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In eukaryotic cells, alternative cleavage of 3’ untranslated regions (UTRs) can affect transcript stability, 
transport and translation. For polyadenylated (poly(A)) transcripts, cleavage sites can be characterized with 
short-read sequencing using specialized library construction methods. However, for large-scale cohort studies 
as well as for clinical sequencing applications, it is desirable to characterize such events using RNA-seq data, 
as the latter are already widely applied to identify other relevant information, such as mutations, alternative 
splicing and chimeric transcripts. Here we describe KLEAT, an analysis tool that uses de novo assembly of 
RNA-seq data to characterize cleavage sites on 3’ UTRs. We demonstrate the performance of KLEAT on 
three cell line RNA-seq libraries constructed and sequenced by the ENCODE project, and assembled using 
Trans-ABySS. Validating the KLEAT predictions with matched ENCODE RNA-seq and RNA-PET 
libraries, we show that the tool has over 90% positive predictive value when there are at least three RNA-seq 
reads supporting a poly(A) tail and requiring at least three RNA-PET reads mapping within 100 nucleotides 
as validation. We also compare the performance of KLEAT with other popular RNA-seq analysis pipelines 
that reconstruct 3’ UTR ends, and show that it performs favourably, based on an ROC-like curve. 
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1.  Introduction 

The section of an mRNA transcript that is translated into protein sequence is flanked by 5’ and 3’ 
untranslated regions (UTRs). These UTRs play a number of important biological roles. The 3’ end 
of an mRNA molecule (the 3' UTR) helps to regulate its stability and localization, hence the 
amount of corresponding protein that is produced [1-4]. Over 50% of human genes produce two or 
more transcript isoforms via alternative polyadenylation (APA) of the 3’ UTRs [5]. APA is 
recognized as playing a role in cancer biology [6-9].  

A number of direct sequencing protocols have been developed for characterizing 
polyadenylated (poly(A)) tails of 3’ UTRs and APA [9-15]. A cost-effective alternative to these 
direct sequencing protocols would be high throughput transcriptome sequencing (RNA-seq) [16], 
coupled with a validated bioinformatics pipeline to detect 3’ UTR cleavage sites (CS).  

RNA-seq is a central data type for many studies, including the ENCODE (ENCyclopedia Of 
DNA Elements) project, whose goal is to identify all functional elements in the human genome 
sequence [17]. Using various sequencing protocols, an ENCODE study [18] identified over 
100,000 transcripts, about 60,000 of which were protein coding, and reported that transcript 
expression levels span six orders of magnitude. This is remarkable, as it speaks to the sensitivity 
of the RNA-seq technology. The lower range of the reported expression levels of 10-2 RPKM in 
that study implies that RNA-seq can detect a transcript expressed by 1 in 100 cells [16]. This 
resolution of RNA-seq data can be leveraged to identify 3’ UTR ends of transcripts. An earlier 
study [19] inferred 3’ UTR switching using sudden changes in expression profiles near cleavage 
sites, but did not utilize the direct evidence of observed poly(A) sequences. 

In this report, we introduce KLEAT, a post-processing tool for characterizing 3’ UTRs in 
assembled RNA-seq data through direct observation of poly(A) tails. While we developed KLEAT 
as an extension to the Trans-ABySS analysis pipeline [20, 21], it can also accept contigs from 
other transcriptome assembly tools, as we demonstrate below. It analyses the structures of 
assembled transcripts for poly(A) tails, filters 3’ UTR cleavage site (CS) candidates using several 
evidence types within RNA-seq reads, and gathers and reports metrics that can be used in 
downstream post-processing, such as for filtering calls by their levels of read support. 

2.  Methods 

The key technology KLEAT uses in detecting 3’ UTR ends is de novo transcriptome assemblies. 
Compared to genome assembly, a successful transcriptome assembly has to address some 
particular challenges. These include robust assembly of transcripts from a wide range of transcript 
abundance levels, and resolution of transcripts from alternative isoforms and gene families. There 
are several specialized de novo assembly tools, including Trans-ABySS [21], Trinity [22] and 
Oases [23] that successfully address these challenges.  

The KLEAT pipeline (Figure 1) uses Trans-ABySS by default. Using the raw reads and 
assembled contigs, it performs two levels of alignments in parallel: (1) reads to contigs; and (2) 
contigs to reference genome. It processes these alignment results to identify tail, bridge, and link 
evidence (Figure 2), and collates the evidence to predict cleavage sites.  



 
 

2.1.  Tail 

Contig sequences that end in a poly(A) stretch represent high-confidence candidates. We filter 
these candidates to identify true poly(A) tails by aligning the flagged contigs to a reference 
genome. Accounting for the direction of transcription, we classify contigs with untemplated 
poly(A) sequence (a stretch of poly(A) sequence not observed in the reference genome) at their 3’ 
ends as tail type events. For a transcript that is sufficiently abundant, this would be the expected 
default event type. 

 

Fig. 1. Flowchart of 
the KLEAT pipeline. 
Two shades of 
yellow flowchart 
elements designate 
raw and external 
input to the pipeline; 
blue and grey 
indicate existing 
internal and external 
tools, respectively; 
green denotes new 
tools developed 
specifically for 
KLEAT. 

 

Fig. 2. Three types of 
support for detecting 
cleavage sites using 
RNA-seq data. The gene 
annotation (grey) 
indicates a single 3’ 
UTR isoform, while the 
sample expresses two 
APA (red) variants. 
RNA-seq data capture 
the presence of these 
two alternatives with 
reads that end in poly(A) 
sequence (red). Contigs 
with supporting 
evidence have either a 
poly(A) “tail”, an 
overhanging read that is 
“bridge” to a poly(A) 
sequence, or a read that 
has a “link” to a pair 
with poly(A) sequence. 
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2.2.  Bridge 

Expressed alternative long and short 3’ UTRs present alternative paths for contig extensions 
during de novo assembly. In such cases, if the graph indicates a branch that does not extend to a 
poly(A) sequence, the alternative branch with the poly(A) sequence is removed by an assembly 
quality assurance stage within ABySS, in an operation called trimming [24]. While this is a 
desirable behaviour in general, it creates a particular challenge in assembling contigs with poly(A) 
tails. However, the information removed during this step can be recovered later by aligning reads 
to contigs, then assessing the sequences of partial read alignments at the contig edges. When an 
overhanging read alignment represents an untemplated poly(A) sequence, we infer the presence of 
a cleavage site. We call such cases bridge type evidence. 

2.3.  Link 

The sequence complexity of 3’ UTRs may drop substantially near their 3’ ends, where the region 
is dominated by AU-rich sequence [25], and this may affect contig extensions due to loss of 
specificity of read-to-read overlaps. When this happens near a cleavage site, the corresponding 
contig may fail to present a tail type evidence, and may terminate extension before a read with a 
poly(A) tail can bridge it to beyond the cleavage site. However, the 3’ UTR end may be within a 
typical sequencing fragment length, and if we identify read pairs linking the end of a contig to an 
untemplated poly(A) sequence, we classify the corresponding contig as having link type evidence. 

-- 
Some cleavage sites may have supporting evidence from a combination of these evidence 

types, and even multiple observations from the same evidence type. The latter is partly due to the 
fuzzy definition of a cleavage site, where the end of a 3’ UTR may fluctuate by about ±30 
nucleotides (nt) between mRNA molecules of the same transcript species [26]. Accordingly, we 
cluster cleavage sites predicted from multiple contigs if they fall within a certain window, label 
them as being representatives of the same cleavage site, and tally the counts presented by each 
evidence type in a given cluster to score the strength of our prediction. 

We note that read-to-contig alignments performed in the pipeline have unique requirements. 
Although we demonstrate our results using BWA [27] – an established general-purpose sequence 
alignment tool – we recognize that detecting cleavage sites is most effective when reads are 
aligned to contigs with a tool that is capable of handling alignments with overhangs, that is, when 
a read aligns to the end of a contig with its sequence extending beyond the boundary(ies) of the 
contig. Because many high-throughput general-purpose sequence alignment tools are developed 
by the explicit or implicit assumption of a reference sequence that is composed of a small number 
of long contigs (i.e. chromosomes), they may suffer from accuracy and performance issues when 
the reference sequence is in many short pieces (as in an assembled transcriptome). Alignments 
near contig or scaffold edges are particularly challenging for general-purpose alignment software. 
We call this the edge effect, and address it by an FM-index based aligner within the ABySS 
genome assembly package [24], as an alternative. This aligner weighs edge alignments that are 
shorter but with fewer mismatches more favourably than longer alignments with more mismatches 
to provide local alignments.  



 
 
KLEAT compares putative cleavage sites to annotation and EST databases to characterize and 

annotate them with other supporting observations, if any. Again using the annotation and EST 
databases, KLEAT groups, classifies and filters the putative events. 

For method validation, we used the RNA-PET protocol [10] as our gold standard. We 
quantified the concordance between the “putative” (KLEAT) and “real” (RNA-PET) cleavage 
sites (CS) using the following definitions: 

false positive |  A called CS not within a certain window of an RNA-PET cluster 
true positive | An RNA-PET cluster with at least one called CS in a window 
false negative | An RNA-PET cluster without a called CS in a window 
true negative | Cannot be defined 
One way to gauge the performance of a detection tool is to study its receiver-operator-

characteristic (ROC) curve, where a stringency parameter is varied to plot the true positive rate, 
TPR (the ratio of the true positive count to the total number of events) versus the false positive 
rate, FPR (the ratio of the false positive count to the total number of negatives). Note that, because 
true negative is undefined in this context, FPR cannot be defined either. A common practice in 
such cases is to use the false discovery rate, FDR (defined as the ratio of the false positive count to 
the total number of calls) as surrogate for the FPR. 

3.  Results and Discussion 

For validating our method, we employed experimental data collected by the ENCODE project 
[18]. The ENCODE consortium characterized transcript ends using the RNA-PET protocol [10], 
and generated RNA-seq data for some of the same samples. We considered three cell lines (H1-
hESC, A549 and MCF-7) for which RNA-PET and RNA-seq data were available (Table 1). 

For RNA-PET coverage data, we applied an expression level threshold (default, 3 reads), and 
clustered observations that occurred within a certain distance (default, 100 nt) of each other. We 
used the resulting clusters as ‘true’ events. 

We used Trans-ABySS v1.4.7 [20, 21] to assemble the RNA-seq reads; aligned the assembled 
transcripts to the human genome reference hg19 using GMAP 2012-12-20 [28]; and aligned reads 
back to the assembled contigs using BWA-SW v0.6.2-r126 [27]. We processed the results to 
identify the tail, bridge and link evidence, and clustered the CS calls. We also used Trinity Release 
2013-02-25 [22] for RNA-seq assembly, and used the same pipeline to identify CS calls. Table 2 
summarizes the performance of KLEAT on the assembled transcriptomes (with Trans-ABySS and 
Trinity contigs) for the three cell lines. 

Table 1. Three ENCODE cell lines used for validation. All libraries were prepared using the long polyA+ RNA 
fraction protocol. RNA samples represent the whole cell transcriptome. RNA-PET reads were sequenced at 2x36 nt. 
H1-hESC cell line RNA-seq reads were sequenced at 2x78 nt, and A549 and MCF-7 cell lines at 2x76 nt. All data 
were generated and made publicly available by the ENCODE project [18]. 

Cell Line # RNA-PET Read Pairs (million) # RNA-seq Read Pairs  (million) 

H1-hESC   50.2 78.3 

A549 181.7 70.5 

MCF-7 174.0 87.4 



 

Using contigs from either transcriptome assembly tool as input, we observed the number of 
cleavage site calls to be the lowest for H1-hESC, and highest for MCF-7. The number of APA 
sites per gene also follows this pattern, ranging from roughly 2.5 to 3.0 APA isoforms, on average. 
Interestingly, while the fraction of true positive cleavage site calls range from 75 to 93%, the 
average number of APA isoforms per gene is insensitive to filtering for true positives. 

We compared the use of contigs from de novo transcriptome assembly to detect cleavage sites, 
with the use of transcripts reconstructed by aligning the reads to a reference genome. We ran the 
Cufflinks pipeline v2.1.1 [29] on the same dataset, and used the reconstructed 3’ UTR ends of 
predicted transcripts to measure its accuracy in detecting poly(A) tails. Cufflinks takes RNA-seq 
read alignments to a reference genome as input, and builds those alignments into a parsimonious 
set of transcripts with or without annotation support. We ran the pipeline with annotation support, 
allowing for transcript discovery. 

Figure 3 depicts the ROC curves for these two paradigms for the three cell lines used. Curves 
closer to the top-left corner indicate better performance. These results suggest that to identify 3’ 
UTR cleavage sites an assembly-first approach (using either Trans-ABySS or Trinity) may be 
preferred over the alignment-first approach implemented in the Cufflinks pipeline. We note that 
the Trans-ABySS and Trinity results are similar, while the Trans-ABySS assemblies perform 
marginally yet consistently better. This may be due to the difference between the total 
reconstruction figures of the two tools (Table 2). 

Although the magnitudes of the reported TPR figures are low (<10%), we note that this 
reflects our simple but relaxed definition of the ground truth, with no distinction between 3’ and 5’ 
UTR ends, and applying none of the filtering suggested in the ENCODE report. These choices 
would inflate the denominator of TPR, and lead to underestimates in the reported figures. 
However, neither of these would change the relative performance of the analysis tools we present. 

We also compared the concordance between these three sets of results (Figure 4). Our analysis 
indicates that Trans-ABySS and Trinity contigs are largely concordant in their reconstruction of 
cleavage sites, identifying roughly 9,000 to 13,000 and 7,000 to 11,000 true positive calls, 
respectively (for an RNA-PET threshold of 3 reads) and agreeing on about 80 to 90% of the calls. 

Table 2. Summary statistics on de novo assembly of the RNA-seq data and KLEAT calls. Assembly figures are for 
contigs longer than 500 nt in length. The total number of cleavage sites called by KLEAT, and the average number of 
alternative polyadenylation sites per gene, are shown in the last two columns. Two sub-columns for the number of 
cleavage sites and APA per gene represent total and true positive (TP) calls, at a support threshold of three reads. 

Cell Line Assembler # Contigs N50 (nt) 

Total 
Reconstruction 

(Mnt) 

# Cleavage Sites APA per gene 

   All     TP All TP 

H1-hESC 
Trans-ABySS 879,277 1,049 309.1 11,975 8,998 2.54 2.49 

Trinity 159,627 2,250 188.3 9,896 7,565 2.37 2.30 

A549 
Trans-ABySS 788,688 1,352 299.9 13,984 12,940 2.83 2.80 

Trinity 149,880 2,791 197.4 12,249 11,369 2.62 2.57 

MCF-7 
Trans-ABySS 1,002,984 1,171 391.5 15,240 13,308 3.09 3.05 

Trinity 237,875 2,925 323.6 12,845 11,387 2.82 2.76 



 
 

In contrast, Cufflinks would identify 7,000 to 10,000 true positive calls with the same RNA-PET 
threshold, agreeing with the assembly-first results only about 25 to 30% of the time, meaning that 
it identifies a smaller yet largely distinct set of events.  

 

 
Fig. 1.  Performance of KLEAT on three ENCODE cell lines. Curves represent the true positive rate (TPR) as a function of the 
false discovery rate (FDR), for KLEAT with Trans-ABySS (blue) and KLEAT with Trinity (green) and Cufflinks (red). RNA-PET 
evidence is considered as the gold standard at two support cutoffs: left column: 3 or more, right column: 10 or more RNA-PET 
reads. 
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Fig. 4.  Concordance between three methods. Blue, green and red sets indicate events detected by KLEAT/Trans-ABySS, 
KLEAT/Trinity and Cufflinks, respectively, that are supported by at least 3 or 10 RNA-PET reads, as indicated. 

We note that in this dataset the Cufflinks pipeline is more sensitive for detecting weakly 
expressed transcripts. This observation is supported by the performance metrics of the three tools 
when we increased the RNA-PET threshold from three to 10 reads. At the increased threshold, 
KLEAT with Trans-ABySS and Trinity loses about 6 to 10% of its true positive calls, while 
Cufflinks loses about 10 to 33% of such calls. 

Further supporting this observation, a coverage histogram of the expressed genes in the A549 
cell line, as detected by Cufflinks, is depicted in Figure 5. Here the two x-axes represent 
expression levels in units of average coverage and FPKM on logarithmic scales. Cufflinks reports 
a major peak for transcripts represented at 1- to 10-fold average coverage, also reconstructing a 
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large number of transcripts with less than 1-fold coverage, some of which would report cleavage 
sites also observed by RNA-PET data. In contrast, de novo assembly methods would typically 
reconstruct transcripts over 10-fold coverage. This apparent difference in target expression levels 
for transcript reconstruction explains the lack of concordance between KLEAT (in conjunction 
with Trans-ABySS or Trinity) and Cufflinks, as reported in Figures 3 and 4. 

 

Fig. 5. Gene level coverage histogram for 
the A549 cell line RNA-seq data, as 
reported by Cufflinks. The histogram is 
presented with two logarithmic scales on 
the x-axis, average coverage (Cov) and 
FPKM, to show the correspondence 
between the two units for the sequencing 
depth of the experimental data. 

4.  Conclusions 

In this study, we introduced KLEAT as an analysis tool for detecting 3’ UTR cleavage sites using 
de novo assembled RNA-seq reads. We validated our method using data from the ENCODE 
project [30]. We measured the accuracy of KLEAT using two transcriptome assembly tools 
(Trans-ABySS [20, 21] and Trinity [22]), and compared its performance to results from an 
alignment-based analysis tool (Cufflinks [29], the method of choice in the ENCODE study). 

Our results demonstrate that one can reliably detect around 10,000 poly(A) tails per sample 
using RNA-seq data, at a sequencing depth of 70 million read pairs. The depth of sequencing data 
will certainly affect the number of transcripts observed, hence the number of poly(A) tails 
detected. Therefore, although we suggest that detecting on the order of 10,000 features will 
already provide important biological insights for highly expressed transcripts, if one wants to 
observe more features, one approach might be to sequence a library to greater depth (albeit with 
diminishing returns). With sequencing throughput on the Illumina platform pushing beyond 250 
million read pairs per lane, experimental design (such as pooling multiple samples per lane) 
reflects a balance between cost and value, and that balance is determined by the particular 
experimental goals and the budget of a study. 

We also note that overlapping sense/anti-sense gene annotations can potentially confuse the 
poly(A) tail calls. Using a strand-specific RNA-seq protocol should help mitigate this issue. 

Surveying 15 human cell lines, the ENCODE study reports a total of 128,824 poly(A) sites 
mapping within annotated Gencode transcripts [30]. This observation puts the average number of 
polydenylation sites in this dataset to 2.5 per gene. Interestingly, before this landmark publication, 
the APA multiplicity was estimated to be around 1.1. Our analysis of RNA-seq data from three 
ENCODE cell lines (APA per gene statistics in Table 2) are in agreement with this ENCODE 
estimate. 

There is a growing appreciation of 3’ UTRs, their molecular assembly, mechanistic roles and 
variants [9-15]. Many of these studies developed novel wet lab techniques to build specialized 
sequencing libraries, and applied them to interrogate a particular biological condition.  



 

KLEAT offers an alternative analysis method to characterize 3’ UTRs and APA from RNA-
seq data at a nucleotide scale resolution. We anticipate the tool to be an enabling technology for 
many applications, including large-scale disease studies and clinical genomics, and to provide 
added value to the large volume of sequencing data already generated using the data type. KLEAT 
is available at www.bcgsc.ca/platform/bioinfo/software, and is offered free for academic use. 
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