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The immune system gathers evidence of the execution of various molecular processes, both foreign
and the cells’ own, as time- and space-varying sets of epitopes, small linear or conformational seg-
ments of the proteins involved in these processes. Epitopes do not have any obvious ordering in this
scheme: The immune system simply sees these epitope sets as disordered “bags” of simple signatures
based on whose contents the actions need to be decided. The immense landscape of possible bags
of epitopes is shaped by the cellular pathways in various cells, as well as the characteristics of the
internal sampling process that chooses and brings epitopes to cellular surface. As a consequence,
upon the infection by the same pathogen, different individuals’ cells present very different epitope
sets. Modeling this landscape should thus be a key step in computational immunology. We show that
among possible bag-of-words models, the counting grid is most fit for modeling cellular presentation.
We describe each patient by a bag-of-peptides they are likely to present on the cellular surface. In
regression tests, we found that compared to the state-of-the-art, counting grids explain more than
twice as much of the log viral load variance in these patients. This is potentially a significant ad-
vancement in the field, given that a large part of the log viral load variance also depends on the
infecting HIV strain, and that HIV polymorphisms themselves are known to strongly associate with
HLA types, both effects beyond what is modeled here.
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1. Introduction

The mammalian immune system consists of a number of interacting subsystems employing
various infection clearing paths, with cellular presentation playing a central role in many of
them. Most of the cells present a sample of peptides derived from cellular proteins as a means
of advertising their states to the immune system. This facilitates globally coordinated action
against viral infection.
The input to the cellular immune surveillance is illustrated in Fig.1. We show a simplified illus-
tration of an infected cell which expresses both self (black) and viral (red) proteins (Fig.1A).
Major histocompatibility complex (MHC) type I molecules bind to a small fraction of peptides
from these proteins, created by proteasomal cleavage (Fig.1B). Inside these MHC complexes,
the peptides are transported to the surface of the cell, where they may be detected by the
cytotoxic T cells (CTL), which then may send self-destruct signals to the infected cell, thus
stopping further infection (Fig.1C). Peptides that are a target of immune surveillance are
often referred to as epitopes. As the sampled peptides do not appear in a particular spatial
organization on the surface, the immune system effectively sees the infection as a bag of MHC
molecules loaded with different viral peptides. Depending on the application, this represen-
tation may be further simplified into a bag of viral peptides (Fig.1D), under the assumption
that the main effect of the MHC molecules is the peptide selection (e.g. choosing conserved
vs non-conserved targets6).
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Fig. 1. Modeling immune surveillance input as a bag of words. A An Infected cell. B MHC binds to a fraction
of peptides. C Sampled pepdites appear without particular order on the cell surface. D A bag of peptides
represents the relative counts cz of the features seen on cellular surface.

This paper has a dual purpose: i) it argues for the new application of bag of words models,2,9

which have already been successfully applied in various other areas of machine learning, as
a set of tools for capturing correlations in the immune target abundances in humoral and
cellular immune surveillance, and ii), it proposes a novel way of modeling bags of words which
differs from PCA-like approaches not only in its treatment of observed epitope abundances
as counts, but also moves away from the traditional componential structure towards a spatial
embedding that captures smooth changes in cellular presentation.
In the experimental section, we restrict to the analysis of the links between the HIV viral
load and the patients HLA types, leading to significant improvement with respect to the state
of the art. Beyond the particular application tackled here, a good probability model of the
epitope co-presentation has several direct applications, from correcting association studies,
to detecting patients or populations that are likely to react similarly to an infection, to the
rational vaccine design.

Related Work Explaining the differences in viral loads in different HIV patients has received
a lot of attention from the HIV community, ever since the early longitudinal studies showed
that changes in viral load occur in synchrony with the emergence of new HLA class I epitopes
in immune assays.4

However, in case of the highly polymorphic HIV, a handful of epitopes usually fail to control the
infection, and so researchers turned to population studies in search for optimal immune targets.
Early studies failed to detect significant links between patients HLA types and viral load as the
straightforward statistical approaches could not handle small dataset sizes (typically around
200 patients or less). But the evidence of HLA pressure on HIV was recognized in strong
associations between viral mutations and patients’ HLA types.5 Viral load is highly variable
and it may depend on numerous factors, such as gender, age, prior infections and general
health of the individual. Thus it seemed likely that only the strongest MHC-driven effects
would be visible through the noise. Still, any statistically significant result has been seen as
having important consequences to HIV research. Eventually, larger cohorts allowed researchers
to detect links between HLA types and viral load. Certain HLA B types, esp. B57 and B5801
were found to strongly associate with low viral load in a cohort of over 700 HIV patients in
southern Africa.7 In these studies, despite the statistically strong associations, the viral load
in B57 or B5801 positive and negative patients still had such large variance that each of these
HLA types alone could only explain less than 2% of the total log viral load variance in the



Table 1. The percentage of viral load (VL) explained in literature as the square of the
Pearson’s linear correlation coefficient (See Tab.2)

Ref. Major Result
5 VL considered too noisy. Associations with mutations found
7 1-2% of VL variance explained through individual allele association
6 4% of VL variance explained through by targeting efficiency
10 4.3%-9% of VL variance explained by combinations of epitopes
This Paper Up to 13.5% of VL variance explained by embedding into Counting Grids

population.
Multiple hypothesis testing issues and linkage disequilibrium among HLA loci complicated
this research and the employed straightforward statistical approach did not present obvious
ways to move from singular features (such as a binary labeling of patients as having B57
or not) to combinations of features that would provide higher explanatory power. However,
by analyzing the tendency of the HLA molecules to bind to conserved targets in the HIV,
it is possible to create a patient score (dubbed targeting efficiency) that captures binding
characteristics of all 6 HLA molecules relative to HIV proteins.6 At least on one cohort,5

targeting efficiency explained a little less than 4% of the log viral load variancea. On the
same cohort, another recent method deals with multiple features and their correlations, the
correlation sifting ,10 explaining 4.3% of the log viral load variance by patients’ HLA types.
We show here that the bag of words models3,9 lead to even better regression to viral load. This
is especially the case for the new counting grid model9 that efficiently captures correlations in
cellular presentation by embedding patients in a grid, where the embedding coordinates can
be used to explain 13.5% of log viral load variance, more than twice the current state of the
art.
To put these numbers into perspective, it is important to make two observations. First, even
weak signals, had the tendency to move the entire field,5,7 as valuable characteristics of the
interaction between HIV and the host immune system were revealed, informing both the
research on HIV drugs and the research on HIV vaccine. Second, in addition to high variation
of the viral load due to factors that relate to age and general health, it is known that the set
point viral load depends strongly on the infecting strain,8 and as HIV was found to mutate in
its reactions to HLA presentation, this variation in fitness in the infecting strains may itself be
due to the HLA pressure from previous hosts. Thus the increase in explanatory power of HLA
types from around 4% of the log viral load to around 13.5% is potentially of great importance.
Further analysis in selected combinations of features in the counting grid may lead to further
advances in understanding the evolutionary arms race between HLA and the human immune
system.

2. Bag of words models

In machine learning research, data samples are often represented as bags of features without
a particular order. This choice is typically motivated by the difficulty or computational effi-

aNote again that the original analysis based on individual alleles failed to detect significant links with viral
load there
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Fig. 2. Capturing dependencies in bags of words.

ciency of modeling the feature structure. Computational biology is abundant with examples
of data where the structure is truly unknown, rather than just sacrificed for computational
efficiency: for example, a gene expression array has been modeled as a bag of genes with ex-
pression levels simply corresponding to counts because most of the time little is known about
the cellular pathways that employ these genes.11–14 Without such knowledge there is no clear
gene ordering. But biology is also abundant with situations where the raw data of interest
actually has no (known or unknown) structure. In particular, in this paper we develop models
of the sets of immune system targets.
Topic models1,2 were introduced by the text analysis community and have been particularly
successful in representing text documents. These simplified models of text assume that a text
document has been generated simply by mixing words from a subset of possible topics. In
typical applications, the number of possible topics is large, and these topics are inferred from
the data by analyzing word co-occurrence patterns, and so the topic scope can vary from
very narrow to quite broad, e.g., from near homonyms, to words found in most stories on US
politics. An individual document is assumed to use only a fraction of all possible topics, and
so the resulting bags of words will exhibit strong co-occurrence patterns: when the president
is mentioned, so is the congress, as both appear in the same topic.
These models can be used in other domains by simply replacing words with some other set
of features of interest. In bioinformatics, for example, words are replaced by genes and their
counts by expression levels3,12 to model microarray experiments. Visual descriptors are ex-
tracted from salient points of brain images and clustered into “visual words” replacing tradi-
tional words in bags of words and these representations were then used to classify schizophrenic
patients from controls.18 Peaks in nuclear magnetic resonance (NMR) spectrometry were also
clustered and used as words.19 Finally, protein sequences are sometimes broken into segments
or fragments, which serve as words for comparing protein structures.20

Among topic models one of the best known is the Latent Dirichlet Allocation (LDA).2 To
formally define this model, we will index possible words (features) by z and denote the set
of observed word (or feature) counts in the t-th bag of words by {ctz}. The latent (hidden)
variables describe the choice of topics indexed by k. The choice of topics follows a distribution
p(k|θ) = θk, and each topic has its own distribution over all the words p(z|k, β) = βz|k. The



vector that depecits the topic distribution for one document θ is sampled from a Dirichlet
distribution with parameters α. The following probability of generating a particular document
is induced by this simple generative process (after picking the topic distribution θ, pick a topic,
then pick a word form the topic, then pick a topic and a word from it again and again till all
the words in the document are generated):

p({ctz}|α, β) =
∫

p(θ|α) ·
∏
z

(∑
k

(p(z|k, β) · p(k|θ))c
t
z

)
dθ (1)

The model parameters are estimated based on a training set so as to maximize the product
of probabilities of all training documents. The topic proportions θ for individual documents can
be used as a compact representation of the bag of words that discards the superfluous aspects of
the data. For example, the HIV viral load can be regressed directly to these hidden variables in
patient cohorts that are too small for the full representation of the viral presentation. Modeling
cellular peptide presentation as a mixture of topics can capture some of the presentation
patterns discussed above. Upon model fitting, the topics may correspond to individual MHC
molecules that are more frequent in the patient cohort, or entire families of MHC types that
have similar presentation (sometimes referred to MHC supertypes). In this case, all viral
peptides would be indexed by z, and the topic probability distribution would reflects the
probabilities of binding of a particular MHC (super)type to these different peptides. Some
topics may also capture the HIV clade structure as mutations in each clade alter the MHC
binding patterns.

Estimating bags of peptides for individual HIV patients

The concentration of any viral peptide on the cellular surface depends on the source protein’s
expression level. But different HIV proteins are expressed at different times in the HIV’s
infection and reproduction cycle. Instead of trying to estimate appropriate weighting factors,
we simply considered each of the HIV proteins in isolation in our experiments.
As most epitopes are of length 9, for each analyzed protein we created a vocabulary of all
9-mers that exist in this protein, indexed by z. Each human host has up to 6 different MHC
I molecules (two from each of the three ancient duplicated and highly polymorphic loci A, B,
C in the HLA region). In addition, in our experiments we dealt with a cohort in which we had
the HLA types for each patient and we had access to an MHC I - peptide complex prediction
algorithm that can estimate the binding energy Eb(z,m) for each of the peptides z and the
different patient’s HLA molecules indexed by m.21 Finally, we also used a cleavage energy22

estimate Ec(z) and turned the total energy into a count (concentration) as follows

cz = e−Ec(z)−minm

[
Eb(z,m)

]
(2)

In a simplified model, the individual’s immune system sees this variation in peptide counts
(with many counts close to zero), and thus needs to recognize a virus not as a whole but as a
set of disordered viral peptides.
Estimation of surface peptide (relative) counts could use any number of other epitope pre-
diction techniques recently developed in computational biology.23 Here we used the adaptive



double threading technique,21 as it provides prediction for arbitrary MHC types simply defined
by their protein sequence. NET MHC Pan24 predictors provides similar functionality.

The counts cz are not independent. The MHC system, as well as viral mutations, cre-
ate links among the abundances of different viral peptides in the observed bag. Each MHC
molecule has its binding preferences that lead to selection of only one of a hundred to a
thousand of peptides. The human leukocyte antigen (HLA) region (human MHC) is the most
polymorphic region of the human genome. As a result, two patients infected by the same virus,
e.g. HIV, are highly unlikely to have the exact same MHC molecules. Each of their molecules
will select specific targets from HIV proteins, and the patients’ sets of immune targets will
likely overlap only partially. The variation of the HIV epitope sets found in different patients
exhibits strong co-occurrence patterns where a high count of one peptide often implies in-
clusion of several others, as they are all good binders to a particular MHC allele (families of
different alleles can also share binding preferences). These links in epitope presentations are
further expanded by weak linkage disequilibrium among MHC types as well as viral adapta-
tion, which is itself correlated across sequence sites.
This all means that good models of bags of epitopes that constitute the immune surveillance
input need to capture these correlations and this is precisely what the probability models of
bags of words where meant to do for text documents.

3. The Counting Grid model

In the counting grid model, individual distributions over words are arranged on a grid (see
Fig.2). Each of these distributions is relatively tight, with only a few features having significant
probability. To generate a bag of words, instead of mixing topics, it is assumed simply that
a window into the grid is opened, and the feature counts in the cells inside the window are
combined to create the appropriate words in appropriate abundance. The window floating
over the grid captures well variation in certain types of documents where we can see slow
evolution of the topics, where certain words are dropped and new ones introduced: think for
example to news stories over time, as interest in certain news slowly vanes in favor of new ones.
Although traditional topics have been embedded in time or space and made slowly varying in
certain directions, these variations do not quite capture the simple constraints present in CG
models where a small window shift in the grid simply drops certain words and adds new ones.
Furthermore, the counting grids are learned from the data for which the embedding in time or
space is not available; this is the case for epitope bags. As we will show shortly, counting grids
for this data can never the less be produced by iteratively estimating the grid distributions
and inferring the mapping of the data to appropriate windows in it, thus resulting in the
embedding of the data to a grid.

Formally, the basic counting grid πi,z is a set of normalized counts of words / features
indexed by z on the D-dimensional discrete grid indexed by i = (i1, . . . , iD) where each id ∈
[1 . . . Ed] and E = (E1, . . . , ED) describes the extent of the counting grid. Since π is a grid of
distributions,

∑
z πi,z = 1 everywhere on the grid. A given bag of words/features, represented

by counts {cz} is assumed to follow a count distribution found somewhere in the counting grid.
In particular, using windows of dimensions W = [W1, . . . ,WD], each bag can be generated by



first averaging all counts in the hypercube windowWk = [k . . .k+W] starting at D-dimensional
grid location k and extending in each direction d by Wd grid positions to form the histogram
hk,z = 1∏

d Wd

∑
i∈Wk

πi,z, and then generating a set of features in the bag. In other words, the
position of the window k in the grid is a latent variable given which the probability of the bag
of features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1∏
dWd

∏
z

(
∑
i∈Wk

πi,z)
cz (3)

Relaxing the terminology, we will refer to E and W respectively as the counting grid and the
window size. We will also often refer to the ratio of the window volumes, κ, as a capacity of
the model in terms of an equivalent number of topics, as this is how many non-overlapping
windows can be fit onto the grid. Fine variation achievable by moving the windows in between
any two close by but non-overlapping windows is useful if we expect such smooth thematic
shifts to occur in the data, and we illustrate in our experiments that indeed they do. Finally,
with Wk we indicate the particular window placed at location k (see Fig.2C). To learn a
counting grid we need to maximize the likelihood of the data:

logP =
∑
t

log
(∑

k

·
∏
z

(h
ctz
k,z)

)
(4)

The sum over the latent variables k makes it difficult to perform assignment to the latent
variables while also estimating the model parameters. The problem is solved by employing
an iterative variational EM procedure. The E step aligns each bag of features {ctz} to grid
windows, to match the bag’s histograms. In this way we compute the posterior distribution
qtk over all windows k so that a better match between {ctz} and hk,z across all features z yields
a higher value for the match. In other words, qtk is probabilistic mapping of the t − th bag
to the grid widnows k. This mapping is usually peaky, i.e., each bag tends to map to a few
nearby locations in the grid. In the M-step we re-estimate the counting grid so that these same
histogram matches are even better. To avoid severe local minima it is important to consider
the counting grid as a torus, and perform all windowing operation accordingly. For details on
the learning algorithm and on its efficiency see the original CG paper.9

Regression of continuous values

Once a CG is learned, we show here how one may embed continuous values yt on the grid
(e.g., HIV viral load). This is achieved using the posterior probabilities qtk for each bag already
inferred and embedding the corresponding viral load inside the entire mapped window(s), and
then averaging all overlapping windows (Fig.2D), which is similar to how M step re-estimates
the distributions π:

γ(i) =

∑
t

∑
k|i∈Wk

qtk · yt∑
t

∑
k|i∈Wk

qtk
(5)

The function γ can then be used for regression, in what is essentially a nearest-neighbor
strategy: when a new data point is embedded based on its bag of words, the target is simply
read out from γ, which is dominated by the training points which were mapped in the same
region.



In Fig.4A we show a couple of γs, estimated from the dataset we used in the experiments.
The window W is shown with a dotted line in the figure.

4. Experiments

In this section we first discuss what aspects of the epitope bags the counting grids may capture.
Then we show that counting grids outperform not only traditional bag of words models, which
have previously not been applied to this task, but also the state of the art in biomedical and
computational biology literature5–7,10 on analysis of the links between the HIV viral load and
the patients HLA types (see Tab.1).

Types of correlations in epitope bags that can be captured with counting grids
There are reasons why a counting grid model may be a more appropriate model of variation in
epitope bags and perhaps more generally in many computational biology applications. These
reasons have to do with the manner in which biological entities interact and adapt to each
other leading to patterns of slow evolution characterized by genetic drift, local co-adaptation,
as well as punctuated equilibrium. In case of cellular presentation, for example, millions of
years of evolution created certain typical variants of MHC as well as minor variation on
each of these major types. These variations are at least in part due to the interaction with
viruses,6 and similarly the genetic variation in viruses reflect some of this evolutionary arms
race, too. Thus, the HIV clade constraints, as well as MHC binding characteristics may be
so interwoven that a rigid view of cellular presentation as a mix of a small number of topics
may be inappropriate. In the counting grid, the major variants of cellular presentation can
be modeled as far away windows, while minor variations would be captured by slight window
shifts in certain regions of the grid. To illustrate this we analyzed the cellular presentation
of HIV patients from the Western Australia cohort.5 We represented each patient’s cellular
presentation by a set of 492 counts over that many 9-long peptides from the Gag protein,
previously found to be targeted by the immune system. The counts were calculated based
on the patients MHC class I types (or HLA types, as they are called in humans) and the
HLA-peptide binding estimation procedure discussed in Sec.2. This provides us with bags
of peptides (BoP, counts over the 492 words) that represent GAG in different patients. We
used the same process for two more proteins, POL and VPR, resulting in counts matrices
of respectively 88×135 and 939× 118 words×samples. We analyzed only the clade B infected
patients.

Cellular presentation of viral peptides and viral load As the immune pressure depends
on cellular presentation, the variation in cellular presentation across patients is expected to
reflect on the variation in viral load, at least to some extent.5,6 Viral load is expected to depend
on the cellular presentation for various reasons. If the targeted peptides are conserved, this
indicates inability of the virus to escape immune pressure. Even binding to some relatively
variable peptides may lead to good outcomes for the patient (low viral load), as long as the
CTLs can crossreact effectively across the peptide variants. In addition, there is a possibility
that additional qualities of the peptides render some immune responses more effective than
the others, or that certain immune responses trigger different viral behaviors. In bio-medical
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Fig. 3. HIV viral load regression. The variation of the correlation factor ρ for CG and LDA models of different
complexities. Color code is used represent the square CG size E as a single capacity can be obtained with
different E/W combinations.

literature, analysis of this type of data targeted individual peptides and the discovery of those
peptides that have significant association with viral load. However, these results do not explain
nearly as much of viral load variance as what follows.

As general procedure, we first trained a CG using the bags-of-peptides cz but without using
the regression targets yt (log viral load). Then, in a leave-out-out fashion, we held out a sample
t̂ and estimated the regression function γ (see Eq. 5, with t ̸= t̂) using all the other epitope
bag/viral load pairs, and finally, read out γ in the appropriate (probabilistic) location qt̂k to
obtain the viral load prediction for t̂ sample as yt̂CG =

∑
k q

t̂
k ·γ(k). Once we computed the esti-

mated regression target for all the samples, we computed ρ, the pairwise correlation coefficient
between the true and the estimated viral load, comparing CGs with LDA,3 and a technique
based on phlogenetic trees15 meant to established how much can the viral laod be predicted
simply from the patient’s dominant HIV sequence, as different strains may vary in fitness.
We considered counting grids of various complexities E = [12,15,18,21,25,30,35,40,50] and
W = [2,3,4, . . . ]. We tested only the combinations with capacity κ between 1.5 and T/2, where
T is the number of samples available.

Rogers’ LDA adaptation,3 LPD originally designed for modeling microarray data was
evaluated in a similar fashion. We learned as single model (without using the target) and
we predicted the viral load for the left out sample using linear regression based on the topic
proportions θ.

To compare with a sequence-based regression, we used the maximum likelihood approach15

to estiamte a phylogentic tree for all patients’ HIV sequences. Few parameters have to be tuned
when computing such trees: In our experiments, we pick as a rate substitution matrix the WAG
model,16 and we allowed for rate variations across sites, setting 4 discrete gamma categories.17

To predict the viral load ŷ for a test sequence x using the estimated tree, we detected the
training sequences that lie near by in the tree and averaged their viral loads acdcordign to
their distance. If t indexes the training sequences xt and their associated viral load value yt

ŷ =
∑
t

e−C·dist(x,xt) · yt (6)

The parameter C has been found with crossvalidation on the training set. Fig.3, summarizes
the performance of CG and LDA across a range of capacities κ for CGs and the number of
topics K for LDA. LDA and CGs reach similar results of POL and VPR, while CGs have a
clear advantage on GAG. It is important to note that for the Counting Grids, the correlation



factor varies much more regularly with the capacity κ, since this indicates that the complexity
can be chosen on the training set through crossvalidation, which then allow us to properly
calculate the percent of viral load explainable by the model. For each protein, we performed
leave-one-out crossevaluation on the training set, to pick the best model complexity (E/W for
Counting Grids, or the number of topics K for LDA) and we compared the results with the
tree regression discussed above.

In leave-one-out experiments, the training set was each time used as a full set for another
set of leave-one-out experiments on training data alone, plotting the graphs as above, and
picking the best complexity. Then for the test sample we predicted the viral load using this
best complexity. It is important to note that in this scheme i) the viral load of different
patients can in principle be predicted using different complexities, and ii) the test sample
does not contaminate the prediction model in any way. Results are shown it Tab.2. For Latent
Dirichlet Allocation, this process failed and we could not obtain statistically significant results
because of severe overtraining issues.

Finally, we also combined CG rpedictions with the idea of regressing the reconstruction
error Et

z = c̃tz − Rt
z on residual viral load ytRED = yt − ytCG,

10 where ytCG is the viral load
prediction using the counting grid, and c̃tz the normalized feature count. We used a regularized
linear regression with L1 norm using as before leave-one-out crossevaluation to choose the best
model complexity. We computed the correlation factor ρ, setting final viral load prediction to
be equal to the sum of ytCG and the prediction of ytRED. The idea here is that the deviation
from the norm may be detecting viral adaptation and can predict furhter the modualtion of
viral fitness. As can be seen in Tab.2, column CGs→10, this improved the performance in all
the cases.

Interestingly, the model complexities chosen by each round of leave-one-out, though they
could in principle be different for each patient, did not in fact differ that much. Regardless
of the protein considered, for more than 89% of the data points the same complexity was
typically chosen, as reported in the last column of Tab. 2.

Table 2. Pearson’s linear correlation (after crossevaluation where applicable). Crossevalu-
ation for LDA was found not statistically significant (NS) for GAG and POL. The last
column reports the most common CG’s complexity chosen in the rounds of leave-one-out
crossevaluation.

CGs CGs→10 Trees LDA Ridge Regr. Complexity Chosen
Protein ρ ρ ρ ρ ρ

GAG 0.3301 0.3674 0.3519 NS 0.1835 [30,5] - 89%
VPR 0.2011 0.2546 0.1061 0.1202 NS [50,8] - 94%
POL 0.2338 0.2443 0.1812 NS NS [40,11] - 97%

The medical literature has other results obtained by analyzing GAG protein as shown in
Tab.1, but the results reported here outperform all these methods, too.

We have one final note on the embedding function γ. The bags of peptides are mapped
to the counting grid iteratively as the grid is estimated as to best model the bags, but the
regression target, the viral load, was not used during the learning of CGs or LDA models.
However, the inferred mapping after each iteration can be used to visualize how the embedded
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Fig. 4. A HIV viral load embedding in the 2D. The window is shown with a dotted line in the figure. B
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viral load γ evolves. This is illustrated in Fig.4B for a model of complexity E = [30×30], W =

[8 × 8]. The emergence of areas of high (red) and low (blue) viral load indicates that as the
structure in the cellular presentation is discovered, it does indeed reflect the variation in viral
load.

5. Conclusions

We propose the use of bag of words models to capture cellular presentation, and more generally
the view that the immune system has of the invading pathogens. Furthermore, we demonstrate
that the newest of these models, the counting grid, seems to be especially well suited to this
task, providing stronger predictions than what can be found in bio-medical literature.
It remains to be understood exactly why CGs exhibit such a strong advantage over topic
models (LDA). One intuitive explanation is that the slow smooth variations in count data
that can be captured in counting grids better represent the dependencies that were produced
by millions of years of coevolution between the HLA system and various invading pathogens.6

This process involved numerous mixing of both the immune types and the viral strains, and
may have produced the sort of thematic shifts in cellular representation that CGs are designed
to represent. A more speculative possibility is that the immune system, through some unknown
mechanism, collates the reports from circulating CTLs into an immune memory of a similar
structure, though this summarization would obviously be performed over different invading
pathogens in one patient, while our CGs depect one virus in a population of patients. Our
experiments showed that cellular presentation of the Gag protein explains more than 13.5%
of the log viral load. Although viral load varies dramatically across patients for a variety
of reasons, e.g. gender, previous exposures to related viruses, etc., detection of statistically
significant links between cellular presentation and viral load is expected to have important
consequences to vaccine research.7
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