
EXTRACTING SIGNIFICANT SAMPLE-SPECIFIC CANCER MUTATIONS USING 
THEIR PROTEIN INTERACTIONS 

LIVIU BADEA† 
University Politehnica Bucharest and Bioinformatics Group, ICI  

8-10 Averescu Blvd, Bucharest, Romania 
Email: badea.liviu@gmail.com 

We present a joint analysis method for mutation and gene expression data employing 
information about proteins that are highly interconnected at the level of protein to protein 
(pp) interactions, which we apply to the TCGA Acute Myeloid Leukemia (AML) dataset. 
Given the low incidence of most mutations in virtually all cancer types, as well as the 
significant inter-patient heterogeneity of the mutation landscape, determining the true 
causal mutations in each individual patient remains one of the most important challenges 
for personalized cancer diagnostics and therapy. More automated methods are needed for 
determining these “driver” mutations in each individual patient. For this purpose, we are 
exploiting two types of contextual information: (1) the pp interactions of the mutated 
genes, as well as (2) their potential correlations with gene expression clusters. The use of 
pp interactions is based on our surprising finding that most AML mutations tend to affect 
nontrivial  protein to protein interaction cliques. 

 
1.  Introduction and motivation 

Although various aspects of the cancer genome, such as gene expression, mutations, DNA copy 
number changes, or DNA methylation profiles have been studied (mostly) in isolation for more 
than a decade, their multi-modal, combined analysis has only recently been possible due to large 
scale projects such as The Cancer Genome Atlas (TCGA), as well as to the dwindling costs of 
high-throughput sequencing. 

Landmark studies of the TCGA have for the first time revealed the genomic changes and their 
consequences in several cancer types, such as glioblastoma [1,2,3], ovarian [4], breast [5], 
squamous cell lung cancer [6], colorectal cancer [7] and acute myeloid leukemia [8]. 

Most of these and other integrated studies of the cancer genome use state of the art methods 
for analyzing the separate data types (such as gene expression, mutation, DNA copy number 
changes and DNA methylation profiles), and then try to correlate the separate findings into a 
global integrated picture of the cancer genome (for example by searching for mutation enrichment 
in consensus gene expression clusters, or by comparing miRNA clusters with expression clusters 
[8]). 

Despite numerous attempts at a joint analysis of the various data types (as opposed to separate 
analyses), currently there is no universally accepted approach available. 
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In this paper, we present a joint analysis method for mutation and gene expression data that 
employs information about proteins that are highly interconnected at the level of protein to protein 
(pp) interactions, which we apply to the Acute Myeloid Leukemia (AML) dataset obtained by 
TCGA [8]. 

Given the low incidence of most mutations in virtually all cancer types, as well as the 
significant inter-patient heterogeneity of the mutation landscape, determining the true causal 
mutations in each individual patient remains one of the most important challenges for personalized 
cancer diagnostics and therapy [18]. 

For example, since in AML only 3 genes have been found mutated with a frequency above 
10% (FLT3, NPM1, and DNMT3A), the state of the art AML study of the TCGA group [8] has 
used the known gene annotations to determine the genes relevant for pathogenesis (based on a few 
categories deemed biologically significant by human investigators).  

Still, annotations are imperfect and many genes have surprisingly heterogeneous functions. 
Moreover, annotations reveal nothing about gene interactions (except maybe pathway annotations, 
which are currently hopelessly incomplete). For example, the NPM1 gene is placed by the TCGA 
study in a category of its own, solely based on its high mutation rate in AML. 

More automated methods are therefore needed for determining the mutations that have caused 
the disease in each individual patient, the so called “driver” mutations. For this purpose, we are 
trying to exploit two types of contextual information: 

(1) the protein-to-protein (pp) interactions of the mutated genes in question, as well as 
(2) their potential correlations with gene expression clusters. 

These two types of contextual information are used in a synergistic manner. 
The use of pp interactions is based on our surprising finding that most AML mutations tend to 

affect complete pp interaction cliques. More precisely, the protein-to-protein interaction network 
between AML mutated genes contains a large number of nontrivial maximal cliques (of size ≥ 3).*  

This is highly surprising given the very low number of somatic mutations in AML, much 
lower than in all other solid cancers analyzed to date [8]. The fact that mutations tend to affect 
cliques in the pp interaction network suggests the disruption of biological processes or protein 
complexes involving the corresponding protein cliques. It is as if such biological processes or 
complexes can be perturbed by mutations in any of their components. This is important since only 
very few mutations in AML (or other cancer types for that matter) have an incidence larger than 
10%. Grouping mutations based on their pp interactions thereby enhances the statistical power of 
detecting correlations between mutations (the causal factors) and their transcriptional 
consequences, such as gene expression subtypes of the disease. 

 
* The nontrivial complete maximal cliques of mutated genes have an average size of ~3. 



  
 

                                                

2.  Data and preprocessing 

2.1.  The TCGA AML dataset 

The TCGA Acute Myeloid Leukemia (AML) dataset was downloaded from the TCGA data 
portal†, as well as from the supplementary data of the TCGA landmark publication [8] (in 
preprocessed form). More specifically, we downloaded: 

• gene expression data (RNASeqV2 UNC Illumina HiSeq, level 3 RSEM normalized data), 
• copy number variation data (profiled using Affymetrix SNP6 arrays, level 4 data obtained 

using Gistic2), 
• somatic mutation data (obtained using either whole-genome sequencing, or whole-exome 

sequencing), 
• data regarding gene fusions (obtained from de novo assembly of RNA-sequencing data), as 

well as 
• clinical annotations. 

We retained 163 samples with simultaneous gene expression, copy number, mutation, gene 
fusion and clinical data. 

2.2.  Generalized mutations 

Since somatic mutations, copy number aberrations and gene fusions can all act as drivers of the 
disease in individual patients, we defined “generalized mutations” as either: 

(1) expressed somatic mutations, 
(2) expressed fusion genes, or 
(3) significant copy number aberration events. 

A somatic mutation in a given gene was considered expressed if the expression of the 
corresponding gene exceeded the expression threshold of 6 (on the log2 scale). 

Since gene fusions have been determined from de novo assembly of RNA-seq data, they were 
all considered to be expressed. 

Copy number aberrations were considered significant if  
• the corresponding gene’s expression levels were not uniformly low (below the expression 

threshold of 6, mentioned above), and 
• they were accompanied by concordant gene expression changes with |Z|>2 (i.e. amplifications 

accompanied by gene up-regulation and deletions accompanied by gene down-regulation), and 
• the copy number profile had at least a slight correlation (exceeding 0.3) with the gene’s 

expression profile. 
There were 2142 genes with generalized mutations in at least one sample, with a total number 

of 5865 events, of which 1050 expressed mutations and 202 gene fusions (for more details, see 

 
† tcga-data.nci.nih.gov  



  
 

Table 1). Gene fusions g1-g2 were recorded as separate generalized mutations in g1 and g2 
respectively, to allow their mixing with other generalized mutations in those genes. 

 
Table 1. Generalized mutations in 163 AML samples 
Generalized mutation type Number of generalized mutations 
CN deletions 3008 
CN amplifications 1605 
Somatic mutations 1041 
Somatic mutations + CN deletions 8 
Somatic mutations + CN amplifications 1 
Gene fusions 193 
Gene fusions + CN deletions 7 
Gene fusions + CN amplifications 2 
Total 5865 

2.3.  Protein-to-protein interaction data 

We used the BioGRID protein interaction database‡ (version 3.2.101 for Homo Sapiens), which 
we restricted to the physical interactions. This resulted in 136201 interaction pairs involving 
14791 unique human genes. 

3.  Proteins mutated in AML form pp interaction cliques 

Compared to solid cancers, AML genomes have much lower numbers of mutations [8]. This is to 
be expected, as leukemias do not have to evade the source tissue and metastasize, as solid cancers 
do. (Along these lines, a two-hit model of leukemogenesis has been proposed by Gilliland [9].)  

Interestingly however, restricting the BioGRID pp interaction network to the set of genes 
mutated in AML, we obtain a large number of pp interaction cliques. More precisely, we obtain 
4160 maximal cliques§ involving the 2142 genes with generalized mutations (of which 3564 
nontrivial cliques involving more than one gene). The average nontrivial clique size was 2.96. 
Figure 1 depicts the corresponding distribution of nontrivial maximal clique sizes, showing that 
mutated genes form many large cliques. 

Compared to the complete BioGRID interaction network, the edge density** of the network of 
mutated genes is significantly larger (2.3⋅10-3 versus 5.6⋅10-4), although the average clustering 
coefficient is smaller (0.1002 versus 0.1758). 

                                                 
‡ http://thebiogrid.org/  
§ Although the clique decision problem (testing whether a graph contains a clique larger than a 

given size) is NP-complete, while listing all maximal cliques may require exponential time (as 
there exist graphs with exponentially many maximal cliques [16]), finding all maximal cliques in 
our setting is reasonably fast (running times of the order of minutes on a 3GHz machine using a 
Matlab implementation of the Bron–Kerbosch algorithm [17]). 

** i.e. the number of edges divided by the maximal possible number of edges, i.e. n(n-1)/2, where 
n is the number of nodes of the network. 

http://thebiogrid.org/
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Fig. 1.  The distribution of nontrivial maximal clique sizes of mutated proteins in the 

BioGRID pp interaction network. 
 

Mutations affecting nontrivial protein interaction cliques suggest different ways of perturbing 
certain key biological processes or protein complexes involving the corresponding cliques. 
Therefore, although most individual mutations have a low incidence in the AML patient 
population (thereby masking their possible role in the pathogenesis of the disease), cliques tend to 
be mutated†† in a higher number of patients and thus could be used to order mutations in 
individual patients. The supplementary table ‘sample mutations clique cover.xls’ (online at 
www.ai.ici.ro/ PSB2014/) shows for each patient sample its mutations sorted in descending order 
of the number of samples in which the largest maximal clique containing the corresponding gene 
is mutated. 

More precisely, in the following, by ‘clique’ we always mean ‘maximal clique’. We denote by 
Mms the binary mutation matrix (Mms=1 iff sample s has mutation m) and by Cmc the clique 
membership matrix (Cmc=1 iff mutated protein m is involved in clique c). We define the cover of a 
clique c to be the number of samples with mutations in at least a gene m of that clique: 

clique-cover(c) = | { s | ∃m. Mms=1 and Cmc=1 } |. 

We can also define the largest clique associated to a given mutation m as a clique containing m 
having the largest clique cover‡‡: 

largest-clique(m) = c  iff  Cmc=1 and ∀c' such that Cmc' =1, clique-cover(c') ≤ clique-cover(c). 

Now, for each sample s, we can sort the mutations m in descending order of the cover of the 
largest clique associated to m: clique-cover(largest-clique(m)). The top mutations are likely causal, 

                                                 
†† A clique is said to be mutated in a given sample iff at least one of its genes is mutated in that 

particular sample. 
‡‡ in case there are several such largest cliques, we arbitrarily choose one. 

http://www.ai.ici.ro/%20PSB2014/


  
 

as they or their interactors are mutated in large numbers of samples. For example, all acute 
promyelocytic leukemia samples (FAB code ‘M3’) have the PML and RARA fusion proteins at 
the top of the list.  

4.  Joint analysis of gene expression data and mutations using pp interaction data 

Although by using protein-to-protein interaction data we have obtained a reasonable ordering of 
(generalized) mutations w.r.t. their potential causal role in the disease, we still have not made use 
of all available data to the fullest. For example, we have only employed gene expression data for 
filtering out mutations in genes that are not expressed, but we have completely ignored any 
potential similarities in the transcriptomes of samples with different mutations. 

In the following, we describe an approach that simultaneously looks for similarities among 
mutation and gene expression data and, most importantly, is able to extract potentially causal 
sample-specific mutations, despite their low frequency in the dataset.  

By a direct joint clustering of gene expression and mutation data, we may only pick up the 
mutations with the highest incidence. To avoid this, instead of directly clustering mutation data, 
we cluster the pp interactions of the observed mutations with other mutated proteins. Mutated 
proteins with similar interactor sets (among the set of mutated proteins) will likely affect the same 
pathways or protein complexes and produce similar expression changes. 

For example, assume sample s1 is affected by mutation m1, while sample s2 is affected by a 
different mutation, m2. Even with similar gene expression profiles, s1 and s2 may not be grouped 
into a common cluster k, since we wouldn’t know which of the mutations m1 and m2 to associate to 
k. If however, m1 and m2 have similar sets of interactors among the other mutated genes 
p1,p2,p3,…, we could cluster the interactor sets of the mutations instead of the individual 
mutations, thereby merging s1 and s2 despite their different mutations. 

4.1.  The joint clustering of expression and mutation interactor data 

More formally, let s denote samples, g genes, m mutations, k clusters, Xgs the gene expression 
matrix, Mms the binary (generalized) mutations matrix and Ppm the binary protein-to-protein 
interaction matrix involving mutated genes (although the matrix is symmetric, we use distinct p 
and m indices to distinguish the mutations m from their interactors p).  

Now, instead of jointly clustering the gene expression Xgs and mutation data Mms, we cluster 
the gene expression data and the mutation interactor data∑ ⋅

m mspm MP : 

∑ ⋅≈
k

skgkgs SGX  (1) 

∑∑ ⋅≈⋅
k

skpk
m

mspm SAMP  (2) 

where Ggk, Ssk and Apk are gene, sample and respectively mutation interactor cluster matrices. 
Note that the sample cluster matrix Ssk is common to the gene expression and mutation interactor 
data factorizations (1) and (2).  



  
 
Running the nonnegative multirelational decomposition system MNMF§§ [10,11] with a 

relative weight w=0.001 for the mutation interactors (to enable the gene expression data to 
dominate the factorization), we obtain the cluster matrices Ssk, Ggk and Apk for samples, genes and 
mutation interactors respectively.  

The mutation interactor clusters Apk encode the frequently co-occurring mutation interactors p 
in the various clusters k, but do not tell us anything directly about the mutations proper. To obtain 
the sample-specific mutations m that lie behind these cluster-specific mutation interactors p, we 
solve the following nonnegative least squares problem (with M'ms as unknown): 

∑∑ ⋅≈⋅
m

mspm
k

skpk MPSA '  (3) 

using a multiplicative update algorithm that randomly initializes M' and then iteratively applies the 
following update rule until convergence: 

ms
T

ms
T

msms MPP
YPMM

)'(
)(''

⋅⋅
⋅

←  (4) 

where  ∑ ⋅=
k

skpkps SAY .

Finally, we can use MMms=M'ms⋅Mms as a measure of the significance of mutation m for given 
clustering. Mutations with higher MMms are deemed more causally relevant, as they better match 
the given gene expression clustering. Note that frequently occurring mutations tend to have higher 
MM scores, especially if they are not at odds with the gene expression clustering. 

Figure 2 below is a graphical depiction of the decomposition (1)-(3). The system was 
implemented in Matlab. 
 

 
 

Fig. 2. The relational diagram corresponding to the decomposition (1)-(3). Circles correspond to 
entities (g genes, s samples, m mutations, p mutation interactors), while the boxed k represents the 
unknown clusters. Bold edges correspond to the original relations X,M,P, normal edges to inferred 
entity clusters G,S,A, and the dotted edge to the significant sample-specific mutations M'. 

 

                                                 
§§ MNMF is a multirelational generalization of Nonnegative Matrix Factorization (NMF) [13,14] 

and of simultaneous NMF [15]. 
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4.2.  The dimensionality of the factorization 

Determining the optimal dimensionality nc of the factorization (1)-(2) is tricky. Similar to Kim and 
Tidor [12], we performed a series of MNMF runs with progressively larger nc, ranging from 2 to 
50. To avoid overfitting, we performed a similar set of runs on randomized entity matrices and 
estimated the signal to noise ratio (SNR) as follows: 

2

22

)(1
)()()(

n
nnnSNR

r

r

ε
εε

−
−

=  

where ε(n) and εr(n) are the relative factorization reconstruction errors for the original and 
respectively the randomized data. The dimensionality nc =22 was chosen to maximize the SNR 
(see Figure 3). Note that the clusters obtained by our nonnegative decompositions should not be 
confused with partitions of the samples into disjoint subgroups. They are rather biclusters 
corresponding to biological processes that may overlap in the various samples (as well as for 
certain genes). 

We also tried the smaller dimensionality nc=7 obtained by optimizing NMF consensus sample 
clustering (a partitional method), as in [8]. 

 

 
Fig. 3. The estimated SNR for the factorizations ranging from nc=2 to 50 clusters.  

 



  
 

4.3.  Significant sample-specific mutations 

For both nc=7 and 22, the expression clusters were highly associated (using Fisher’s exact test) 
with the French-American-British (FAB) AML subtypes, as noticed in previous studies (see Table 
2 below). In particular, the clustering perfectly distinguishes the Acute Promeylocytic Leukemia 
(M3) samples from the rest (cluster 3). FAB types M6 and M7 are too weakly represented in our 
163 samples (just 1 and respectively 3 samples) to influence the factorization much.  
 
Table 2. Association of clusters with FAB subtypes (nc=7) 

FAB 
subtype 

FAB 
samples 

Best 
associated 
cluster 
(nc=7) 

Cluster 
samples 
(nc=7) 

log2(p) 
(nc=7) 

Best 
associated 
cluster 
(nc=22) 

Cluster 
samples 
(nc=22) 

log2(p) 
(nc=22) 

M0 15 7 33 -8.44 12 23 -24.74    
M1 38 5 30 -13.94 14 16 -6.25    
M2 39 6 32 -6.06    17 14 -13.18    
M3 16 3 16 -41.97    8 16 -41.97    
M4 32 1 28 -11.58    22 27 -12.29    
M5 17 2 25 -16.36    19 11 -27.13    
M6 1 2 25 -2.70    13 14 -3.54    
M7 3 7 33 -7.02    13 14 -5.67    

 
The tables ‘sample-specific mutations 7 clusters.xls’ and ‘sample-specific mutations 22 

clusters.xls’ (online at www.ai.ici.ro/PSB2014) list the sample-specific mutations (in descending 
order of their significance MMms for each sample s) obtained by our approach based on joint 
clustering of expression and mutation interactor data. 

To estimate the concordance of the three mutation significance lists (‘sample mutations clique 
cover.xls’ from section 3, as well the two tables mentioned in this section), we have computed the 
average overlap of the top 5 mutations in each sample for all pairs of lists and depicted the results 
in Figure 4. 

 

 
Fig 4. Average overlap between sample-specific mutation significance lists discussed in 
this paper. 

sample mutations 
clique cover 

sample-specific 
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sample-specific 
mutations nc=22 
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http://www.ai.ici.ro/PSB2014


  
 
Note that the two sample-specific mutation lists overlap best, as expected, and that the list for 

nc=7 is slightly closer to ‘sample mutations clique cover’ than the nc=22 list. The overlap is 
typically lower for the samples with large numbers of mutations (also as expected).  

Careful inspection of the 3 mutation lists shows that we have been able to pick up at least a 
large fraction (if not most) of the mutations with a causal role in the disease. Virtually all 
mutations (such as those in NPM1, FLT3, TP53, DNMT3A, etc.), as well as all gene fusions 
(PML-RARA, MYH11-CBFB, RUNX1-RUNX1T1, etc.) with a known involvement in AML are 
at the top of the lists of the samples harboring them. 

Besides these obvious true positives however, it is difficult to objectively compute accuracy 
figures for  the lists, given the fact that rare individual patient mutations are still largely terra 
incognita. Still, we selected from ‘sample-specific mutations 7 clusters.xls’ the sample entries 
whose top first mutation is not among the known AML mutations – we obtained 18 such samples 
(out of a total of 163), which we list in ‘NOT EXPLAINED sample-specific mutations.xls’ (also 
online). A careful inspection of these samples places them in one of the following 3 categories: 

1. Samples with very few detected mutations.  
2. A known mutation/fusion is not at the top, but close to it (having significance coefficients 

close to the top ones). 
3. Samples with very many mutations for which known mutations/fusions are far from the 

top. 
Subcategory 3.1. The first few top entries may contain generalized mutations 
mentioned in the literature in connection with leukemia. 

Obviously, our algorithm does not err too much in categories 1 and 2. Only category 3 
(including a few outlier samples with very many mutations) could in principle be improved on – 
we suspect that they misbehave because those samples do not fit very well in any expression 
cluster, due to the large numbers of defects accumulated. Table 3 below shows the corresponding 
samples and their category assignments. 

 
Table 3. Samples with rare mutations 

Category Sample Comments 
1 2946 Only two mutations of unknown role. 
1 2995 Only 3 mutations. DDX41(mut) observed by others mutated in AML. 
1 3000 Only 3 mutations of unknown role. 
1 3008 Only two mutations. Possible role of KAT2B. 
2 2832 MLL-MLLT10 fusion close to top. 
2 2855 MLLT10-PICALM fusion close to top. 
2 2874 IDH2(mut) close to top. 
2 2911 MLL-ELL fusion, with MLL significance 3.6⋅10-4 (close to top 

significance 5.9⋅10-4). 
2 2940 MLL3(mut) close to top. 
2 2955 DNMT3A(mut) with significance 10-3 (top 1.2⋅10-3). 



  
 

2 3005 MLL-MLLT10 fusion close to top. 
3/3.1(?) 2817 CBFB(mut), EZH2(mut), BCR-ABL fusion are far from the top, but 

LUC7L2(del) at the top (LUC7L2 mutations mentioned in AML). 
3.1 2849 MLLT10-PICALM fusion far from top, but at the top, KDM3B (a H3K9 

demethylase) is a tumor suppressor linked to leukemia. 
3 2882 U2AF1(mut) far from top (significance 1.1⋅10-3, top 2.3⋅10-3). 
3 2917,2929 KRAS(mut), SETBP1(mut) far from top. 
3/3.1(?) 2920 NF1(mut) far from top, but LUC7L2(del) at the top. 
3/3.1(?) 2939 MTOR-CDH1 fusion far from top, but LUC7L2(del) at the top. 

 

5.  Conclusions 

AML, like other cancer types is a heterogeneous disease. But even with multi-genomic data 
available (related to gene expression, mutations, copy number changes, etc.), finding well-defined 
sub-classifications with prognostic and therapeutic value is still an elusive objective for many 
cancers (although partial encouraging results have been obtained). This is probably due to the 
complexity of the biological processes that are perturbed in the disease and which can be affected 
by a large number of (generalized) mutations. Some of these mutations have a high enough 
incidence for us to be sure of their causal role in the disease, but many (if not the majority) of the 
causal genomic events are rare and patient-specific. 

In this paper we have shown that we can exploit protein-to-protein interaction data to relate 
these possibly rare mutations to one another, thereby enabling a better automated detection of the 
driver mutations in each individual patient. An original feature of our approach is the use of pp 
interactors of the mutations to enable clustering and especially the back-reconstruction of the 
significant mutations from the interactor clusters. 

HotNet [19], used in the original TCGA publication [8], identified only 4 significantly mutated 
subnetworks (which are similar to some of our maximal mutation cliques). However, HotNet does 
not take into consideration the gene expression data, whereas we expect driver mutations affecting 
the same pathway to produce similar expression changes. 

Future work will address the much more difficult problem of finding clinically useful 
prognostic markers. This will likely require looking at the precise mutations and possibly larger 
sample sizes, as different mutations in the same pathway or even in the same gene can have 
significantly different clinical outcomes. 
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