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A striking finding from recent large-scale sequencing efforts is that the vast majority of variants in the human 
genome are rare and found within single populations or lineages. These observations hold important implications 
for the design of the next round of disease variant discovery efforts—if genetic variants that influence disease risk 
follow the same trend, then we expect to see population-specific disease associations that require large samples 
sizes for detection. To address this challenge, and due to the still prohibitive cost of sequencing large cohorts, 
researchers have developed a new generation of low-cost genotyping arrays that assay rare variation previously 
identified from large exome sequencing studies. Genotyping approaches rely not only on directly observing 
variants, but also on phasing and imputation methods that use publicly available reference panels to infer 
unobserved variants in a study cohort. Rare variant exome arrays are intentionally enriched for variants likely to 
be disease causing, and here we assay the ability of the first commercially available rare exome variant array (the 
Illumina Infinium HumanExome BeadChip) to also tag other potentially damaging variants not molecularly 
assayed. Using full sequence data from chromosome 22 from the phase I 1000 Genomes Project, we evaluate 
three methods for imputation (BEAGLE, MaCH-Admix, and SHAPEIT2/IMPUTE2) with the rare exome variant 
array under varied study panel sizes, reference panel sizes, and LD structures via population differences. We find 
that imputation is more accurate across both the genome and exome for common variant arrays than the next 
generation array for all allele frequencies, including rare alleles. We also find that imputation is the least accurate 
in African populations, and accuracy is substantially improved for rare variants when the same population is 
included in the reference panel. Depending on the goals of GWAS researchers, our results will aid budget 
decisions by helping determine whether money is best spent sequencing the genomes of smaller sample sizes, 
genotyping larger sample sizes with rare and/or common variant arrays and imputing SNPs, or some combination 
of the two. 
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1.  Introduction 

The ability to measure human genetic variation on a genome-scale reliably and inexpensively in 
research settings has fueled and shaped the movement toward personalized medicine in health care. A 
prominent strategy for discovering genetic variants underlying disease susceptibility is through 
genome-wide association studies (GWAS), in which a subset of genetic variation is observed or 
inferred via linkage disequilibrium (LD), and correlated with disease state. GWAS have been 
successful in identifying thousands of reproducible associations with complex disease, which have 
had some utility in clinical practice1,2. However, most variants identified in GWAS with genotyping 
arrays are of small effect and fail to explain a large portion of genetic variation, even when the disease 
is estimated to be highly heritable3. Population genetics and neutral theory suggest that common 
variation might be less important than rare variation in these cases because selective pressure has had 
more time to eliminate deleterious alleles. With the advent of next generation sequencing technology, 
large consortia seeking to identify nonsynonymous coding changes have emerged. A salient result of 
these large-scale projects is that the vast majority of genetic variation is rare and exhibits little sharing 
among diverged populations4–6. The sequencing costs for an exome still outweigh those of genotyping 
arrays, however, and large sample sizes are required to detect rare variants. This creates a budget 
dilemma for GWAS researchers trying to explain the genetic basis of disease regarding the number of 
individuals they can afford to study with sequencing versus genotyping methods. 

As a consequence of these findings, researchers have designed a next generation genotyping array 
that enriches for nonsynonymous rare coding variants. More than 15 labs with exome sequencing data 
from ~12,000 individuals contributed to the ascertainment of SNPs to include in the first rare variant 
array. The current design of the first publicly available next generation array, the Illumina Infinium 
HumanExome BeadChip, consists of only ~250,000 variants, a fraction of the sites that most common 
variant arrays currently assay. The vast majority of sites are rare coding variants; the remaining sites 
include randomly selected synonymous single nucleotide polymorphisms (SNPs), Native American 
and African ancestry informative markers, GWAS tag SNPs, HLA tags, common scaffold SNPs, and 
~2,000 variants from other functional classes. A potential way to bolster the number of sites is 
through statistical inference of variants not molecularly assayed on the genotyping array through 
phasing and imputation guided by publicly available reference panels4,7,8. Phasing and imputation 
methods rely on the correlated inheritance between neighboring alleles or linkage disequilibrium (LD) 
between assayed alleles. LD is substantially reduced between variants on the rare exome array 
overall, however, because the number of scaffold SNPs is substantially reduced compared to other 
GWAS arrays (5,286 SNPs total compared to hundreds of thousands on common variant arrays). 
Admixture mapping, an approach often used when ancestry confounds GWAS associations, also 
relies heavily on a dense scaffold of linked markers. For example, results from HapMix, a method for 
inferring local ancestry across chromosomes, indicated that accuracy is reduced with fewer than 
50,000 scaffold markers even when admixture is recent9. 

In order to better understand the amenability of rare exome variant arrays to existing phasing and 



imputation methods, we have performed evaluations of multiple LD-based methods as well as 
parameters that influence imputation accuracy, including sample size and population. We find that 
imputation with common variant arrays is more accurate across both the exomic and genomic regions 
of chromosome 22, highlighting the importance of contextual variants in imputation and suggesting 
that the Illumina Infinium HumanExome BeadChip is not ideal for imputation purposes. 
 
2.  Methods 

2.1.  Evaluation overview 

We based all our evaluation on the data provided by the phase I 1000 Genomes project10, wherein 
1,092 individuals from 14 distinct populations were genome sequenced, exome sequenced, and 
genotyped to produce an integrated variant call set. These populations include three African 
populations, three East Asian populations, five European populations, as well as three populations 
from the Americas. We created a pipeline (Figure 1) to perform phasing and imputation using three 
methods: BEAGLE v3.3.211,12 for both phasing and imputation, MaCH-Admix8 v2.0.198 for both 
phasing and imputation, and ShapeIt13,14 v2.r644 for phasing followed by Impute215,16 v2.2.2 for 
imputation (process abbreviated as SHAPEIT2/IMPUTE2). 

To fairly evaluate phasing and imputation performance we compared one rare and one common 
variant array of approximately the same SNP density (the Illumina Infinium HumanExome BeadChip 
and Illumina Infinium HumanHap 300v1 containing ~250K and ~300K SNPs, respectively). To 
evaluate performance versus cost trade-offs, we also included two higher-cost, higher-density 
common variant arrays, the Affymetrix Genome-Wide Human SNP Array 6.0 and Illumina Human 
Omni2.5 BeadChip containing 1M and 2.5M SNPs, respectively. To generate the phasing and 
imputation results for each array, we sampled individuals into a reference panel and a test set. The 
reference panel contained all of the sequence calls on chromosome 22, while the test set was further 
filtered to the markers on each of the corresponding arrays (Table 1). We generated a known truth set 
from the full phase I integrated call set and imputed set using the imputed sites not on each of the 
evaluated arrays for each run for accuracy evaluation.  
 
Table 1 - Arrays evaluated in this study and number of sites across all of chromosome 22 versus exomic regions of 
chromosome 22. Exome sites were filtered using sites annotated with EXOME in the phase I 1000 Genomes integrated 
call set info fields and are a subset of Genome sites. Minor allele frequency (MAF) distributions are as assessed in the 
1000 Genomes phase I samples across all chromosome 22 sites and are drawn for each array from a frequency of 0 – 0.5. 
“Dark sites” are the sites that are on the array but not in the 1000 Genomes phase I reference panel. 

Array Genome Exome MAF 
distributions 

Mean 
MAF 

Dark sites 
(%) 

Illumina HumanOmni2.5 BeadChip 33,188 1,631 

 

0.173 6.99 
Affymetrix Genome-Wide Human SNP Array 6.0 11,739 262 0.208 1.01 
Illumina Infinium HumanHap 300v1 5,376 240 0.272 0.99 
Illumina Infinium HumanExome BeadChip 3,442 3,009 0.050 69.81 
Total reference panel sites 475,372 16,885    



Simulated data from each of the four arrays were run through the phasing and imputation pipeline. 
The reference panel for each run was used as an input to the pipeline to inform the phasing and 
imputation algorithms. The pipeline first phased the incomplete genotypes in the test set, then 
imputed markers up to the reference panel markers using the same test set markers as in the phasing 
step as a scaffold (Figure 1). In order to speed up computational run time, we split the reference panel 
sites into 5 Mb windows with 250 kb flanking on either ends that were removed in post-processing to 
reduce edge effects between windows. We ran separate instances of imputation for each chunk in 
parallel, enabling the pipeline to run with reasonable memory and in reasonable time. At the end of 
each run, we extracted the imputed genotypes and each algorithm’s confidence score (R2 in the cases 
of BEAGLE and MaCH-Admix and informative measure in the case of Impute2). We calculated 
diploid and haploid error for each imputed site from the known truth data. 
	  

	  
Figure 1 - Phasing and imputation pipeline. Inputs files are subsetted based on varying parameters specified, and for each 
set of parameters phasing and imputation was performed using three methods. 

2.2.  Sampling strategy for test/reference size analyses 

Previous studies have assessed imputation accuracy on single chromosomes, including 
chromosomes 10 (~135 Mb), 20 (~62 Mb), and 22 (50 Mb), and have found highly consistent 
results7,15,16, indicating that they are representative. As such, we used full sequence data from 
chromosome 22 for computational efficiency from all 1,092 individuals and sampled them randomly 
into two groups: A reference panel and a test set. To study the effect of different reference panels and 
GWAS study sizes on the accuracy of imputed haplotypes, we investigated 13 different 
configurations of test set and reference panel sizes: a test set of size 92 with varying reference panel 
sizes of 63, 125, 250, 500, and 1000; and test panel sizes of 300 and 500, each with reference panels 
of 62, 125, 250, and 500.  

Using the reference panel to inform phasing and imputation, we ran the pipelines for each of the 
three common variant arrays and the rare exome array and collected the results. The results were 
compared to the true calls found in the unfiltered genotypes of individuals in the test set. 

Software Pipeline
0) Preprocess input        
Phasing     Imputation     Accuracy & R2  
1) BEAGLE    BEAGLE       
2) MaCH     MaCH      Merged across runs 
3) SHAPEIT2    IMPUTE2       

Input
VCF with all individuals’ 
genotypes
Reference panel IDs
Test panel IDs
Test set markers

Varying Parameters
Array (Common/Exome)

Ancestry
Sample size



2.3.  Sampling strategy for population analyses 

We used full sequence data from all of the 1,092 individuals and separated them into 14 
populations. Four different sampling strategies were employed to identify biases when different 
reference sets are used for each of the 14 populations, resulting in 56 sets of samplings, as follows. 
The first two samplings assessed imputation accuracy when a test population is not or is included in 
the reference panel, respectively. We created a test set with all individuals in each population and 
sampled 900 individuals from the rest of the genomes available in the 1000 Genomes project (strategy 
A, Figure 3). As a control for the presence of a population from the reference panel, we created 
another test set with half of all the individuals in each population and put the remaining half of the 
population in the reference panel, then added individuals from other populations randomly until the 
reference panel contained 900 individuals (strategy B). 

The other two population samplings focused on the significance of having individuals from the 
same continent in the reference panel. We created a test set with 33 individuals in the population and 
sampled 148 from all other individuals from the same continental group (strategy C). These numbers 
were chosen for uniformity across populations in order to represent the smallest continental group in 
the data. We performed this evaluation for each population and considered four continental groups: 
Africans, Asians, Europeans, and Native Americans.  As a control, we created another test set with 30 
individuals in the population and sampled 148 from all other individuals regardless of origin (strategy 
D). 

2.4.  Phasing and imputation summaries and analysis 

Using the reference panel to inform phasing and imputation, we ran the pipelines for each of the 
three common variant arrays and the rare exome array. The imputed genotypes were compared to the 
true calls in the unfiltered sequences of individuals in the test set. Data summaries for all three 
algorithms reported an informative metric (R2), which were generated by the imputation algorithms. 
Because each algorithm calculates R2 differently, we calculated diploid and haploid error, as well as 
minor allele frequency (MAF), in order to fairly compare the algorithms directly. We define the 
diploid error as any discordance between the most likely imputed and true calls, which is affected by 
MAF and therefore only used to compare method performances. In this scenario, if the true variant is 
homozygous reference, heterozygous or homozygous non-reference imputation dosages count equally 
toward the error. We also calculated haploid error, where in the previous scenario, a heterozygous call 
counts half as much toward the error as a homozygous non-reference call, which was highly 
correlated (>99%) with diploid error. We note that the diploid and haploid errors are critical to 
examine but that they are highly influenced by MAF. For example, at a site where a very rare variant 
exists in the reference panel, error is very low because the imputation algorithm frequently fills in the 
major allele, even in the absence of any surrounding variants. In contrast, when a common variant 
exists, the imputation algorithms require more neighboring information to correctly impute the 
variant. For these reasons, we assess imputation accuracy as R2 as previously15, except where 



otherwise noted. In order to compare MAF versus imputation accuracy, we performed local 
regression weighted by least squares. Unless otherwise noted, the span was 0.75. 

3.  Results 

We first compared the performance of three phasing and imputation algorithms, BEAGLE, 
MaCH-Admix, and SHAPEIT2/IMPUTE2 under multiple conditions. The informative measure 
metrics are defined slightly differently for each algorithm7, and in all cases SHAPEIT2/IMPUTE2 
reports the highest informative measures (data not shown). In order to determine which method was 
performing most accurately based on known truth data, we compared their performance via mean 
diploid error across all test panel sizes, reference panel sizes, and the four arrays we evaluated, as 
outlined in Methods. In each case, BEAGLE had the highest error, SHAPEIT2/IMPUTE2 performed 
comparably with MaCH-Admix, and MaCH-Admix resulted in the lowest error, which highlights the 
importance of using a directly comparable metric to assess method performance. Table 2 shows the 
average diploid error across chromosome 22 across all reference and test panel sizes using the 
Affymetrix Genome-Wide Human SNP Array 6.0 for each, which showed the same trends with other 
arrays (data not shown). Because MaCH-Admix resulted in the lowest imputation error, all following 
analyses show results using this method. 
	  
Table 2 - Diploid error across multiple sample sizes. Reported values are mean percentages across all variant sites in the 
phase I 1000 Genomes Project on chromosome 22 using sites on the Affymetrix Genome-Wide Human SNP Array 6.0 as 
test markers. Individuals in the test and reference panel are the same across methods for each comparison. Imputation R2 
values are shown for each algorithm, which are defined differently for each algorithm. Note that BEAGLE R2 averages 
are calculated only for values that are not “NaN,” which likely increases the R2 reported with respect to other algorithms. 

Test 
panel size 

Reference 
panel size 

BEAGLE 
(%) 

MaCH-
Admix (%) 

Shapeit+Impute2 
(%) 

BEAGLE 
(R2) 

MaCH-
Admix (R2) 

Shapeit+Impute2 
(R2) 

500 500 6.36 4.21 4.35 .7349 .3762 .5604 
500 250 6.37 4.27 4.38 .7329 .3333 .4735 
500 125 6.63 4.41 4.56 .6820 .2959 .4048 
500 62 6.77 4.63 4.74 .7403 .2464 .3175 
300 500 6.31 4.16 4.32 .7387 .3724 .5348 
300 250 6.60 4.39 4.56 .7392 .3279 .4567 
300 125 6.57 4.37 4.53 .7344 .2954 .3928 
300 62 6.87 4.66 4.79 .7331 .2513 .3191 
92 1000 6.36 4.13 4.30 .7653 .3503 .4655 
92 500 6.49 4.25 4.45 .7637 .3401 .4482 
92 250 6.37 4.17 4.33 .7467 .3081 .3978 
92 125 6.59 4.51 4.65 .7481 .2799 .3540 
92 63 6.68 4.40 4.59 .7123 .2506 .3033 
	  

We next evaluated the impact of test and reference panel sizes on imputation accuracy, as 
assessed by R2, for the four arrays described previously (Figure 2). We compared three test panel 
sizes (92, 300, and 500) and find that in all cases, larger test panels have greater imputation accuracy, 



indicating that phasing and imputing a full study set together improves imputation accuracy. We also 
find that reference panel size has a greater impact on imputation accuracy than test panel size when 
the test panel contains greater than 92 individuals. These results indicate that large reference panels 
are necessary to accurately impute variants. 

	  
Figure 2 - Imputation accuracy across varying reference and test panel sizes. Phasing and imputation was performed using 
MaCH-Admix. Test panel markers were ascertained on chromosome 22 using sites from four arrays in the following 
colors: green – Illumina HumanOmni2.5 BeadChip, red – Affymetrix Genome-Wide Human SNP Array 6.0, blue – 
Illumina Infinium HumanHap 300v1, purple – Illumina Infinium HumanExome BeadChip. On the x-axis, the first number 
indicates the number of individuals included in the test panel, and the second number is the number of individuals 
included in the reference panel.  

The effect of reference panel size on imputation accuracy is especially pronounced when fewer 
markers are assayed. For example, imputation accuracy is not substantially reduced for most common 
sites across chromosome 22 (MAF > 5%) when the reference panel size is reduced from 500 
individuals to only 62 individuals using the dense Illumina HumanOmni2.5 BeadChip, and most 
common sites maintain an R2 of ~0.9. In contrast, the accuracy drops considerably between a 
reference panel size of 500 versus 62 with the sparser Illumina Infinium HumanHap 300v1 (e.g. 
reduction of 13% from R2=0.772 to 0.669 at MAF=0.3) and Illumina Infinium HumanExome 
BeadChip arrays (e.g. reduction of 26% from R2=0.146 to 0.108 at MAF=0.3). We also find that 
accuracy plateaus as a function of minor allele frequency (MAF). Additionally, invariant reference 
panel SNPs likely drive the number of “dark sites” on each array (Table 1). Interestingly, the MAF at 
which accuracy peaks is array-specific. For example, the Illumina Infinium HumanHap 300v1 array 
has a similar number of sites on chromosome 22 as the Illumina Infinium HumanExome BeadChip 
(Table 1); however, accuracy peaks around MAF=0.3 on the Illumina 300k array and around 
MAF=0.5 on the exome array. Interestingly, imputed exome rare variant array sites from genome-
wide arrays are imputed more accurately than across all chromosome 22 sites for varying allele 
frequencies (Figure 4A-C versus Figure 4I-K), likely because scaffold sites on genome-wide arrays 
are enriched near exonic regions, improving imputation accuracy. 



Previous work has indicated that reference panels that share more haplotypes with the study panel 
improve imputation accuracy compared to a random panel17. We compared multiple population 
stratifications as described is Section 2.3 (Figure 3). In all scenarios, imputation performs the poorest 
in individuals of African descent. This is likely due to the reduced LD structure in African 
populations18 and European ascertainment bias in genotyping arrays19. Imputation with both global 
reference panel strategies with a larger number of reference individuals, albeit from more distantly 
related populations overall (Figure 3A and Figure 3B), outperforms imputation with smaller 
continental reference panels (Figure 3C and Figure 3D). Low frequency alleles are imputed with 
greater accuracy when the reference panel includes individuals from the same population compared to 
when it does not (Figure 3B versus Figure 3A). This is especially true in European populations with 
the exception of TSI individuals, which likely arises from the greater genetic diversity and more 
complicated demographic history present in Italy compared to other European populations presented 
here20,21. 

 

	  
Figure 3 - Variability in imputation accuracy across populations. All simulations were performed using the Affymetrix 
Genome-Wide Human SNP Array 6.0 markers from chromosome 22 in the test set. Lines are local regression fits to the 
data, and local peaks near MAF=0 in A and B for the GBR and TSI, respectively, are simply due to smoothing edge 
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effects. A) Strategy A. B) Strategy B. C) Strategy C. D) Strategy D. Diagrams drawn under loess curves are cartoons of 
sampling strategies, as outlined in section 2.3. Abbreviations are as follows: ASW=HapMap African ancestry individuals 
from SW US, LWK=Luhya individuals, YRI=Yoruba individuals, CEU=CEPH individuals, FIN=HapMap Finnish 
individuals from Finland, GBR=British individuals from England and Scotland, TSI=Toscan individuals, CHB=Han 
Chinese in Beijing, CHS=Han Chinese South, JPT=Japanese individuals, CLM=Colombian in Medellin, Colombia, 
MXL=HapMap Mexican individuals from LA California, PUR=Puerto Rican in Puerto Rico. 

Figure 4 - Imputation accuracy across three common variant and one rare exome variant arrays in genomic, exomic, and 
imputable exome rare variant array regions of chromosome 22. Colors correspond with arrays, as in Figure 2. All 
subpanels show smoothened scatter plots with an overlaid local regression fit, and the proportion of sites imputed with R2 
> 0.8 is reported, which are consistent with previous results22. Span was adjusted to 0.5 in order to keep the fits within the 
bounds of the data. A-D) genomic regions of chromosome 22; E-H) exomic regions of chromosome 22; I-K) Imputation 
accuracy for imputable exome rare variant sites using each of the genome-wide common variant arrays.  

We next compared imputation accuracy across three common variant and one rare exome variant 
genotyping array platforms. As expected, the common variant arrays impute sites across chromosome 
22 more accurately than the Illumina Infinium HumanExome BeadChip. Surprisingly, all three 
common variant arrays also outperform the exome array in imputing the exome-only regions, though 
their accuracy is substantially reduced in the exome compared to the genome (Figure 4). Imputation 
accuracy is the poorest with the rare variant exome array, even though the Illumina 300k common 
variant array has slightly fewer assayed variants on chromosome 22 (Table 1). Aside from the exome 
array, accuracy improves with arrays tagging more variants, as expected. The accuracy in the rare 
variant exome array is increased in the exomic regions compared to all chromosome 22 variants 



(Figure 4H and Figure 4D, respectively). As shown in Figure 4, the imputable exome variant sites are 
imputed with similar accuracy as all sites across chromosome 22 with common genome-wide arrays 
as a scaffold. While the “dark sites” on the exome chip will be missed, other imputable sites, which 
are enriched for biomedically relevant SNPs, are imputed with similar accuracy as any similar 
frequency SNP. 

4.  Discussion 

We have evaluated multiple factors that influence imputation accuracy, including test and 
reference panel size, phasing and imputation methods, populations, and genotyping arrays. We find 
that both larger reference and test panels lead to greater imputation accuracy, and that reference panel 
size is more important than test panel size in most GWAS scenarios. Larger reference panels, 
regardless of population, aid imputation performance for common variants, while more closely related 
reference panels are critical for accurately imputing rare variants. Comparing three methods, our 
simulations revealed that BEAGLE was both the most computationally costly method (e.g. ~48 hours 
to run and 10.5G of memory for chromosome 22 with a reference size of 500 and test size of 500) and 
had the least accurate performance. SHAPEIT2/IMPUTE2 and MaCH-Admix were comparable in 
terms of computationally efficient (2 hours to run and 2G of memory versus 3.5 hours to run and 1G 
of memory with the same test and reference panel as in the BEAGLE case). These computational 
costs are consistent with previously reported values8.	  

It is important to note that there is an obvious bias in imputation accuracy across populations, with 
the lowest accuracy in African populations. Greater accuracy in out-of-Africa groups is likely due to 
ascertainment bias as well as longer haplotypes from the serial founder effect during the peopling of 
the globe. We see improved imputation accuracy at the rare end of the allele frequency spectrum 
when the reference panel includes the same population as the test panel. These results suggest that 
nearby reference panels are especially important for large outbred groups. 

Imputation with common variant arrays substantially outperforms imputation with the Illumina 
Infinium HumanExome BeadChip. This reduction in accuracy is apparent for all frequencies, 
including rare alleles, suggesting that covariance between rare and nearby alleles is low, and alleles 
are tagged poorly. This is likely in part due to the uneven distribution of variants on the exome array 
across the chromosome, reducing LD on the array. A scaffold of genomic variants will likely aid 
imputation accuracy in exome arrays. One potential way to assay a large number of rare variants 
accurately without losing important rare variant information is to combine arrays, coupling the exome 
array with one of the common arrays we evaluated, for example. The improved imputation accuracy 
by the exome array in exomic regions is likely due to denser markers and greater LD in this region. 
The reduction of imputation accuracy in exomic regions with the common variant arrays may be due 
to greater sequencing depth in the 1000 Genomes Project in the integrated call set, which contains, 
genotyping, genome-, and exome-sequencing data, leading to more low frequency calls passing 
variant filters. 



Finally, alternative algorithms for phasing23,24 that rely on identity-by-descent (IBD) structure 
preferentially rather than LD have recently been published. These methods take advantage of 
haplotypic structure and will likely aid imputation differentially depending on the degree of sharing 
within a population and the potential to improve phasing accuracy. A question for future work, for 
example, might compare phasing accuracy using LD-based and IBD-based methods in endogamous 
African populations where imputation with traditional arrays performs poorly but where cryptic 
relatedness is more likely to exist. 

5.  Conclusions 

The next generation of genotyping arrays intends to capture rare, coding variation that is likely to 
contain more pathogenic variation than randomly ascertained SNPs. Here, we assess the ability of a 
commercially available rare variant exome array to adequately tag variation that has not been directly 
assayed, compared to common variant arrays. We assess multiple methods, sample sizes, and 
populations, and find that imputation accuracy is substantially reduced with the rare variant exome 
array compared to common variant arrays. This result is true both in genomic and exomic regions of 
chromosome 22, although the difference in imputation accuracy between common and exome arrays 
is reduced in exomic regions. We also find that the European ascertainment bias in common variant 
arrays is reflected in imputation accuracy across populations, with most European variants imputed 
more accurately than those of other continental groups. Additionally, closely related populations are 
critical in reference panels for low frequency variants. Finally, we compare three phasing and 
imputation methods and find that BEAGLE is the least accurate, and SHAPEIT2/IMPUTE2 performs 
slightly less accurately than MaCH-Admix for all reference and test panel sizes. This research 
provides guidelines for GWAS researchers to avoid the current design of exome rare variant arrays 
when imputing genotype data. We acknowledge, however, that these next generation arrays have 
potential utility when fine-mapping a variant that is suspected to be coding and not tagged by 
common variant genotyping arrays. 
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Appendix 
 
All code written to run phasing and imputation simulations on a Sun Grid Engine can be downloaded 
here: https://github.com/armartin/compare_impute. 
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