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Despite recent advances, very-high-throughput (VHT) technologies capable of 
genotyping hundreds of thousands of SNPs in individual samples remain prohibitively 
expensive for the large studies necessary to screen substantial sections of the genome for 
variants with modest effects on disease risk. This paper presents a two-stage strategy, 
where a portion of available samples are genotyped with VHT technology, and a small 
number of the most promising variants are genotyped with standard high-throughput 
techniques in the remaining samples as an independent replication study. The sample 
sizes in the first and second stages and the corresponding significance levels are chosen 
to limit False Positive Report Probability (FPRP), while maximizing the number of 
Expected True Positives (ETPs). (The FPRP is the conditional probability that a marker is 
not truly associated with disease, given the a significant test for disease-marker 
association.) For a fixed budget, the two-stage strategy has greater power (a larger 
number of ETPs) than the single-stage strategy (where all subjects are genotyped using 
expensive VHT technology). Furthermore, concentrating on the FPRP leads to 
considerable savings relative to strategies designed to control the family-wise error (e.g. 
Bonferonni correction). The FPRP and number of ETPs can also accommodate 
researchers’ prior beliefs about the number of causal loci and the magnitude of their 
effects. The expected number of false positives does not change if the true number and 
effects of causal loci differs from the specified prior (although the false discovery rate 
will vary), thus limiting the absolute amount of resources spent chasing "false leads." 

1. Introduction 

Genome-wide linkage scans have successfully located the genes underlying 
simple Mendelian disorders, including rare, high-risk hereditary forms of 
cancer. However, studies based on genetic cosegregation have been less 
successful in finding susceptibility loci for complex disease; for example, high-
risk cancer genes only account small percentage of the familial aggregation of 
cancer.[1, 2] Genome-wide association (GWA) studies are likely to have more 
power to detect the common, low- to moderate-risk genes that have the greatest 
impact on morbidity and mortality due to complex disease at the population 
level. 

Advances in our knowledge of the architecture of the human genome—e.g. 
studies that examine linkage disequilibrium (LD) patterns among dense sets of 
Single Nucleotide Polymorphisms (SNPs)[3, 4]—and advances in high-



 

throughput genotyping technology have made GWA studies feasible. Several 
GWA studies are currently underway, including the NCI's Cancer Genetic 
Markers of Susceptibility study, which aims to identify susceptibility genes for 
breast and prostate cancer using a series of nested case-control studies.[5] 

GWA studies still face a number of design and analysis challenges. Even 
using the fine-scale correlation structure of the genome to choose a subset of 
maximally informative SNPs, theoretical and empirical studies suggest hundreds 
of thousands of SNPs will be needed to cover the genome.[3, 4, 6] Furthermore, 
to reliably detect low- to moderate-risk genes while controlling the number of 
false positives, large sample sizes will be necessary.[7-9] Despite rapidly 
decreasing genotyping costs, over the next few years it will remain prohibitively 
expensive to genotype all the SNPs needed for a genome-wide scan in all 
available subjects. 

A multi-stage approach may provide a cost-efficient alternative. In the first 
stage, the full panel of markers is genotyped on a subset of subjects; in the 
second and subsequent stages, the most promising markers are followed up in 
the remaining subjects. Given a fixed budget and a fixed sample size, the 
number of subjects in the first stage and the number of markers to follow up in 
the second stage can be chosen so as to maximize power while controlling the 
number of false positives. Satogopan et al. have explored this design in the 
context of controlling the family-wise error rate (FWER), that is, limiting the 
number of false positives to zero with high probability.[10-12] This paper 
introduces a multi-stage framework that limits the False Positive Report 
Probability (FPRP) recently introduced by Wacholder et al.[13] 

The FPRP provides a weaker form of control that is useful in the context of 
genome-wide association scans. Rather than definitively proving the causality of 
a locus, the goal of genome-wide association scans will be to suggest a list of 
candidate genes or regions with high probability of causality for further study. 
Strong control of the FWER can lead to reduced power or an impractical 
increase in required sample size. Researchers will be willing to accept a limited 
number of false positives results if that ensures causal loci will be detected using 
available resources, especially if any positive results from a genome-wide 
association scan will be quickly followed up—tested in other populations, 
studied in vitro, etc. 

The next section discusses general technical and logistical constraints on 
genome wide association studies. It also reviews the FPRP and extends it to 
two-stage designs. Since the FPRP is a quasi-Bayesian tool, I discuss the choice 
of priors for genome-wide association scans. The third section presents a 
hypothetical example involving 100,000 markers and compares the performance 
of one- and two-stage designs aimed at controlling the FWER and the FPRP. 



 

This example shows that for a fixed budget the two-stage and FPRP approaches 
can be considerably more powerful (in terms of expected number of causal loci 
detected) than one-stage and FWER designs. The final discussion includes a 
comparison of the multi-stage FPRP design and analysis with related designs, 
such as group sequential sampling and multi-stage designs aimed at controlling 
the False Discovery Rate.[14-16] 

2. Materials and methods 

For simplicity I assume researchers have access to two classes of 
genotyping technology: "very high throughput technology" and "high 
throughput technology." Very high throughput technology (VHT) is good at 
measuring many genotypes simultaneously on each sample, at a low per-
genotype cost. But because of the sheer number of genotypes, each sample is 
expensive to genotype. Furthermore, the set of SNPs genotyped is relatively 
inflexible, as developing new arrays or multiplexes is expensive and time 
consuming. High throughput (HT) technology is somewhat more expensive per 
sample, but more flexible in terms of choosing the SNPs to be genotyped. It is 
also currently more widely available. 

 In the example presented below, I assume that the "very high throughput" 
technology is used at the first stage of the study, but the more flexible "high 
throughput" technology is used in subsequent stages. This assumption is not 
intrinsic to the statistical methods, however, as they simply allow for per-
genotype costs to vary across the stages. The distinction between "very high 
throughput" and "high throughput" technology will likely soon fade, as the 
former becomes more flexible and start-up costs decline. It may currently be 
useful in practice to consider three tiers of technology, with per-genotype price 
breaks occurring between hundreds, tens of thousands, and hundreds of 
thousands of markers typed per sample. 

Notation for various study parameters is presented in Table I. All 
subsequent discussion is limited to the context of two-stage designs; the 
calculations should easily extend to designs with three or more stages (where 
the number of stages is fixed ahead of time).  

I assume that researchers have fixed numbers of cases and controls 
available for study. This would be the case when using DNA samples from 
existing cohort or case-control studies for genome-wide association. 
Furthermore, for many rare diseases there is effectively a rather low upper limit 
on the number of cases that can be studied in a reasonable time frame. I assume 
that there are an equal number of cases and controls. This assumption is not 
essential to the method; only minor modifications to power calculations would 



 

be needed to account for case:control ratios different than 1:1. Note that 
although I focus on case-control studies using unrelated individuals, the design 
concepts can be easily applied to family-based studies, e.g. where researchers 
have a fixed number N of case-parent trios. I also assume researchers have a 
fixed budget B for genotyping. 
 

Table 1. Notation 
Parameter Notation Example 

value 
Total number of subjects N 2000 
Number of subjects, stages 1 and 2 N1, N2 * 

Set of markers studied M  
Total number of marker studied M 100,000 
Allele frequency for marker m!M qm "0.10 
Target FPRP # 0.50 
Significance threshold at first stage, marker m $1m * 

Significance threshold at second stage $2m * 

Possible (non-null) relative risks of disease RR1,...,RRA 2,1.5,1.3 
Prior probability that a marker has relative risk RRj %j 1,2,4*** 

Type II error rates at stage i for locus m with RRj &mji ** 

VHT genotyping cost per subject K 1 
HT:VHT genotyping cost ratio ' 10 

* To be solved for given fixed budget.** Fixed given N, $1m, $2m.*** Value ( 10-5 

 
In the first stage, N1 ) N cases and controls are genotyped at M independent 

markers using very high throughput technology. (I assume these markers are 
diallelic, but they could also be made up of several correlated SNPs, as would 
be the case in haplotype-tagging studies.) Each marker m is tested for 
association with disease; each marker m that is significant at the $1m level is 
then genotyped using high throughput technology in the remaining N2 cases and 
controls. Each marker m that is significantly associated with disease in this 
second sample at the $2m level is declared "overall significant." (As discussed 
below, the FPRP depends on both the significance level and the power of the 
test for association between marker m and disease. As power will depend on the 
allele frequency qm which may differ across markers, the significance thresholds 
at the first and second stage can vary across markers.) 

The goal is to find a two-stage design that maximizes the expected number 
of true associations detected while controlling the FPRP *) #, given the number 
of subjects N and the budget B. This involves maximizing the expected number 
of true positives over a grid of designs parameterized by the first stage sample 
size N1 and the first stage significance level $1 = ($11,…,$1M) (N2 is fixed given 
N1; $2 is fixed given $1, #, and N1) such that the expected overall cost remains 
below B. Assuming that the expected number of truly associated variants is very 
small relative to the total number M genotyped, the expected cost is  



 

*+m K (N1 + N2 $1m *'), 
where K is the per-genotype cost of the very high throughput technology and ' 
is the ratio of high-throughput to very-high-throughput  genotyping costs. The 
calculations developed here could also be used to examine the impact of 
increasing sample size and budget on the expected number of true positives. 
This would provide a guide for researchers designing a de novo study or 
contemplating the cost-benefit ratio for enrolling more subjects or increasing the 
genotyping budget. 

2.1. Two-stage false positive report probability 

The FPRP is defined as the probability that a variant that has been found 
statistically significant is actually not associated with disease, but appears 
statistically significant merely by chance. The FPRP depends on the Type I error 
rate $ of the applied test, the Type II error rate *&, and the prior probability that 
a given locus is truly associated with disease %: 
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As originally proposed, the prior density on the strength (relative risk) of the 
variant-disease association put point masses at unity (no association) and a 
single non-unity value (which was used to compute the power 1-&).[13, 17] This 
assumption is easily relaxed, allowing for a range of possible non-null relative 
risks (and hence a range of &s = &1,.., &A) with a range of prior probabilities 
%1,…,%A, leading to the following expression for the FPRP: 
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To calculate the FPRP for the two-stage design, I assume that only second 
stage subjects are used to test the most promising markers, so that the tests in the 
first and second stage are independent. (This approach differs from that of 
Satogopan et al., who use first and second stage subjects to test the most 
promising markers.[12] Although limiting second-stage tests to the second-stage 
sample may reduce power somewhat, it may also be most appropriate if the 
second-stage sample is a separate study.) The two-stage FPRP for marker m 
then has a simple form: 
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Here the Type II error probabilities &mjk are indexed by the marker m!M, the 
relative risks j=1,…,A, and stage k; the power 1-&mjk depends on marker allele 
frequency, relative risk, number of subjects in stage k. Note this expression 



 

assumes the priors %1,…,%A are identical for all markers; this could be easily 
modified to incorporate prior beliefs about probability a particular SNP plays a 
causal role. For example, non-synonymous coding SNPs could be upweighted 
relative to intergenic "tag SNPs." 

Assuming further that the priors and tests at multiple loci are independent, 
the expected number of true positives in a two-stage study can be calculated as: 
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This expression is used to solve for first stage sample size and first-and second 
stage significance level that maximize the ETP while controlling the minimum 
FPRP and remaining under budget. 

2.2. The FPRP and marker choice 

Marker choice is a key factor in genome-wide association studies. Several 
overlapping paradigms have been suggested.[4, 8, 18] An advantage of the 
FPRP is that the prior probability that a given marker is associated with disease 
can account for the fact that the set M of markers measured does not contain all 
causal loci, and some causal loci may not even be in linkage disequilibrium with 
markers in M. 

2.3. The FPRP and prior choice 

Choosing a prior for a given candidate gene can be quite difficult and rather 
subjective. Often the best researchers can do is set a range of priors that spans 
several orders of magnitude.[13] On the other hand, priors on the number of loci 
with a detectable marginal effect on a disease (and to a lesser extent priors on 
the sizes of those effects) are somewhat easier to specify, as the number of such 
loci is believed to be quite small relative to the number of loci screened. At most 
there will be several score of such loci; perhaps more realistically, there will be 
less than a dozen. For example, several authors have argued that the prior 
probability a randomly chosen marker is associated with disease should be on 
the order of 1 in 10,000.[13, 19] For the example presented below, I assume 
prior probabilities that a marker has a genetic relative risk of 2.0, 1.5 or 1.3 are 
1, 2 and 4 in 100,000, respectively. Thus on average seven of the 100,000 
markers tested will be truly associated with disease. More realistic priors could 
be developed using what is known about the distribution of the size of genetic 
effects in general, characteristics of the disease under study (such as sibling 
relative risks), and plausible distributions for the allele frequencies of 
susceptibility loci.[9] 



 

3. Results 

I calculated the expected number of true positives given a fixed budget for 
four designs: a single stage case-control study that aims to maximize the number 
of expected true positives (ETP) while holding the FWER below 5%; a two-
stage study that maximizes ETP while also holding the FWER below 5%; a one-
stage study that aims to maximize the number of ETP while holding the 
minimum FPRP below 50%; and a two-stage study that maximizes ETP while 
holding the minimum FPRP below 50%. Parameter values underlying these 
calculations are summarized in Table 1. Power was calculated for the standard 
Pearson's chi-squared statistic for 2(3 tables assuming the risk allele had a 
multiplicative effect on the risk of disease. For the two-stage studies aimed at 
controlling the overall FWER, the first- and second-stage samples are analyzed 
independently, so that the overall Type I error rate is $1$2. The FWER for one- 
and two-stage studies is controlled by ensuring the overall Type I error is below 
1-(1-$*)1/M, where $* is the target family-wise error rate (e.g. 5%). 

Figure 1 shows the maximum expected true positives for the four designs 
for a range of budgets. The two stage designs are always more powerful than the 
analogous one-stage designs, although for large enough budgets the one- and 
two-stage designs have equivalent power. This reflects the fact that if we could 
afford to genotype all available subjects using the very high-throughput 
technology, we would. The power advantage of the two-stage designs comes 
from the ability to genotype more subjects at the second stage; simply splitting 
the sample and testing the same set of markers in each sub-sample always 
results in less power. [20] Note that if there were an unlimited number of cases 
available for enrollment, the two-stage designs would remain more powerful 
than the one-stage designs as budget increased. 

The designs that control the FPRP also have greater power than the 
analogous designs that control the family-wise error. The expected number of 
false positives for the FPRP-based designs is larger, as in this case (FPRP=50%) 
the expected number of false positives for the FPRP is equal to the expected 
number of false negatives, while for FWER designs it is fixed at 0 0.05. 
However, the expected number of false positives is fixed by design, regardless 
of the true number of associated markers and their relative risks. This is because 
limiting the FPRP at # requires that on average the number of false positives 
should not exceed [# / (1-#)] ( the expected number of true positives. Thus, 
when using an FPRP-based design the expected resources spent following false 
leads is limited, while the chance of detecting a true association is increased. 

Figure 2 shows the number of expected true positives when N1 = N2 = 1000 
as a function of $1, the first stage significance level and roughly equal to the 



 

proportion of markers taken to the second stage. These sample sizes were 
chosen because the number of expected true positives for the two-stage FPRP 
design begins to plateau when N1= 1000, at a budget of 1082 (in units of cost to 
genotype all M markers on one subject using the very-high-throughput 
technology). The parameters that maximize the expected true positives for that 
budget are $1 = 0.0067 (on average roughly 670 markers are taken to the second 
stage) and $2=0.0055. The sharp initial increase in Figure 2 suggests that the 
power of the two stage design is driven in large part by the Type II error rate of 
the first stage: if a truly associated marker does not make out of the first stage, 
no association can be found at the second. On the other hand, the eventual slow 
decline in expected number of true positives with increasing $1 is due to the 
increasingly stringent $2 level necessary to control the two-stage FPRP. 

Finally, Figure 3 shows the number of expected true positives for two-stage 
designs as a function of $1 and N1 for the FPRP and FWER designs. The power 
surface has similar shape for both designs, although the precise allocation of 
samples and number of markers to carry to the second stage that maximizes 
power differs somewhat. For fixed N1, the FPRP is maximized at higher $1 than 
the FWER; for fixed $1, the FPRP is maximized at a higher N1. 
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Figure 1. Expected true positives for four study designs as a function of budget, when the total 

available sample size is fixed at 2000 (see Table 1 for other study parameters). The budget is given 
in terms of the cost to genotype one subject using the very-high-throughput technology. Thus for a 

budget of 2000, all subjects could be genotyped using the very-high-throughput technology. 



 

4. Discussion 

Although I presented the two-stage FPRP design in the context of case-
control studies using unrelated individuals, it can be easily adapted to other 
contexts, including continuous traits and family-based designs. Other methods 
for power calculations can also be used. For example, van den Oord and 
Sullivan proposed a two-stage design very similar to ours, except they used a 
liability-threshold model in their power calculations.[16] They also assumed 
marker allele frequencies were randomly distributed similar to Schork[21], 
although in a genome-wide association analysis using a set of markers chosen 
from a screening set like the International HapMap it is likely researchers will 
have accurate estimates of marker allele frequencies beforehand and can use 
them in power calculations as we did here. 

I have also presented this two-stage design in the context of genotyping 
technologies that allow for subject-specific genotypes, but DNA pooling 
techniques could also used at either or both stages. This may lead to a further 
reduction in genotyping costs, although the modest genetic effects anticipated in 
common complex disease may lie below the signal detection threshold without 
increasing the number of pools to the point where pooling loses much of its 
efficiency relative to individual genotyping. 

One concern with large genetic association studies using unrelated 
individuals is that markers may be associated with a trait not because the marker 
is near a gene on the causal pathway, but because of population stratification or 
cryptic relatedness.[22-24] In a well-designed study in a relatively 
homogeneous population such as non-Hispanic European Americans, such 
effects should be small and could in principle be accounted for using a 
multinomial analog of the FPRP that calculates the posterior probability of a 
positive test being a false positive, a true positive association due to population 
stratification, or a true positive due to linkage disequilibrium with a causal 
locus. It should be possible to differentiate between the latter two results, 
because the prior distribution for population stratification effect sizes will differ 
from that for effect sizes due to linkage disequilibrium. 

Sequential designs are an alternative that may be more efficient than the 
two stage procedure presented here.[14, 15] Instead of treating the sample size 
at the first stage as fixed, sequential designs consider it to be random and keep 
adding subjects and recalculating test statistics until one of two significance 
thresholds is crossed. This allows researchers to stop genotyping early if a 
significant result is observed or stop early for futility if early returns look "really 
null." Many such designs are based on controlling the Type I error rate for a 
single independent variable (here: marker), but it should be straightforward to 



 

adapt them to control the FPRP over multiple markers. Sequential multiple 
decision procedures[15] are intriguingly analogous the FPRP procedure 
presented here in that instead of controlling the experiment-wide Type I error 
rate they seek to partition the markers into a set that is enriched for truly 
associated with disease and a set that is overwhelmingly not associated with 
disease. 

 
Figure 2. Number of expected true positive results as a function of the first stage significance level 

$1 when the sample is split between first and second stage samples, N1=N2=1000. 
 
However, there are logistical barriers in genetic association studies that may 

keep such sequential designs from achieving their theoretical gains in efficiency. 
High- and very-high throughput genotyping technologies require certain 
economies of scale: many subjects must be genotyped simultaneously, often at 
many markers simultaneously. This may limit the number of sequential tests. 
Two- or three-stage studies are likely feasible, but a ten-stage study may be too 
complex logistically. In particular, it may be infeasible or overly costly to 
change the set of markers typed more than two or three times. Going from 
100,000 markers to ca. 700 is a sufficiently large decrease to justify redesigning 
genotyping protocols; going from 100,000 to 65,000 may not be.  

The False Positive Report Probability is closely related to the False 
Discovery Rate, defined as the expected fraction of positive tests that are false 
positives. Procedures that control the FDR provide a weaker form of false-
positive control than those which control the family-wise error. The FDR is 
widely used in hypothesis-generating microarray studies, and its use has been 
proposed in the context of genetic association studies where researchers are 
testing many hypotheses.[16, 25] When the number of true positives is small 
relative to the total number of tests (as it is here), the FDR 0 FPRP.[26] 
Although we do not claim the FPRP procedure presented here controls the false 
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discovery rate, it should be accurate when the number of truly associated 
markers with clinically relevant effect sizes is very small relative to the total 
number tested, and the power to detect the truly associated markers is high. 
Further, the FPRP has a practical advantage over standard FDR procedures that 
require all test p-values to be ranked: if markers are genotyped in batches, 
researchers can analyze each batch as it comes in, rather than waiting for data on 
all markers before moving on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Number of expected true positive results as a function of the first stage significance level 
$1 and first stage sample size N1. Light areas on top two plots correspond to higher numbers of 
expected true positives. Bottom plots are profiles of these functions for selected values of $1. 
 
In summary: two-stage designs that limit the number of markers studied in 

all available subjects can lead to considerable savings. Furthermore, designs that 
control the two-stage False Positive Report Probability can be more powerful 
than designs that control the family-wise error rate. The expected number of 
false positives is higher using FPRP designs, but this should be acceptable in the 
context of genome-wide association studies, where any positive results would 
be followed up in other epidemiological and laboratory studies. Although the 
choice of priors for the FPRP is subjective, this is true of all power calculations, 
and the quasi-Bayesian framework of the FPRP allows uncertainty in the 
number of causal loci and their strength to be built in to design calculations.  
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