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Gene-environment (G×E) interactions are biologically important for a wide range of environmental
exposures and clinical outcomes. Because of the large number of potential interactions in genome-
wide association data, the standard approach fits one model per G×E interaction with multiple
hypothesis correction (MHC) used to control the type I error rate. Although sometimes effective,
using one model per candidate G×E interaction test has two important limitations: low power
due to MHC and omitted variable bias. To avoid the coefficient estimation bias associated with
independent models, researchers have used penalized regression methods to jointly test all main
effects and interactions in a single regression model. Although penalized regression supports joint
analysis of all interactions, can be used with hierarchical constraints, and offers excellent predictive
performance, it cannot assess the statistical significance of G×E interactions or compute meaningful
estimates of effect size. To address the challenge of low power, researchers have separately explored
screening-testing, or two-stage, methods in which the set of potential G×E interactions is first
filtered and then tested for interactions with MHC only applied to the tests actually performed
in the second stage. Although two-stage methods are statistically valid and effective at improving
power, they still test multiple separate models and so are impacted by MHC and biased coefficient
estimation. To remedy the challenges of both poor power and omitted variable bias encountered
with traditional G×E interaction detection methods, we propose a novel approach that combines
elements of screening-testing and hierarchical penalized regression. Specifically, our proposed method
uses, in the first stage, an elastic net-penalized multiple logistic regression model to jointly estimate
either the marginal association filter statistic or the gene-environment correlation filter statistic for
all candidate genetic markers. In the second stage, a single multiple logistic regression model is
used to jointly assess marginal terms and G×E interactions for all genetic markers that pass the
first stage filter. A single likelihood-ratio test is used to determine whether any of the interactions
are statistically significant. We demonstrate the efficacy of our method relative to alternative G×E
detection methods on a bladder cancer data set.

1. Introduction

A significant body of recent research in the statistical genetics and genetic epidemiology
communities has focused on the detection of statistical interactions between genetic markers
and environmental variables (G×E interactions) using genome-wide association (GWA) data.1



Such data sets are comprised by the measurements of thousands to over one million genetic
markers, typically single nucleotide polymorphisms (SNPs), along with relevant clinical and
environmental variables on a set of human subjects that number in the thousands to hundreds-
of-thousands for large GWA studies. Since the number genetic markers, and therefore the
number of potential G×E interactions for a single environmental variable, is usually larger than
the number of subjects, statistical testing of G×E interactions has typically been accomplished
by fitting separate models for each genetic marker and applying multiple hypothesis correction
(MHC) to the generated p-values to control the type I error rate. Although a G×E interaction
can be defined as a departure from additivity on either a log odds or absolute risk scale,
we focus on the former type of interaction in this paper. Statistically, such an interaction is
commonly tested using a logistic regression model of the form:

logit(P (D = 1|G,E)) = β0 + βEE + βGG+ βGEGE (1)

where D is a binary outcome variable, E is the environmental variable and G is one of the ge-
netic markers. In this paper, we assume that both D and E are binary, e.g., disease case/control
status and exposed/non-exposed indicator, and that G represents a SNP specified using addi-
tive coding, i.e., 0, 1 or 2 based on the number of copies of the minor allele. Using this model,
the null hypothesis of no G×E interaction on a log odds scale can be specified as H0 : βGE = 0

with significance tested via either a Wald test associated with β̂3 or a likelihood ratio test.
Variations on this basic approach that also use one model per potential G×E interaction in-
clude the case-only gene-environment association test, the test of marginal association and
the combined test of marginal gene association and G×E interaction.2

Although methods that test a separate model for each potential G×E interaction (so-called
one-step methods) are easy to understand, simple to implement and can, in many instances,
identify biologically plausible interactions, they have two serious drawbacks. First, the power
to detect G×E interactions, already much lower than the power to detect main effects at a
given sample size,3 is severely degraded for even a moderate number of genetic markers due to
the requirement for MHC to control the type I error rate across the separate models. Second,
because each interaction is assessed independently, the estimated interaction coefficients will
be biased if associations exist between the genetic markers.

To address the poor statistical power of standard one-step methods, researchers have re-
cently explored two-stage, or screening-testing, methods.4–9 Screening-testing methods first
filter the set of candidate genetic markers and, for the markers that pass the first stage filter,
test G×E interactions. As long as the statistic used to filter the genetic markers in the first
stage is statistically independent of the second stage test statistic under the null hypothesis,
type I error rates will be correctly controlled with MHC applied to just the smaller number
of hypotheses that pass the first stage filter.7,10 Two popular independent filters for G×E
interaction detection are the marginal association filter4 and the gene-environment correla-
tion filter.5 The marginal association filter measures the statistical association between the
outcome variable and the genetic marker using a logistic regression model of the form:

logit(P (D = 1|G)) = β0 + βGG (2)

where the filter statistic is the p-value associated with the β̂1 coefficient estimate. The gene-



environment correlation filter measures the statistical association between the environmental
variable and each genetic marker using a logistic regression model of the form:

logit(P (E = 1|G)) = β0 + βGG (3)

This is the same model used with the case-only gene-environment association test for G×E
interaction, but fit, for the correlation filter, using pooled cases and controls instead of just
cases. Similar to the marginal association filter, the correlation filter uses the p-value associated
with the β̂G coefficient estimate as a filter statistic. To be effective at improving power, a
filter statistic must not only be independent of the second stage test statistic under the
null hypothesis, but must also be associated with the test statistic under the alternative
hypothesis of G×E interaction. While the first requirement has been proven for both the
marginal association and correlation filter statistics in the context of G×E interaction detection
using logistic regression models of the form in equation 1,7 there is no guarantee that the
second requirement will hold for the data set under analysis. For some data sets, the marginal
association filter will be optimal, for others the correlation filter will perform best and success
has been reported using an ensemble of both filter types, e.g., the cocktail method.8 Although
current screening-testing methods can be effective at improving G×E detection power, the fact
that these methods use separate models for each candidate genetic marker during both the
filter and testing stages means that both MHC correction and omitted variable bias remain
issues. For data sets with small sample-to-marker or signal-to-noise ratios, even the reduced
MHC penalty after filtering is sufficient to negate G×E detection power.

Another recently developed approach to G×E interaction detection involves the use of
penalized regression to jointly estimate all possible G×E interactions as well as main effects
in a single model. Such penalization approaches typically enforce a hierarchical constraint
that will only consider interaction terms for significant main effects. Many variations of the
joint penalized model approach exist, including the hierarchical LASSO by Bien et al.,11

the penalized hierarchical approach of Liu et al.,12 the progressive hierarchical penalization
approach of Zhu et al.,13 the multi-stage LASSO method of Wu et al.14 and approaches
that fit a single LASSO-penalized model with all possible marginal and interaction terms
(termed all-pairs LASSO (APL) by Bien et al.)11 The approach of Wu et al.14 is especially
relevant since it employs a LASSO penalized multiple logistic regression model in the first
stage to filter genetic markers based on marginal association and then tests for interactions
in a second stage model. The fact that Wu et al. use LASSO penalization in the second stage
model, however, means that their approach cannot generate valid measures of interaction
statistical significance and is therefore not a valid screening-testing method. Also, Wu et
al. focus on gene-gene as opposed to gene-environment interactions. Methods that fit a single
penalized model have the significant benefit of jointly estimating all potential G×E interactions
along with marginal gene and environmental effects and can therefore be very effective for
prediction; however, the shrunken coefficients may be severely biased with unclear statistical
significance. Although some authors, e.g. Wu et al.,14 advocate refitting a non-penalized model
for just the interaction terms with non-zero coefficients in the penalized model to generate
more meaningful coefficients and measures of statistical significance, this approach fails to
account for the prior penalized selection process and thus cannot correctly compute statistical



significance or interaction effect size.
To address the limitations of inadequate power and biased coefficient estimation associated

with one-step approaches, we have developed a novel G×E interaction detection method that
combines aspects of screening-testing with hierarchical penalized regression. In the first stage,
our approach uses a single elastic net-penalized multiple logistic regression model to jointly
estimate either the marginal association filter statistic or the gene-environment correlation
filter statistic for all candidate genetic markers. In the second stage, a single multiple logistic
regression model is used to jointly assess marginal effects and G×E interactions for all genetic
markers that pass the first stage filter. An important feature of our approach is that a single
omnibus test can be used to detect the presence of statistically significant G×E interactions.
As we demonstrate using a bladder cancer genotype data set with smoking status as the
environmental variable, our method provides the statistical benefits of joint estimation along
with significantly improved G×E detection power relative to competing approaches.

2. Methods

2.1. Proposed screening-testing method for G×E interaction detection

2.1.1. Screening stage

Our approach filters the set of measured genetic markers using a penalized multiple logistic
regression model that jointly computes a filter statistic, either the marginal association filter4

or the gene-environment correlation filter,5 for all measured genetic markers. For the marginal
association filter, a penalized multiple logistic regression model of the following form is used:

logit(P (D = 1|G)) = β0 + βG1
G1 + ...+ βGp

Gp (4)

This model is fit using an elastic net15 penalty via the glmnet R package implementation.16

This procedure computes coefficient estimates to maximize an objective function with both
L1, i.e., LASSO, and L2, i.e., ridge, penalties:
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n
+ λ(

1− α
2

p∑
i=1

β2Gi
+ α

p∑
i=1

|βGi
|) (5)

where the α coefficient is the elastic net mixing parameter (α = 1 corresponds to just LASSO
penalization and α = 0 corresponds to just ridge penalization). The elastic net penalty pa-
rameter λ can be selected according to cross-validation or to achieve a specific number of
non-zero coefficients. For the gene-environment correlation filter, a penalized multiple logistic
regression model of the following form is used:

logit(P (E = 1|G)) = β0 + βG1
G1 + ...+ βGp

Gp (6)

Modeling fitting in this case follows the same approach used for the model in equation 4.

2.1.2. Testing stage

To test for G×E interactions, a single multiple logistic regression model is fit using marginal
and interaction terms for all genetic markers selected during the screening stage:



logit(P (D = 1|G,E)) = β0 + βEE + βG1
G1 + ...+ βGp

Gp + βG1EG1E + ...+ βGpEGpE (7)

If desired, covariates can also be included in this model. To determine if any of the G×E
interaction coefficients are statistically significant, the null hypothesis H0 : βG1E = ... = βGpE =

0 is tested using a LR test between a version of the model in equation 7 without the interaction
terms and the model with interaction terms. If p-value from this LR test is significant, this
indicates that at least one of the G×E interaction coefficients is significantly non-zero. The
interactions can then be prioritized for further investigation based on the estimated interaction
coefficient size and the associated Wald test p-values, perhaps after MHC. If the p-value from
this LR test is not significant, no further investigation is performed.

If only one of the two supported filter statistics is used during the first stage, then the model
in equation 7 is fit just a single time and only one LR test is performed to detect potential
G×E interactions. If both filters are applied, the model in equation 7 is fit separately using the
output from each filter, LR tests are performed on both models and the generated p-values
are adjusted via the Bonferroni method, i.e., 2*p-value. If neither model has a significant LR
p-value after MHC, no further investigation is performed, otherwise, the model with the most
significant LR test result is used.

Although an ensemble approach, similar to the cocktail method,8 could be adopted that
combines the results from the marginal association and gene-environment correlation filters
to build a single stage two model, such an approach would eliminate a key benefit of filtering
based on a single penalized regression model, namely the reduction of multi-collinearities.
Because the marginal association and gene-environment correlation models would be estimated
separately, each model could identify genetic markers highly correlated with the predictors
output by the other model, resulting in estimation instability for the second stage multiple
logistic regression model.

2.1.3. Interpretation

Because the coefficients in a multiple logistic regression model with interaction terms represent
conditional effects on the log-odds of the outcome variable, they do not have a straight-forward
interpretation. This complex, conditional interpretation can be seen as a disadvantage of the
proposed approach relative to separate logistic regression models for each interaction. Specif-
ically, the effect size of each interaction term must be evaluated by considering the estimated
coefficients for both the Gi predictor and the GiE predictor. To be precise, the change in the
log odds of the outcome per change in the number of minor allele copies (assuming additive
coding) when there is no environmental exposure and all other predictors are held constant is
represented by the estimated coefficient for the Gi predictor and the change in the log odds of
the outcome per change in the number of minor allele copies when there is environmental ex-
posure is represented by the sum of the estimated coefficients for the Gi and GiE predictors.
In more simplified terms, the estimated coefficient for the GiE predictor reflects increased
risk of disease for environmentally exposed individuals who carry the risk allele compared to
unexposed risk allele carriers.



2.2. Bladder cancer data

We analyzed genetic variation in hypothesized cancer susceptibility genes and cigarette smok-
ing in a population-based case-control study of bladder cancer. Detailed methods have been
described previously in Karagas et al.17 and Andrew et al.18 Briefly, the cases were New Hamp-
shire residents of ages 25 to 74 years, diagnosed with bladder cancer from July 1, 1994 to June
30, 2001 identified via the New Hampshire State Cancer Registry. Controls less than 65 years
of age were selected using population lists obtained from the New Hampshire Department of
Transportation, while controls aged 65 and older were chosen from data provided by the Cen-
ters for Medicare & Medicaid Services (CMS) of New Hampshire. The overwhelming majority
(∼ 98%) of the subjects were of Caucasian origin. Given the large proportion of Caucasian
subjects, population structure should not be an issue for this data set, as confirmed in An-
drew et al.19 We interviewed a total of 857 patients with bladder cancer, which was 85% of
the cases confirmed to be eligible for the study, and 1191 controls without cancer. Informed
consent was obtained from each participant and all procedures and study materials were ap-
proved by the Committee for the Protection of Human Subjects at Dartmouth College. DNA
was isolated from peripheral circulating blood lymphocyte or buccal specimens using Qiagen
genomic DNA extraction kits (QIAGEN Inc., Valencia, CA). Genotyping was performed on
all DNA samples of sufficient concentration using the GoldenGate Assay system (Illumina,
Inc., San Diego, CA). Out of the submitted samples, 99.5% were successfully genotyped, and
samples repeated on multiple plates yielded the same call for 99.9% of the SNPs.20 Excluding
subjects who did not have genotype calls for more than 50% of the SNPs, and one additional
case due to missing data on smoking status, resulted in 610 cases and 865 controls included
in our analysis. After removing SNPs with missing genotype values for more than 10% of the
1475 samples, we analyzed genotype data for a total of 1488 SNPs. Remaining missing geno-
type values in this dataset were imputed using a simple frequency-based approach in which
the missing value was set to the most common genotype in the study population. Genotyped
SNPs were mostly those included on the Illumina Cancer Panel, representing ≈ 400 hypoth-
esized cancer-related genes. SNPs were selected within coding, intronic and flanking regions
hypothesized to be potentially functional for the genes of interest, including a median of three
SNPs per gene.

2.3. G×E interaction detection for bladder cancer data

To support comparative evaluation of our proposed method using the bladder cancer data set
described above, potential G×E interactions between smoking status (recoded as never (0) or
ever (1)) and SNPs relative to bladder cancer case/control status were computed using the
proposed G×E interaction detection method and standard one-step and two-stage approaches.
Analysis details for each method are outlined in Sections 2.3.1-2.3.3 below. For all methods,
age and gender were included as covariates in the logistic regression models used to test for
G×E interactions, i.e., the models specified by equations 1 and 7.



2.3.1. One-step G×E interaction test for bladder cancer data

For each of the 1488 analyzed SNPs, a SNP-smoking interaction was tested using a separate
logistic regression model of the form specified in equation 1 above with MHC performed using
the false discovery rate (FDR) method of Benjamini and Hochberg.21

2.3.2. Standard two-stage G×E interaction test for bladder cancer data

The 1488 analyzed SNPs were first filtered using either the marginal association filter statistic,
as computed via the logistic regression model in equation 2, or the gene-environment correla-
tion filter statistic, as computed via the logistic regression model in equation 3. So that the
results from the two-stage method would be comparable to those generated by our proposed
G×E detection method, the number of SNPs retained after the first stage filtering was fixed
at the same number used for the proposed method (103 SNPs, see Section 2.3.3 below). For
the SNPs that passed the first stage filter, the presence of a SNP-smoking interaction was
tested using the same logistic regression model and MHC method employed for the one-step
G×E test.

2.3.3. Proposed G×E interaction detection method for bladder cancer data

The screening-testing approach outlined in Section 2.1 above was executed on the bladder can-
cer data using both the marginal association filter and the gene-environment correlation filter.
For each filter, the screening stage penalized logistic regression model was fit with the elastic
net mixing parameter α set to .999 to provide estimation stability via a small L2 penalty16

and the λ penalty parameter was set to achieve a ratio of observations-to-predictors in the
unpenalized stage 2 model of 7 (the middle of the 5-to-9 recommended by Vittinghoff and
McCulloch for multiple logistic regression22). For the 1475 analyzed subjects, the observations-
to-predictors ratio of 7 allowed approximately 103 SNPs to be kept after screening with cor-
responding λ values of 0.0112 and 0.0118 for the gene-environment correlation and marginal
association filters, respectively.

3. Results

3.1. One-step G×E interaction test results

Table 1 shows the ten most significant smoking-SNP interactions computed via the one-step
method detailed in Section 2.3.1. The β̂GE values in the table represent the estimated interac-
tion term coefficients from the logistic regression model specified in equation 1 with age and
gender as covariates. The p-values were generated via a LR test comparing a model without
the G×E term to the model with the G×E term and the false discovery rate (FDR) values
were generated for all p-values using the method of Benjamini and Hochberg.21 Although some
of the interaction LR p-values appear significant, after MHC to control the FDR, all findings
appear consistent with H0. In addition to the poor power after MHC, half of the top ten
interactions returned by the one-step method involve highly correlated SNPs from the same
gene, MASP1; a direct result of testing each interaction in a separate regression model.



Table 1. Ten most significant smoking-SNP interac-
tions computed using the standard one-step method.

dbSNP ID Gene name β̂GE LR p-val FDR
rs12635264 MASP1 -0.604 0.00142 0.848
rs13089330 MASP1 -0.596 0.00165 0.848
rs13094773 MASP1 -0.556 0.00332 0.848
rs2972418 GHR -0.519 0.00383 0.848
rs9282553 ABCA6 -1.07 0.00419 0.848
rs3864099 MASP1 -0.541 0.00437 0.848
rs4376034 MASP1 -0.536 0.00447 0.848
rs3213216 IGF2 0.585 0.00457 0.848
rs3217773 CCNA2 0.6 0.0056 0.848
rs2229765 IGF1R 0.497 0.00589 0.848

3.2. Standard two-stage G×E interaction test results

Table 2. Ten most significant smoking-SNP interactions computed via the standard two-stage G×E detection
method using either a marginal association filter or a gene-environment correlation filter.

Marginal association filter G-E correlation filter

dbSNP ID Gene name β̂GE LR p-val FDR dbSNP ID Gene name β̂GE LR p-val FDR
rs2233679 PIN1 -0.381 0.0463 0.87 rs6347 SLC6A3 0.512 0.0219 0.983
rs2266690 CCNH -0.376 0.0585 0.87 rs4696480 TLR2 -0.418 0.0255 0.983
rs5923 LCAT -0.774 0.0711 0.87 rs1126667 ALOX12 -0.356 0.0492 0.983
rs3755557 GSK3B -0.375 0.0776 0.87 rs1127717 FTHFD 0.442 0.0644 0.983
rs1799802 ERCC4 -0.652 0.101 0.87 rs2855262 SOD3 -0.354 0.0656 0.983
rs3937387 BZRP 0.27 0.144 0.87 rs998074 IGF2R 0.309 0.0947 0.983
rs1051740 EPHX1 0.298 0.153 0.87 rs7921327 AKR1C3 0.327 0.0983 0.983
rs5742926 PMS1 -0.362 0.154 0.87 rs676387 HSD17B1 -0.34 0.1 0.983
rs12801239 KIRREL3 0.272 0.167 0.87 rs998075 IGF2R 0.298 0.107 0.983
rs3448 GPX1 -0.277 0.187 0.87 rs4817027 BIC -0.341 0.111 0.983

Table 2 displays the ten most significant smoking-SNP interactions computed via the standard
two-stage method using either a marginal association filter or a gene-environment correlation
filter, as detailed in Section 2.3.2. In this case, the top ten interactions returned by the two
filters are completely disjoint. Although the first stage filter reduced the number of smoking-
SNP interactions tested via logistic regression models from the 1488 examined by the one-step
method to only 103, none of the results appear significant after MHC. In fact, the top un-
corrected p-values after filtering, although independently significant, are substantially higher
than the top uncorrected p-values found when all SNPs are tested via the one-step approach,
indicating that there is only a weak correlation between the two filter statistics and G×E
interaction (as tested using logistic regression models of the form in equation 1) for this data
set under the alternate hypothesis of G×E interaction.

3.3. Proposed G×E interaction detection method results

Table 3 shows the significant smoking-SNP interactions computed using the proposed method,
as detailed in Section 2.3.3. Specifically, the table includes interactions whose Wald test p-



Table 3. Smoking-SNP interactions computed via the proposed G×E detection method with Wald test p-values for
the estimated interaction coefficients in the test stage multiple logistic regression model below 0.05. LR test p-values
are the Bonferroni-corrected p-values from a likelihood ratio test comparing a test stage model without interaction
terms to a model with interaction terms.

Marginal association filter G-E correlation filter
Corrected LR p-value: 0.174 Corrected LR p-value: 0.022

dbSNP ID Gene name β̂GE Wald p-val FDR dbSNP ID Gene name β̂GE Wald p-val FDR
rs2233679 PIN1 -1.69 0.00102 0.108 rs3213223 IGF2 -1.21 0.00103 0.0585
rs26279 MSH3 1.49 0.0021 0.111 rs2266690 CCNH -1.06 0.00118 0.0585
rs1584415 na -0.978 0.00703 0.18 rs861539 XRCC3 0.906 0.00169 0.0585
rs9642880 CASC11 -1.08 0.0095 0.18 rs1381841 GSK3B -1.26 0.00238 0.062
rs698090 MASP1 0.969 0.0111 0.18 rs4696480 TLR2 -0.596 0.018 0.294
rs8173 STK6 -1.12 0.0112 0.18 rs2877796 RGS6 -0.598 0.0194 0.294
rs4986765 BRIP1 -1.01 0.0119 0.18 rs113515 TSPO 0.592 0.0198 0.294
rs2676530 HSD17B1 -0.883 0.0176 0.233 rs7921327 AKR1C3 0.616 0.0234 0.304
rs760589 OPRD1 -0.872 0.0224 0.253 rs4619 IGFBP1 -0.553 0.03 0.337
rs4988340 BRIP1 -0.846 0.0278 0.253 rs869975 GPX3 -1.28 0.0324 0.337
rs3740066 ABCC2 0.744 0.0284 0.253 rs1059519 GDF15 0.636 0.0378 0.343
rs13167280 TERT -1.12 0.0287 0.253 rs2233679 PIN1 -0.543 0.0403 0.343
rs8037 KRT23 0.763 0.0351 0.286 rs1126667 ALOX12 -0.498 0.0458 0.343
rs3847862 CELA1 -0.699 0.0465 0.324 rs6347 SLC6A3 0.625 0.0465 0.343
rs1650697 MSH3 -0.944 0.0499 0.324 rs872072 TEP1 0.5 0.0495 0.343

values for the estimated interaction coefficients in the test stage model specified in equation 7
are below 0.05. The corresponding FDR value was computed for the family of Wald tests on
all interaction coefficients. The second stage model was fit for the genetic markers generated
using both the marginal association filter (equation 4) and the gene-environment correlation
filter (equation 6) screening stage models. Similar to the results from the standard two-stage
method, the marginal association and gene-environment correlation filters generate largely
independent sets of smoking-SNP interactions. In both cases, the presence of smoking-SNP
interactions in the test stage model was assessed using a LR test comparing the likelihood of
the model without interaction terms to the likelihood of the model with interaction terms.
Because LR tests were performed for both test stage models, a Bonferroni correction was
applied to each LR p-value. After MHC, only the LR test for the model fit using the 103 SNPs
output by the gene-environment correlation filter was significant (adjusted p-value=0.022). To
measure the quality of the SNPs in this significant second stage model, a Hardy Weinberg test
of equilibrium was performed among the controls, resulting in an average test p-value of 0.48.

Further investigation of the most significant smoking-SNP interactions from the test stage
model for the gene-environment correlation filter revealed several SNPs with prior evidence
of association with bladder cancer and/or smoking in independent populations, most notably,
a confirmed interaction between smoking and cyclin H (CCNH).23 SNPs in Toll-like receptor
2 (TLR2) increased overall bladder cancer risk, however, the smoking interaction was not
statistically significant in this smaller study.24 Variation in the regulator of G-protein signaling
6 (RGS6) reduced bladder cancer risk, with suggestion of an interaction with smoking.25 The
AKR1C3 association is consistent across several studies26,27 with a potential relationship with
smoking.28 Likewise, our TEP1 bladder cancer association,27 was independently confirmed.29



An interaction with smoking may explain some of the heterogeneity observed among prior
studies of the X-ray repair complementing defective in chinese hamster 3 (XRCC3) SNP.30

SLC6A3 variations lead to stress-induced cigarette craving.31 While data on SNP associations
are lacking, growth differentiation factor 15 (GDF15) is being promoted as a biomarker of
urothelial cell cancer.32 Insulin growth factor 2 (IGF2) is over-expressed in bladder tumors.33

4. Discussion

In this paper, we have detailed a novel approach for G×E interaction detection that com-
bines elements of screening-testing methods with hierarchical penalized regression. Similar
to existing screening-testing techniques, our approach first filters all measured genetic mark-
ers according to a filter statistic that is independent from the G×E test statistic under H0,
and, for the markers that pass the filter, performs a G×E interaction test. The key difference
between our approach and existing two-stage methods lies in the structure of the screening
and test stage models and the associated statistical G×E interaction tests. Whereas standard
two-stage methods fit a separate logistic regression model for each potential G×E interaction
in both the screening and testing stages, our method jointly evaluates all markers in a single
multiple logistic regression model during both the screening and test stages. Because the num-
ber of measured markers is typically much larger than the number of subjects, the screening
stage model must be fit using penalization and our approach employs an elastic net penalty
that combines L1 and L2 penalty terms.15 The use of penalized multiple logistic regression
enables either the marginal association filter statistic4 or the gene-environmental correlation
filter statistic5 to be jointly computed for all markers, and, because LASSO-penalization tends
to retain only one predictor from a set of correlated predictors,34 the set of terms with non-
zero coefficients will contain few significant collinearities. Generating a fairly small set of
high-quality candidate markers in the screening stage that is free from collinearities is critical
when attempting to fit a single unpenalized multiple logistic regression for these markers in
the test stage. Assessing G×E interactions in the test stage using a single multiple logistic
regression model, as opposed to separate models for each interaction, has two major benefits.
First, estimating coefficients jointly decreases the bias associated with omitted predictors in
regression. Second, and most importantly, fitting a single model for all markers that pass the
screening stage enables the use of a single omnibus test to assess whether any statistically
significant G×E interactions exist. Use of just one statistical test completely eliminates the
penalty of MHC on power for basic G×E interaction detection. If the number of markers kept
after screening is relatively small and the filter statistic correctly retains those markers with
high likelihood of being in a G×E interaction, it is quite reasonable to limit inference to a
single omnibus test. Wald test p-values and effect size estimates are then used to prioritize the
interactions for further investigation and experimental validation. In situations with sample
size constraints or poor data quality, a single omnibus test on a filtered set of markers may in
fact be the only adequately powered test of G×E interactions.

The benefits of our proposed method relative to standard approaches are clearly demon-
strated by the analysis of the bladder cancer data set for smoking-SNP interactions. Neither
the one-step nor the standard two-stage methods were able to find any statistically significant



smoking-SNP interactions after MHC. The inability of the one-step and two-stage methods
to identify significant interactions mirrors the results from other investigations into smoking-
SNP interactions relative to bladder cancer, such as the recent study by Figueroa et al.35 that
failed to find significant additive or multiplicative interactions after MHC using a one-step
analysis. Our proposed method, on the other hand, successfully found evidence of statistically
significant interactions when using the gene-environment correlation filter, as evidenced by the
corrected LR test p-value of 0.022 and multiple interactions coefficients with Wald test FDR
values below 0.1. The significant interactions identified in this model have not been previously
discovered via statistical G×E interaction tests using this data set. A subsequent investigation
of this significant test stage model found biological support in the research literature for many
of the most significant smoking-SNP interactions.

Although our approach has important methodological and statistical benefits relative to
existing G×E interaction detection methods, there are some key limitations to note. First,
interpretation of interaction coefficients may be more difficult using a joint model than when
using separate models per interaction. Second, the use of an omnibus test just indicates that
at least one of the G×E interactions is significant, it does not specify which interaction; unless
MHC is applied to the Wald test p-values, these can be only be used for qualitative prioriti-
zation and not as strict measures of statistical significance. Finally, the evaluation detailed in
this paper was for a data set with a small number of markers; it will be important to assess how
well the method scales to genomic data sets measuring upwards of one million markers. For
such large data sets, the computational complexity of the elastic net implementation may be
a key constraint. In future work, it will important to test our approach on a diverse collection
of GWAS data sets for a range of different environmental exposures and outcome variables.

Acknowledgement

Funding: National Institutes of Health R01 grants LM010098, LM011360, LM009012,
EY022300, GM103506 and GM103534. Conflict of Interest: None declared.

References

1. D. J. Hunter, Nat Rev Genet 6, 287 (Apr 2005).
2. A. Ziegler and I. R. König, A statistical approach to genetic epidemiology, 2nd edn. (Wiley-VCH,

Weinheim, 2010).
3. D. Wahlsten, Behavioral and Brain Sciences 13, 109 (Mar 1990).
4. C. Kooperberg and M. Leblanc, Genet Epidemiol 32, 255 (Apr 2008).
5. C. E. Murcray, J. P. Lewinger and W. J. Gauderman, Am J Epidemiol 169, 219 (Jan 2009).
6. C. E. Murcray, J. P. Lewinger, D. V. Conti, D. C. Thomas and W. J. Gauderman, Genet

Epidemiol 35, 201 (Apr 2011).
7. J. Y. Dai, C. Kooperberg, M. Leblanc and R. L. Prentice, Biometrika 99, 929 (Dec 2012).
8. L. Hsu, S. Jiao, J. Y. Dai, C. Hutter, U. Peters and C. Kooperberg, Genet Epidemiol 36, 183

(Apr 2012).
9. J. Millstein, Front Genet 4, p. 306 (2013).

10. R. Bourgon, R. Gentleman and W. Huber, Proc Natl Acad Sci U S A 107, 9546 (May 2010).
11. J. Bien, J. Taylor and R. Tibshirani, The Annals of Statistics 41, 1111 (2013).



12. J. Liu, J. Huang, Y. Zhang, Q. Lan, N. Rothman, T. Zheng and S. Ma, Genomics 102, 189 (Oct
2013).

13. R. Zhu, H. Zhao and S. Ma, Genet Epidemiol 38, 353 (May 2014).
14. T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel and K. Lange, Bioinformatics 25, 714 (Mar 2009).
15. H. Zou and T. Hastie, Journal of the Royal Statistical Society. Series B (Statistical Methodology)

67, 301 (2005).
16. J. H. Friedman, T. Hastie and R. Tibshirani, Journal of Statistical Software 33, 1 (Feb 2010).
17. M. R. Karagas, T. D. Tosteson, J. Blum, J. S. Morris, J. A. Baron and B. Klaue, Environ Health

Perspect 106 Suppl 4, 1047 (Aug 1998).
18. A. S. Andrew, J. Gui, T. Hu, A. Wyszynski, C. J. Marsit, K. T. Kelsey, A. R. Schned, S. A.

Tanyos, E. M. Pendleton, R. M. Ekstrom, Z. Li, M. S. Zens, M. Borsuk, J. H. Moore and M. R.
Karagas, BJU International , n/a (2014).

19. A. S. Andrew, T. Hu, J. Gu, J. Gui, Y. Ye, C. J. Marsit, K. T. Kelsey, A. R. Schned, S. A.
Tanyos, E. M. Pendleton, R. A. Mason, E. V. Morlock, M. S. Zens, Z. Li, J. H. Moore, X. Wu
and M. R. Karagas, PLoS One 7, p. e51301 (2012).

20. A. S. Andrew, H. H. Nelson, K. T. Kelsey, J. H. Moore, A. C. Meng, D. P. Casella, T. D.
Tosteson, A. R. Schned and M. R. Karagas, Carcinogenesis 27, 1030 (May 2006).

21. Y. Benjamini and Y. Hochberg, Journal of the Royal Statistical Society. Series B (Statistical
Methodology) , 289 (1995).

22. E. Vittinghoff and C. E. McCulloch, Am J Epidemiol 165, 710 (Mar 2007).
23. M. Chen, A. M. Kamat, M. Huang, H. B. Grossman, C. P. Dinney, S. P. Lerner, X. Wu and

J. Gu, Carcinogenesis 28, 2160 (Oct 2007).
24. V. Singh, N. Srivastava, R. Kapoor and R. D. Mittal, Arch Med Res 44, 54 (Jan 2013).
25. D. M. Berman, Y. Wang, Z. Liu, Q. Dong, L.-A. Burke, L. A. Liotta, R. Fisher and X. Wu,

Cancer Res 64, 6820 (Sep 2004).
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