with a matching rate between 55% to 65%. Note that an ideal ranking
would result in a linear (diagonal) plot. Searching for an explanation of this
rather poor correlation we took a look at the correlations between the overall
ranking according to (1) and the values of the different vi, 1 ≤ i ≤ 6. The
results can be found in Table 4. One immediately notices that the (expected)
length of a hairpin-loop and the (expected) degree of the multiloops are neg-

aNote that the data of archaea and bacteria used for our experiments is a subset of the
data used to train the grammar. However, since the grammar was trained on the entire
database it was also trained on other families of rRNA and thus good results with respect
to our task should result from some sort of generalization.



Table 4: The correlation of a single vi to
∑

v2
i . Within the table each vi is identified by the

name of its associated parameter.

Parameter Correlation
number of hairpins 0.6575498439
length of a hairpin-loop −0.3432207906
length of a bulge 0.4460590292
length of a ladder 0.2158570276
length of single loop in interior loop 0.3850727833
degree of a multiloop −0.0844724840

atively correlated with the rank, i.e. they have a counterproductive effect on
our ranking. Therefore we run a second set of experiments now using

∑

i∈{1,3,4,5}
v2

i (2)

as the rank of the prediction. The new filter assigns a rank of at most 1.87 . . . to
those predictions that have a matching rate of 70% or larger. Again, only about
2.56% of all predictions were ranked 1.87 . . . or less, thus the new filter works
with the same accuracy as the former one. But now we observe a correlation
coefficient of −0.4745120689. Additionally, the quantile-quantile plot as shown
in Figure 2 is much closer to the diagonal thus giving rise to a better judgement
of the predictions particularly for predictions with a matching rate between
55% and 65%. Note that the number of hairpins is the only parameter used
in (2) which depends on the size of the structures and thus needs our methods
based on SCFGs to be derived. All the other parameters could have been
determined by simple statistical methods only. However, omitting v1 from the
computations results in a worse accuracy and in a poor correlation coefficient
of −0.24249 . . .

4 Possible Improvements

Certainly the results reported in the previous section are only a first step
towards a precise judgement of an algorithmic prediction of RNA secondary
structure. However, the author belives this first step to be promising. There
is a potential for improving our approach in many directions. First, one might
consider additional parameters like e.g. the order of a secondary structure in-
troduced by Waterman.6 In contrast to the parameters considered here, the
order does not only take care of small parts of a secondary structure but it is
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Figure 1: The quantile-quantile plot of the
ranking according to (1) compared to the
matching rate of the predicted secondary
structures.
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Figure 2: The quantile-quantile plot of the
ranking according to (2) compared to the
matching rate of the predicted secondary
structures.

a sort of global parameter considering the balanced nesting depth of hairpins.
Mathematical results for the expected order of a secondary structure which fit
pretty well with the real world behavior can be found in.11 Second, it can be
helpful to give different weights to the different parameters used when com-
puting the rank of a structure. For instance it seems to be reasonable to give a
higher weight to such parameters which have a smaller (relative) variance than
others since these parameters must be assumed to be conserved more strongly.
Therefore a different behavior is more unlikely than a different behavior with
respect to others. So far, the author has not been able to gather experiences
in this field but it is a starting point of further research.

5 Conclusions

In this paper we have shown how results for the expected structural behavior
of RNA secondary structures can be used in order to judge the quality of a pre-
diction made by any algorithm. First experiences were gained by considering
large subunit ribosomal RNA molecules. To judge a single predicted struc-
ture S it is necessary to compute the length n of the corresponding primary
structure and the values observed within S for the four parameters attached
to the vi in (2). Then it is possible to compute the rank of S which accord-
ing to our experiments provides information on the quality (matching rate)



of the prediction with high probability. The methods presented in 25, which
were used to derive the key results for our methodology, i.e. expected values
for structural parameters within a realistic model for the molecules, are not
restricted to this familiy of RNA. So they might be used for kinds of RNA as
well. Furthermore, it should work to implement a corresponding set of rou-
tines using a computer algebra system like maple such that the expectations
needed in order to judge predictions for other kinds of RNA can be computed
automatically. As a consequence the ideas presented in this article may lead to
the development of a new kind of software tools which supports the automated
prediction of secondary structure with posteriori information on the quality of
the results. In the long run, these ideas might be transferred to other areas
of structural genomics, e.g. the prediction of three dimensional structure of
proteins.
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