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The ability to rapidly sequence the tumor and germline DNA of an individual holds the eventual
promise of revolutionizing our ability to match targeted therapies to tumors harboring the associated
genetic biomarkers. Analyzing high throughput genomic data consisting of millions of base pairs
and discovering alterations in clinically actionable genes in a structured and real time manner is
at the crux of personalized testing. This requires a computational architecture that can monitor
and track a system within a regulated environment as terabytes of data are reduced to a small
number of therapeutically relevant variants, delivered as a diagnostic laboratory developed test.
These high complexity assays require data structures that enable real-time and retrospective ad-hoc
analysis, with a capability of updating to keep up with the rapidly changing genomic and therapeutic
options, all under a regulated environment that is relevant under both CMS and FDA depending on
application. We describe a flexible computational framework that uses a paired tumor/normal sample
allowing for complete analysis and reporting in approximately 24 hours, providing identification of
single nucleotide changes, small insertions and deletions, chromosomal rearrangements, gene fusions
and gene expression with positive predictive values over 90%. In this paper we present the challenges
in integrating clinical, genomic and annotation databases to provide interpreted draft reports which
we utilize within ongoing clinical research protocols. We demonstrate the need to retire from existing
performance measurements of accuracy and specificity and measure metrics that are meaningful to
a genomic diagnostic environment. This paper presents a three-tier infrastructure that is currently
being used to analyze an individual genome and provide available therapeutic options via a clinical
report. Our framework utilizes a non-relational variant-centric database that is scaleable to a large
amount of data and addresses the challenges and limitations of a relational database system. Our
system is continuously monitored via multiple trackers each catering differently to the diversity
of users involved in this process. These trackers designed in analytics web-app framework provide
status updates for an individual sample accurate to a few minutes. In this paper, we also present
our outcome delivery process that is designed and delivered adhering to the standards defined by
various regulation agencies involved in clinical genomic testing.
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1. Introduction

Cancer onset and progression leads to a variety of genomic events such as chromosomal aber-
rations and genomic mutations. Cancer develops through a stochastic process that produces
cellular heterogeneity and structural complexity of the cellular genome. New advances in the
depth and dimensionality of tumor profiling through the use of Next Generation Sequencing
(NGS) have emphasized that there are in fact an under-appreciated number of acquired ge-
netic changes and aberrations in cancer genomes that show clonal evidence of being selected.
While the function of many of the mutations within a cancer are unknown and may represent
passenger events, a subset of these are possibly biologically relevant and therapeutically ac-
tionable. Coupled with this knowledge and the ability to sequence a patient’s genome within
a clinically relevant timeframe, there is an increasing desire to utilize this vast amount data
for patient care at an individual level.

National Cancer Institute lists hundred’s of FDA approved targeted therapies which is
further supplemented as an even larger number of therapies still under clinical investigation.
Most notably, the BRAF inhibitors approved by FDA have demonstrated clinical response in
patients with BRAF mutations.1 More recently within our and collaborating research proto-
cols, therapies targeting genomic events like FGFR fusions in Cholangiocarcinoma2 and EGFR
mutations in Lung cancer3 have shown promising results and in some cases suggested that
these targeted therapies instead of chemotherapy may be the best choice of treatment.

Studies to date are largely limited in scope, suffer from small numbers of patients, or
therapeutic options, or lack the randomization or prospective design necessary to provide an
unbiased assessment. One could critique that inability to access therapeutic drugs recom-
mended by a group of experts (often termed a tumor board), or may indicate investigational
agents only available through other trials. Determining the effectiveness of using genomics to
inform therapy selection is the subject of numerous research studies, including several studies
at the Translational Genomics Research Institute that have driven the development of data
analytics pipeline achieving both technical, regulatory, and clinical goals. The pipelines we
describe largely originate from two multi-year studies. The first is a study of the feasibility
of using molecular-guided therapy for patients with BRAF wild-type metastatic melanoma
(BRAFwt MM) as part of the Stand Up To Cancer Melanoma Dream Team. Detailed in
other publications in preparation, the inclusion of investigational agents within the pharma-
copeia (or compendium of drugs that could be indicated within a report), our pipeline was
developed both to satisfy requirements within a laboratory developed test (LDT), regulated
under the Center for Medicaid Services(CMS), as well as the Food and Drug Administration
(FDA).4 The second is a study of glioblastoma funded under the Ivy Foundation facilitating
the development of the engine of rules identifying therapeutic options within this study.

As these examples show, the framework and mindset in code development for flexible
platforms is regulated under multiple agencies. CMS regulates all laboratory testing (except
research) performed on humans in the U.S. through the Clinical Laboratory Improvement
Amendments (CLIA).5 Particularly in the case of clinical research trials that impact care
of patients, the FDA also provides regulatory oversite. Providing a framework that provides
analytical validity for both FDA and CMS, requires understanding that precision, specificity,
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sensitivity, reproducibility, repeatability be characterized with datasets that are often gener-
ated under a variety of conditions and truly characterizes the limits of detection. Understand-
ing the regulatory environment is changing two involve multiple agencies, requires additional
diligence with pipeline reporting, such critically as the ability to provide negative calls. For
example traditional uses of the VCF format do not provide negative calls, and the ability to
understand both false positives and false negatives is an increasing requirement for a field
where the VCF specification could fall short. For example, there should not be ambiguity
about where the lack of a variant is a ’no call’ or a ’negative for BRAF 600V/E” below 0.01

The challenges of conducting trials and research in personalized genomics is elevated by
the fact that next-generation sequencing data analysis requires intensive computational pro-
cessing.6 Effectiveness requires proper versioning, rapid turnaround, and reasonable disk re-
quirements. A major aspect is whether the platform allows for implementing improvements
and proper versioning within a clinical validated setting. Thus a CLIA certified lab needs to
be equipped with high performance computers with additional security layers that can expe-
dite genomic analysis. Additionally, interpretation of the findings requires accessing several
genomic databases for annotations, pharmaceutical databases to gather gene-to-drug relations
and tie in these databases to provide a clear and concise report.

Annotations and drug-gene matching process needs to be continually updated to include
newly discovered variants and drug-gene matches. Further, tumor specific transcript variants
exist and may require additional methods for detections and reporting. For instance, the
EGFRvIII variant that has been reported in 30-40% of highly aggressive glioblastomas7 is not
available in most annotations and thus cannot be detected via usual methods.

In the following sections we provide an overview of the TGen Personal Genomics System
and describe the framework that is being used for genomic testing and data delivery.

2. System Layout for Facilitating Clinical Research Trails in Personalized
Genomics

The system developed to support a wide variety of clinical research trails for biopsy to report
monitoring, tracking, and clinical reporting is a dynamic and flexible analysis framework
which integrates genome and transcriptome sequencing data to inform interpretation of next-
generation sequencing data on samples, specifically developed for cancer genomics. Our current
platform is being utilized within a CLIA lab and has also been utilized under FDA within
larger protocols. An overview is provided in Figure 1, which builds on stages supported by
layers.

2.1. Overview of Stages Going From Consent to Report

The stages all begin with the patient and the doctor, who enroll and consent patients and
provide a biopsy and/or blood draw to our clinical laboratory. This first stage is supported
by a patient-centric custom-built clinical data portal. These portals and database described
later in section 2.3 collect encoded, predefined non-public health information (PHI) for each
patient. The second stage is specimen processing and accessioning whereby the specimens
are evaluated for suitability and DNA/RNA analyte is isolated. Each step is managed by a
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Fig. 1. Data Flow depicting the three layers of our system showcase the flow of samples from the clinic to
sequencing and analysis. Finally, an interpretive report is sent back to the clinic

FileMaker Pro128 relational database. The third stage is library preparation and sequencing,
again supported by a FileMaker Pro database which collects both images and data. As the
Illumina 2500 sequencer writes to a shared disk system, data is collected into the relational
database. The fourth stage is analysis and reporting, which is a framework built around
(1) standardized file formats, (2) multiple quality control checks, (3) automated processing,
(4) scheduled re- leases of sequence data, sequencing alignments, and variant calls, and (5)
centralized primary data processing. As variants are generated, they are placed into a NoSQL
database utilizing a document primary key as a ′biomarker′ .

Our framework is compatible with most external programs by plugging into allowing us
to use the best tools and never be obligated to one tool, or feel required to develop an en-
tire pipeline from scratch when components may be added according to their license agree-
ments. Currently, we use external open-source style tools for mapping whereas the rest of
the pipeline is largely built on internally developed software. As other groups develop muta-
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tion detection tools, our framework will be compatible because of design. Our personalized
medicine framework is a modular-based standard driven framework built to allow flexibility
of adding/swapping out component analysis programs rapidly. It functions currently on Dell
blade systems or appliances though are portable to other Unix-based environments. Funda-
mentally, many aspects are coded with map-reduce in mind allowing eventual porting to other
frameworks. Component programs do not have to be proprietary, and thus other tools may
be added if shown to be effective at identifying variants. It is optimized for oncology or can-
cer, though expandable to other areas such as neurological diseases. Current implementation
is within a Torque-style queuing system common to many computing environments whereby
jobs are monitored using background processes such that samples flow in an automated fashion
to generation of reports.

2.2. User Input Layers

User interfaces are developed with the understanding they support trials at early stages which
require prototyping by lab staff and clinical teams in an iterative manner before fixing for
validation in use in a trial. User interaction happens at two levels: i) Clinical Data Portal and
ii) Laboratory Data.

• Clinical Portal: The User Layer provides user interfaces to interact with the
databases, extract reports and track information. To provide the flexibility for the
research trials, pragmatic open source solutions are used, recognizing they are not nec-
essarily appropriate for production clinical environments that are in open networks.
Pragmatically, portals for clinical data are designed in WordPressTM , a PHP manage-
ment system tied in with an additional layer of security. WordPress utilizes extensive
plugin framework that allows for easy addition and removal of features. The Clinical
Data Portal ( fields as shown in Table 1) are paired with their genomic counterpart for
tumor board presentation.

• Laboratory Data Frontend: Laboratory and Sequencing data is entered in a user
friendly FileMaker Pro database8 described in section 2.3. FileMaker Pro′s flexible and
user friendly framework provides ease to handle the massive amount of data that is
generated during sequencing.

2.3. Database/Analysis Layer

NGS technologies provide a high-resolution and high- throughput approach to identify indi-
vidual nucleotide bases from DNA samples. The goal of the NGS bioinformatics pipeline is to
identify germline and somatic genetic variants events from tumor/normal pairs at the genomic
(DNA) level, including coding point mutations and small insertions/deletions, copy number
changes, and structural events (intra-chromosomal rearrangements and translocations).

An overview of the Analysis Workflow is provided in Figure 1. Briefly, each flowcell con-
tains up to 4 tumor/normal pairs with an obligate reference control barcoded according to
Illumina specifications (the control is described in detail in the Protocol section). Data is writ-
ten from the HiSeq2500 to the scratch portion of a server in the form of BCL folders within the
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Table 1. Clinical Data Portal: An example list of fields collected in the clinical data portal. Columns
indicate sections in the portal and rows correspond to the fields within each section.*This is collected
for all professions of the disease.

PatientSummary PrimaryDx ProgressiveDisease∗ CurrentPresentation

PatientIdentifier SpecimenSize SiteOfRecurrence ComorbidConditions
Date of Consent SatelliteNodules DateofRecurrance MenopausalStatus
PatientAge StageT ,N,M Surgery PreviousCancers
PatientRace Ulceration SurgeryResponse PriorTreatments
PatientEthnicity Mitoses SurgeryDate DrugAllergies
PatientGender ClarksLevel SurgeryType Medications
PatientSummary MutationBRAF/NRAS/CKIT RadiationLocation Physical Exam

LymphNodeInvolvement RadiationType Imaging/Radiology
IFNType/Cycle RadiationResponse WBC/ANC/AlkPhos
ClinicalTrialVaccine TreatmentofRecurrance Proteinuria

IlluminaRunFolders directory. An analysis run is triggered by the Clinical Laboratory Infor-
mation System (DCLIS); depositing files within the ConversionArea folder that is processed
into MergeSheets and SampleSheets. Using a queuing system and write FAIL/COMPLETED
system BCL folders/files are converted to FASTQ files (raw sequence) and aligned to the
genome using BWA-MEM9 followed by a standard best-practice cascade of variant calling
software tools.

Fig. 2. Percentage of CPU Times utilization listed for three different pipelines highlight the importance of
optimization. In the research pipeline, ”Mutect” which was not optimized took the largest chunk of CPU
hours. The middle chart display the CPU time distribution for the Interim Pipeline: germline variant caller
GATKUG caller was taking a large chunk of CPU hours, replacing it with Samtools significantly improved
turn-around time.

2.3.1. Databases

At the backbone of our infrastructure sits a database layer, which consists of annotation
databases, drug rule matching databases and clinical databases. Although, each database is
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built in a different environment to cater to its users, we aggregate the relative information so
it can be used for reporting and tracking.

• Sequencing Database Sequencing data is built in a user friendly FileMaker Pro
database.8 This relational database captures relations between ”Patients”, ”Samples”,
”Orders” and ”Sequencing Statistics”. FileMakerPro′s audit trail allows realtime track-
ing for document changes which are critical for a CLIA lab.

• Annotations Annotation is handled by committing sources of annotation into the
database (typically by first exporting a text copy of the public database), and then
performing an annotate action on the variant collection. The annotate action appends
additional fields to all variants that are in annotated regions. We chose to handle anno-
tation this way for two reasons: It allows for the natural retention of a ”snapshot” of the
annotation version that was used for the analysis. Many public variation databases are
frequently modified, and some do not follow a strict versioning scheme that uniquely
identifies a copy of the data. This can help with maintaining the repeatability of an
analysis. Databases of many forms can be represented easily. Inserting an annotation
as a field on a variant record allows us to create queries that use it. Solving the data
representation and access problem of modern sequencing helps sustains the progress
of genomics by a) using expert and analysis time more efficiently and b) by allowing
even small labs to perform complicated knowledge extraction from the abundance of
genotypic information that is available.

• Biomarker Database This database will integrate the disparate gene state annota-
tion data and compile all available genomic information to facilitate the efficient and
effective access for knowledge mining of the various dimensions of gene states. We will
also include genes that become evident only from integrated analysis of genome and
transcriptome analysis, such as a gene mapping to a large hemizygous deletion region
and contains an obviously inactivating frameshift or nonsense mutation in the retained
allele. In cases, where RNA data is present we integrate RNA Allele specific expression
for the variants.

• Statistics Database This is a project centric noSQL database that holds a sample’s
sequencing information and collects all statistics that are used in determining the
quality of the run. Statistics such as total bases aligned, mean target coverage help
decide the accuracy of the alignment. In addition, performance metrics are also collected
for each run, thus allowing analytics report generation (discussed in section /citerep).

• Drug Rule Matching We developed a conceptual framework for annotating the re-
lationships between genomic alterations and drug response. This drug-rule matching
algorithm identifies drug candidates for individual genomic alterations, including so-
matic mutations, indels, gene fusions, DNA copy number changes, and RNA expression
changes, based on literature-curated evidence within a structured framework. The pri-
mary annotation source is PubMed publications, with other information sources cap-
tured when appropriate. New drug-gene associations from the literature will be added
to the drug rule matching database through versioning.
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2.3.2. Genetic Variant Calling

Our framework uses tumor and constitutional sample for somatic variants. Several tools have
been developed to identify somatic events including Mutect,10 Strelka11 to identify somatic
mutations, GATK,12 samtools13 callers to identify germline variants. Figure 2.3 compares our
research pipeline, the interim production pipeline and production pipeline. Some software that
become bottlenecks were identified in the research and interim-production settings and were
optimized and/or replaced for realtime production.

2.4. Reporting and Analytics Layer

This layer allow end-users to interact with the framework at any given time point and generate
interim reports. This layer is also responsible of sample tracking, delivery and maintenance.

• Test Tracking: A Clinical Genomic test consists of multiple processes that start
with receiving the sample, followed by sample isolation, library preparation, sequenc-
ing, analysis and report generation. Users/Clients often are interested in tracking the
status of their samples to estimate progress or get a priori information. We provide
multiple trackers which are designed in JasperSoftTM , one such tracker depicted in
Figure 3 can only be visualized by authorized personnel authenticated using Jasper-
Soft’s authentication. JasperReports Server uses the Spring sub-project, Acegi Security,
for authentication and authorization.14

Fig. 3. An Internal Tracker provides information from sample receipt to final report generation. Each step
provides an internal ID and the number of days utilized. Total Active Time is color coded providing quick
information on the number of days since the sample receipt.

• Archiving: Every sample analyzed in the CLIA lab is encrypted and archived. Encryp-
tion is a slow process, thus archiving is run as a maintenance task. We use a two-level
gpg encryption using asymmetric keys, the top level encrypts the entire package and a
second layer of encryption is provided for documents that may contain patient-specific
data.

3. Validation

FDA and CMS require extensive testing for repeatability and reproducibility. Thus each flow-
cell contains tumor/normal pairs with a barcoded reference control COLO829.15 This reference
control is used to validate a flowcell by generating performance measures for a run. Reporting
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metrics is a challenge as we need to carefully consider the fact that traditional performance
metrics might not apply in a marker-positive framework.16 In Table 2, pre-production per-
formance metrics are reported on the full range. Genomic tests conducted on approximately
3 billion base pairs of the human genome return only a small number of variants. Thus for
these rare-events, the number of true negatives in the test will always be much larger than
the true positives or false negatives. Taking into consideration only the reportable range ad-
dresses the issues in production. Table 2 also bring into light that Accuracy and Sensitivity
(which are traditionally reported) might not be the best indicators of performance of a test
in a genomic framework. This is illustrated by two examples where specificity is > 99% and
sensitivity is at 50% in cases when the false positives are greater than true positives, whereas
Positive Predictive Values(PPV) reports more reliable numbers.

Table 2. Performance Metrics on preproduction COLO829, hypothetical examples and produc-
tion COLO829. Hypothetical examples indicate that sensitivity and specificity are not the best
indicators of performance.

Sample FN FP TN TP FDR Sensitivity Specificity PPV

PreCOLO829 1 14 119 53535119 116 50.64% 89.23% 99.99% 49.36%
PreCOLO829 2 27 101 53535129 101 50.00% 78.91% 100.00% 50.00%
PreCOLO829 3 2 17 12716974 14 54.84% 87.50% 100.00% 45.16%
PreCOLO829 4 2 18 12716973 14 56.25% 87.50% 100.00% 43.75%
PreCOLO829 5 2 19 12716972 14 57.58% 87.50% 100.00% 42.42%
PreCOLO829 6 2 16 12716975 14 53.33% 87.50% 100.00% 46.67%

Hypothetical 1 15 17 12716975 1 94.44% 6.25 99.99 5.56
Hypothetical 2 1 20 12716975 1 95.24% 50.00 99.99 54.31

ProdCOLO829 1 23 25 1000000 258 8.83% 91.81% 99.97% 91.17%
ProdCOLO829 2 33 33 1000000 248 11.74% 88.26% 99.98% 88.26%
ProdCOLO829 3 26 11 1000000 255 4.14% 90.75% 99.97% 95.86%
ProdCOLO829 4 28 16 1000000 253 5.95% 90.04% 99.97% 94.05%
ProdCOLO829 5 26 20 1000000 255 7.27% 90.75% 99.97% 92.73%
ProdCOLO829 6 25 22 1000000 256 7.91% 91.10% 99.97% 92.09%

3.1. Targeted Variant Detection

Personalized Genome Testing is a growing field with emergent need for tools that are more
focussed on actionable events. In this section, we illustrate with an example the need for
development of such new tools. Analyses indicated that 92 − 94% of human genes undergo
alternative splicing, 86% with a minor isoform frequency of 15% or more.17 EGFRvIII is
a functional and permanently activated mutation of the epidermal growth factor receptor
EGFR, a protein that contributes to cell growth and has been well validated as a target for
cancer therapy.18,19 Existing tools to detect isoforms presence using differential expression of a
test and control sample,20 these tools are quite promising but require much difficult to acquire
RNA-Seq control. Additionally, Cuflinks21 quantifies the transcript by read alignment and
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Sailfish22 provide expression levels for an isoform using an alignment-free approach. Table 3)
contains FPKM/RPKM values reported by Cuflinks and Sailfish. Intuitively, a high R/FPKM
value for this variant would imply its presence. In Table 3, GBM13 an experimentally validated
sample reported an FPKM 165.354, whereas GBM 7 with no evidence of EGFRvIII reported
an FPKM value of 820.109. Since these tools rely on the presence of reads in individual exons,
they lack to provide evidence of a contiguous segment that defines this particular isoform.
Thus R/FPKM values indicate the presence of reads across the whole region, as this region
is a subset of the wild-type EGFR, the R/FPKM values might be misleading. Following the
objective to detect the presence of variants (such as fusions, isoforms) we use a targeted de
Novo assembly approach focusing only on certain region of the genome. In a clinical setting
where only certain genes have actionable drugs, an approach to assemble and detect clinically
actionable variants seems suitable. We have used this approach in past to correctly detect
FGFR fusion.2 A Denovo assembler Trinity23 is used to assemble a region (a region is acquired
by initial alignment), which are subsequently aligned to the reference genome for validation
check using BWA-MEM.9 Guided Assembly for this variant provides a clear response (Yes/No)
which is required in clinical testing.

Table 3. EGFRvIII detection using Cufflinks, Sailfish and Guided assembly approach. GBM
6,7,12 all have a high FPKM value but upon examination evidence of EGFRvIII variant was not
found for these samples. *EGFRvIII was experimentally validated for this sample.

Cufflinks (FPKM) Sailfish (RPKM) Guided Assembly

Samples EGFRvIII variant Wild-type EGFRvIII Wild-type EGFRvIII

GBM3 148.281 6.44284 71.1637 3.38737 Yes
GBM4 171.925 152.204 101.339 77.7003 No
GBM5 485.282 284.416 120.435 232.007 No
GBM6 550.976 432.228 238.849 175.429 Yes
GBM7 820.109 9.90112 382.24 6.24513 No
GBM8 150.059 43.8713 83.3531 21.5956 No
GBM10 266.228 31.7377 136.81 15.5846 Yes
GBM11 18.3666 0.321978 3.91242 0 No
GBM12 653.088 0.000121561 136.032 20.8175 No
GBM13* 165.354 0.000114743 12.5984 0.210588 Yes

4. Discussion

We have presented a three layer system, whereby inputs at layer 1 are through established
prototyping solutions are supported by a second layer of automated interpretive engine uti-
lizing intense knowledge mining genes that are known to be directly altered cancer, or who
play critical roles in molecular mechanisms that are the targets of pharmaceutical agents. This
organization allows for rapid prototyping, implementing, and analytically validating data anal-
ysis pipelines in support of open protocols and clinical research trials of personalized medicine
built around a three layer design supporting data collection, analysis, and report delivery from
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consent to reporting. The first layer leveraging of prototyping environments whereby exper-
iment and clinical collaborators can design interfaces, fitting in with a structured relational
and non-relational databases provide a capability of data collection and tracking to create a
development cycle that is both agile and rationale.

In a second layer, we describe a framework where both relational and non-relational
databases are used to collect all information linking to a patient as it moves through various
stages to the identification of biomarkers. Use of non-relational key-value document stores
through non-relational databases provides design flexibility of the first layer. Overall, utiliza-
tion of both relation and non-relational document store databases is based on integration
around two these two key concepts ’patients’ and ’biomarkers’, for which all other concepts
depend. Moving across multiple studies with this ’variant’ or ’patient’ centric conceptually
works with with most bioinformatics pipelines that are focused on identifying tumor specific
(somatic) mutations or biomarkers that compare or germline variants utilizing a variety of
tools. A key is that two samples such as tumor and normal tracking to a single parent object.
Overall, the mindset that our processes identify biomarkers’ from ’patients’ in a multi-step lin-
ear workflow, define joining as always building around ’patients’ and ’biomarkers’. Utilization
standardized reporting frameworks such as Jaspersoft at the third level provide environments
that provide consistent and flexible reporting consistent with industry standards, fitting over
the second database layer. Reports may be of the type that represent ’tumor board reports’
or ’sensitivity/specificity’ reports for supporting regulatory agencies. Reports may be tracking
of where a specimen is in a system, or may be CPU utilization at a particular point in time.

Our assay captures coding mutations and structural events within cancer genes. The final
output, an interpretive Cancer Panel Report, provides the physician with a list of agents that
are associated with tumor specific DNA mutations. Importantly, mutations can have positive
or negative correlations to drugs and our system highlights both. This unbiased report includes
all relevant patient related information along with both basic and detailed information related
to the tumor′s mutational spectrum, and candidate relationships with known therapies.

The framework and data structures we use as part of trials in personalized medicine are
conceptually fitting into either three layers supporting a multi-step linear process moving
from patient to biomarker sets the mechanism for how data is integrated and analyzed in
support of patient of care. The modular-based standard driven framework allows flexibility
of adding/swapping out component analysis programs rapidly, thus is not constraint by the
tools used. Staying with goals of Bench to Bedside, our future direction is in developing
and improving tools that focus towards clinical applications and integrating state-of-the-art
software within the system.
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