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The past decade has seen exponential growth in the numbers of sequenced and genotyped individuals and a 
corresponding increase in our ability of collect and catalogue phenotypic data for use in the clinic.  We now 
face the challenge of integrating these diverse data in new ways new that can provide useful diagnostics and 
precise medical interventions for individual patients.  One of the first steps in this process is to accurately 
map the phenotypic consequences of the genetic variation in human populations.  The most common 
approach for this is the genome wide association study (GWAS).  While this technique is relatively simple to 
implement for a given phenotype, the choice of how to define a phenotype is critical.  It is becoming 
increasingly common for each individual in a GWAS cohort to have a large profile of quantitative measures.  
The standard approach is to test for associations with one measure at a time; however, there are many 
justifiable ways to define a set of phenotypes, and the genetic associations that are revealed will vary based 
on these definitions.  Some phenotypes may only show a significant genetic association signal when 
considered together, such as through principle components analysis (PCA). Combining correlated measures 
may increase the power to detect association by reducing the noise present in individual variables and reduce 
the multiple hypothesis testing burden.  Here we show that PCA and k-means clustering are two 
complimentary methods for identifying novel genotype-phenotype relationships within a set of quantitative 
human traits derived from the Geisinger Health System electronic health record (EHR). Using a diverse set of 
approaches for defining phenotype may yield more insights into the genetic architecture of complex traits and 
the findings presented here highlight a clear need for further investigation into other methods for defining the 
most relevant phenotypes in a set of variables.  As the data of EHR continue to grow, addressing these issues 
will become increasingly important in our efforts to use genomic data effectively in medicine.    

 
1.  Introduction 

In the past decade, genome wide association studies (GWAS) have revealed more than ten 
thousand associations between genetic loci and traits [1].  As GWAS continue to grow in number, 
sample size, and range of phenotypes, they offer an opportunity to begin to untangle the complex 
network underlying phenotypic variation.  One challenge in this pursuit stems from an asymmetry 
in the genotype-phenotype map.  While the range of genetic variation in humans is fairly well 
characterized and a given genome can be sequenced to arbitrary depth, there is no obvious way to 
measure a physiologically complete phenome or even outline how to divide it into separate units 
[2].  Even subtle choices in how a phenotype is defined can affect which loci associate with it [3, 
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4].  There is a growing need to analyze these choices and their effects if we wish to build a 
genotype-phenotype map that captures the relationships most relevant to biology and the clinic.   
 
The first human GWAS defined phenotypes based on clinical case control status [5, 6, 7].  Binary 
phenotypes such as these are a natural choice if our ultimate goal is to predict disease risk, but 
diseases are typically diagnosed based on a number of underlying quantitative variables and expert 
opinions.  For example, dozens of loci have been implicated in the risk of multiple sclerosis [8].  
However, this condition is heterogeneous in its presentation and is diagnosed based on an 
accumulation of symptoms, quantitative measures, and subjective categorization, only after ruling 
out other conditions [9].  There are also subtypes of multiple sclerosis as well as other distinct but 
related demyelinating syndromes [10, 11].  This complexity makes it exceedingly difficult to 
understand how each of the associated gene variants might be contributing to the disease. 
 
Recently we have begun to see association studies conducted in cohorts that have been given 
batteries of quantitative assays [12, 13] and comprehensive electronic health record (EHR) data is 
being used to construct phenotypic profiles.  The availability of these large sets of traits has lead to 
an approach known as the phenome wide association study (PheWAS) where each variant is tested 
for associations with a range of phenotypes [14, 15].  Recent applications of PheWAS have 
revealed many novel genotype-phenotype associations and the potential for a large degree of 
pleiotropy within disease related traits [14, 16, 17].  Variants that associate with multiple traits 
could be indicative of genetic modules that underlie multiple diseases but in some cases they may 
simply represent partially redundant measures that correspond to a single disease state.     
   
Given a profile of quantitative traits, multivariate techniques such as principal component analysis 
allow us to combine related variables into a set of statistically independent measures.  Combining 
different raw measurements into new metrics can identify new associations that may provide 
important insights into the biology of complex traits and may provide better predictors of disease 
risk [18, 19].  Consider for example, four GWAS for height, weight, and body mass index (BMI), 
and type II diabetes.  Even though BMI is simply a function of height and weight, the results of 
these three associations tests will not identify exactly the same sets of loci.  Likewise, many 
variants associate with both BMI and type II diabetes, but a large part of this overlap stems from 
BMI being a risk factor for type II diabetes [20].  Metabolomic studies have also demonstrated 
that some gene variants show much stronger relationships with the the ratios of metabolites than 
they do with the absolute abundances of either molecule [18].  
 
While an EHR can contain thousands of types of data, such as clinical laboratory measures, 
similar variables may be collected or reported in different ways.  Logical observation identifiers 
names and codes (LOINC) provides unique numerical identifiers to distinguish relevant 
differences between laboratory measures [21].  Most analyses that have been conducted to date 
have involved laborious data harmonization procedures to ensure that grouped lab results measure 
the same quantity in the the same way [22].  With the large numbers and types of measures in the 
EHR, it is often not feasible to carefully harmonize each and every phenotype.  Thus, it is 
important to explore approaches that will allow for high throughput use of multiple phenotypes. 
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Here, we have mined the Geisinger Health System EHR for quantitative measures to produce a 
high dimensional phenotypic profile for a large population of genotyped patients in the MyCode® 
Community Health Initiative.  Using these data, we outline and compare three general strategies 
for identifying loci that associate with one or more components of this phenomic profile: 
PheWAS, PCA, and cluster PCA.  Our results show that each of these methods can detect 
associations that are missed by the others and that the significance of a given association can vary 
by many orders of magnitude based on how a phenotype is defined.  These findings set the stage 
for further use of EHR data in gene associations studies and highlight important considerations as 
we attempt to improve the predictive power of medical genomics and clinical phenotyping.  

2.  Methods   

2.1.  Genetic Data 

All of the data described in this paper come from a cohort of patients in the MyCode Community 
Health Initiative at the Geisinger Health System.  Each patient was genotyped for 659,010 SNPs 
with minor allele frequency greater than 1% using Illumina OMNI Express Exome chips.  We 
excluded any SNPs that had call rates < 99%, sample call rates < 99%, as well as 113 SNPs that 
show large differences between batches.  We restricted our analysis to individuals with greater 
than 99% likelihood of European ancestry, as defined by quadratic discriminant analysis using the 
first four principal components of ancestry based on the 1000 genomes project.   

2.2.  Phenotypic Data 

For 38,269 patients in the Geisinger Health System that met these criteria, we extracted age, sex, 
BMI and the median values for the following 29 outpatient laboratory measures as defined by 
LOINC codes (Table 1).  Most of the lab measures showed large deviations from normality at the 
population level, so we first performed Box-Cox transformations on each variable.  Each variable 
was also centered and scaled by subtracting the mean value and dividing by the standard deviation. 

2.3.  Imputation 

Within the set of lab data that we analyzed, 7.1% of patient-lab pairs had no results available.  
Nearly a third of the missing data came from ~6000, mostly young, individuals that lacked lipid 
measurements (Figure S1).  We used predictive mean matching to impute all missing values.  
Imputation was performed in R, using the MICE package.  Due to multicollinearity, within a 
subset of the 29 variables, we excluded 11 pairs of variables with correlation coefficients greater 
than 0.5 as predictors of each other.  Aside from this restriction, each variable was modeled as a 
linear function of all other variable, include age, sex, and BMI.  We performed 5 separate 
imputations, selecting among the 5 closest cases, over 120 iterations.  Nearly all chains exhibited 
convergence with 20 iterations.  In the majority of cases, the distribution of imputed values was 
indistinguishable from the original distribution (Figure S2).  
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2.4.  Principal Component Analysis 

For each imputed dataset, we performed principal component analysis (PCA) in R, using the 
prcomp function.  The PCA results were nearly identical within each imputed dataset.  The 
average angle between all ordered pairs of Eigenvectors for the first 19 components was 4.9° and 
the only angles greater than 20° were caused by an alternation in the order of components 20 and 
21 in some of the analyses (Figure S3).  Given the minimal differences between the imputed data 
sets, we chose the first imputed data set to use in all downstream analyses.  

2.5.  K-means clustering 

Using K-means clustering, we divided our 29 variables into 7 clusters based on their pairwise 
absolute correlations (Figure 1).  The distance between two LOINC codes was defined as 1-R2.  
Clustering was performed in R using the kmeans function with 200 random starting clusters.  
Since sum of squares measures did not indicate an optimal number of clusters, we choose the 
maximum number of clusters where all clusters contained at least 3 phenotypes.     

2.6.  GWAS 

We first performed associations between all 29 phenotypes individually (Figure S4). We also 
performed associations with 29 principle component scores (Figure S5). Finally, we performed 

LOINC Description
718-7 Hemoglobin [Mass/volume] in Blood

4544-3 Hematocrit [Volume Fraction] of Blood by Automated count
787-2 Erythrocyte mean corpuscular volume [Entitic volume] by Automated count
786-4 Erythrocyte mean corpuscular hemoglobin concentration [Mass/volume] by Automated count
785-6 Erythrocyte mean corpuscular hemoglobin [Entitic mass] by Automated count

6690-2 Leukocytes [#/volume] in Blood by Automated count
789-8 Erythrocytes [#/volume] in Blood by Automated count
788-0 Erythrocyte distribution width [Ratio] by Automated count

32623-1 Platelet mean volume [Entitic volume] in Blood by Automated count
777-3 Platelets [#/volume] in Blood by Automated count

2345-7 Glucose [Mass/volume] in Serum or Plasma
2160-0 Creatinine [Mass/volume] in Serum or Plasma
2823-3 Potassium [Moles/volume] in Serum or Plasma
3094-0 Urea nitrogen [Mass/volume] in Serum or Plasma
2951-2 Sodium [Moles/volume] in Serum or Plasma
2075-0 Chloride [Moles/volume] in Serum or Plasma
2028-9 Carbon dioxide, total [Moles/volume] in Serum or Plasma

17861-6 Calcium [Mass/volume] in Serum or Plasma
1743-4 Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5’-P

30239-8 Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5’-P
1975-2 Bilirubin.total [Mass/volume] in Serum or Plasma
2885-2 Protein [Mass/volume] in Serum or Plasma

10466-1 Anion gap 3 in Serum or Plasma
751-8 Neutrophils [#/volume] in Blood by Automated count

2093-3 Cholesterol [Mass/volume] in Serum or Plasma
2571-8 Triglyceride [Mass/volume] in Serum or Plasma
2085-9 Cholesterol in HDL [Mass/volume] in Serum or Plasma

13457-7 Cholesterol in LDL [Mass/volume] in Serum or Plasma by calculation
2965-2 Specific gravity of Urine

1

Table 1.  Definitions of the LOINC codes extracted from electronic health records.   
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associations with scores of the principal components within each cluster (Figure S6).  All 
association tests were performed using PLATO 2.0 (https://ritchielab.psu.edu/plato).  In each case, 
we modelled the principal component score as an additive function of allele count with age, bmi, 
sex, and the first four principal components of ancestry included in the model as covariates. 

3.  Results 

Our phenotypic dataset comprised 29 outpatient clinical lab measures extracted from Geisinger 
Health System EHR.  In order to ensure compatibility with other datasets, we choose to include 
only measures that complied with the LOINC standard of medical laboratory observations [23].  
For each of the 29 clinical lab measures, we performed a separate GWAS in PLATO.  Using these 
measures, we identified 6361 statistically significant associations (FDR < 0.01).  Every lab 
measure had multiple SNPs associated with it, ranging from 12 SNPs for chloride concentration in 
blood to 783 SNPs for the number of leukocytes per unit of blood (Figure 1).  Of these 
associations, 31% involved a SNP that was linked to more than one lab measure.   
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Figure 1. 
Associations detected 
with LOINC measures, 
PCA, and cluster PCA. 
The Venn diagram in 
the upper right panel 
shows the number of 
unique and shared 
SNPs that were 
associated with a 
phenotypic measure as 
defined by each of the 
three methods.  The 
upper left panel shows 
the number of SNPs 
that associated with 
each principal 
component.  The lower 
right panel shows how 
the associations were 
distributed across the 
LOINC measures.  
Gray bars represent the 
total number of SNPs 
while black shows the 
number that are unique 
to that measure.  The 
bottom left panel 
shows how each of the 
phenotypes defined by 
LOINC codes loads 
onto each of the 
principal components. 
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Given that several groups of the lab results had very strong correlations and nearly all showed at 
least modest correlations with a few other variables (Figure 2) we hypothesized that statistical 
power might be improved by combining highly correlated measures.  To test this, we performed 
principal component analysis on the combined set of all 29 lab measures.  A plot of the cumulative 
variance explained by each additional component was smooth and increased gradually indicating 
that even the highest components might be measuring physiologically meaningful traits (Figure 
S7). 
 

 

 
 
We next performed GWAS for all 29 principal components, just as we did for the original 
measures (Figure S5).  This analysis resulted in 4536 significant associations (FDR = 0.01).  We 
expected to see a reduction in the total number of significant associations as one principal 

Ions

Liver

WBC

Kidney

Lipids

RBC1

RBC2

Figure 2. 
Clustering of LOINC measures into related groups.  The heat map indicates the absolute value of the correlation 
coefficient between all pairs of LOINC codes.  Each cluster, as defined by k-means, is indicated by a red bounding 
box.  The names on right column indicated the functional categories that describe each cluster. 
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component could capture variation from multiple raw measures.  Surprisingly, 48% of these 
associations involved a SNP that was linked to multiple components.  Figure 1 shows a Venn 
diagram comparing the number of unique and overlapping associations across the various 
approaches for phenotypes used in this paper.  Although 2494 of the SNPs that associated with 
one or more of the LOINC measures did not show a significant association with any of the 
principal components we did discover 442 new associations using these scores.  1895 SNPs 
associated with both a raw measure as well as a principle component (PC). 
 
PC5 had the largest number of significant associations, 482, followed by PC13 with 392 and PC20 
with 339.  There was no clear pattern in how the significant associations were distributed among 
the first 24 components, although there were practically no associations with PC25-29 (Figure 1).  
In PCA, the first few components often capture a large percentage of the variation so it was 
interesting to see so many SNPs associating with higher components while PC1 only had 92 
associated SNPs.  Further analyses provide some insights.  First, if we include age and BMI in the 
set of variables prior to PCA, we find that these variables load most strongly onto components 1.  
This makes sense given that age and BMI contribute to many physiological measures, especially 
among disease relevant traits.  However, since these are both covariates in the GWAS regression 
model, it would be troubling to see many SNPs associated with PC1.   
 
In PCA, the loadings indicate the magnitudes and directions that the original measures contribute 
to each component.  Analyzing the loadings of some noteworthy components provided some 
additional clues to the causes of this behavior.  PC2 was dominated by a few measures of blood 
cells: namely, the volume of erythrocytes moving in the opposite direction of cholesterol and the 
numbers of erythrocytes, white blood cells (WBCs), and platelets (Figure 1).  PC5 was similar 
with WBC counts moving in the opposite directions of platelet volume and cholesterol.  These 
associations may reveal overlap in genetic networks that regulate lipids and and the immune 
system.  A number of studies have previously identified relationships between WBC counts and 
carotid plaque thickness, body fat percentage, and lipid profiles [24, 25, 26].      
 
While PC2 and PC5 were linked to many loci, these were predominantly the same loci that were 
linked to one or more of the original measures.  More relevant than the total number of 
associations detected is the number of associations that were unique to a principal component and 
not detectable using any of the original measures.  PC13, PC18, and PC20 were responsible for the 
majority of these novel associations.  PC13 measures a complex relationship among our measures 
in which serum levels of potassium and glucose vary inversely with total protein and creatinine.  
This is interesting because potassium and creatinine are highly correlated at the population level 
and both are diagnostic of kidney function.  89% percent of the associations with PC13 also map 
to the HLA locus suggesting a relationship between the adaptive immune system and these blood 
measures.  PC18 and PC20 both measure relationships among erythrocyte distribution width, 
hemoglobin, and platelet measures (Figure 1).   
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Overall, the principal component approach detected fewer total significant associations than the 
LOINC measures, but a few components did allow us to identify novel associations.  The principal 
components that proved most useful in this regard seemed to load primarily off of 2-6 measures 
(Figure 1) and those measures tended to be closely related.  Components that were dominated by a 
single measure or had large number of weak loadings did not yield many novel results.  These 
observations suggested a third approach.  If we first divided the original 29 measures into small 
groups of related traits before performing PCA, we might restrict our range of phenotypes to space 
that corresponds better to the ways that gene variants actually impact phenotype. 
 
Using K-means clustering, we divided our 29 variables in 7 clusters based on their pairwise 
absolute correlations.  The choice of the number of clusters was somewhat arbitrary as the sums of 
square both within and between clusters never reached obvious plateaus.  The choice of 7 clusters 
resulted in each group containing 3-8 measures, which corresponded well to our desired range, and 
it also broke them into groups that made intuitive sense (Figure 2).  For example, all of the white 
blood cell counts formed a single cluster, and all of the lipid measures clustered together with 
serum glucose.  We then performed PCA within each of these clusters and used these principal 
component scores to run a third GWAS with the same parameters as the previous two (Figure S6). 
 
The genetic variants that associated with the scores of the cluster principal components had much 
larger overlap with original measures, sharing 2803 SNPs, but it also revealed 392 new SNPs that 
did not associate with either the original measures or the principal components of the entire data 
set (Figure 1).  The distribution of these new associations varied greatly among each cluster 
(Figure S8).  Within the ions cluster, the majority of the SNPs showed stronger associations with 
one of original measures than they did with any principal component (Figure S14).  Within the 
three phenotypes that compose the liver cluster (1743-4: alanine aminotransferase, 30239-8: 
aspartate aminotransferase, and 1975-2: bilirubin), the associations detected for all three principal 
components correlated almost perfectly with those of one of the original measures (Figure S15).  
However, within the red blood cell cluster 1 (718-7: hemoglobin, 4544-3: hematocrit, and 789-8: 
erythrocytes), nearly all of the alleles tested showed their strongest association with one of the 
principal components (Figure 3). 
 
Within each cluster, the middle components were the most likely to have novel associations.  In 
general, PC1 had associations that were very similar in their significance levels to those found 
with the original measures.  With each successive PC, the p-values would usually become more 
significant with respect to the LOINC measures, but less significant in absolute terms due to the 
reduction in total variance with each PC.  In the red blood cell 1 (RBC1) cluster, nearly all of the 
novel significant associations occur with PC2 (Figure 3).  A high score in this component 
corresponds to a low count of erythrocytes per unit volume of blood, but a high hematocrit score, 
and hemoglobin concentration.  Since none of these associations were not found using erythrocyte 
mean corpuscular volume (787-2) as the phenotype of interest, it seems that there are a large 
number of gene variants linked to the concentration of hemoglobin within erythrocytes.  A 
Manhattan plot shows that these new associations come from many distinct loci (Figure 4).   
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Figure 3. 
Comparison of p-values for associations with the principal components and LOINC measures that compose the red 
blood cell cluster 1.  Each point in the scatter plot represent one SNP.  Both axes are scaled to the negative log 
base ten of the p-values.  The y-axis indicates the lowest p-value that a given SNP had with any of the principal 
components.  The components are coded by the color or the point.  The x-axis indicates the lowest p-value that a 
given SNP had with any of the LOINC measures.  The LOINC measures are coded by the shape of the point.  

Figure 4. 
Manhattan plot of the associations detected for the RBC1 cluster.  The x-axis indicates the chromosomal 
coordinate and the y-axis shows the negative log base ten of the association p-value.  Associations with any of 
principal components and LOINC measures are displayed in green and purple, respectively.  The red line 
indicates a false discovery rate of 0.001 and the blue line indicates a false discovery rate of 0.01. 
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4.  Discussion 

Our results demonstrate that the choice of how to define a phenotype can have a large impact on 
our ability to detect relationships with genetic loci.  Given a set of quantitative trait measures, we 
have outlined three different strategies for defining phenotypes prior to association testing.  The 
standard method is to simply test against whatever phenotypic measures are in hand, without any 
additional considerations.  While some measures of phenotype may be arbitrary or based purely on 
convenience, this may still be the most reasonable choice in many situations.  In this particular 
case, the original phenotypes come from clinical lab tests that are prescribed because they have 
proven to be useful diagnostics and we find the greatest number of significant associations using 
these measures alone.  
 
In spite of this generality, our results also indicate that many genotype-phenotype connections are 
not apparent when phenotypes are considered individually.  Using two different methods based on 
principal component analysis, we have increased the number of significant associations that we 
could detect by 19%.  Given the extremely large number of hypotheses that are tested in a single 
GWAS experiment, the p-value threshold for significance must be correspondingly low.  Most 
segregating alleles have relatively small impacts on any given phenotype and we are unlikely to 
detect a significant association unless the phenotype of interest aligns very well with the effect of 
the variant.  The majority of true positive results will inevitably fail to reach the significance 
threshold. 
 
Principal component analysis provides one strategy for overcoming some of these obstacles.  
When performed on the entire dataset, it has the ability to capture relationships between diverse 
phenotypic measures.  In this case, the components with the largest variance did not provide much 
new information.  This is likely because these components capture the covariance of large 
numbers of measures that relate to the biggest sources of phenotypic variation in populations, such 
as age.  There should not be genetic determinants of age, except in extreme cases, and even if 
there were, it is common practice to control for the effects of age in regressions. 
 
The greatest utility of this method comes from the middle order components that capture more 
complex relationships.  In our analyses, PC13 was related to a complex interaction between serum 
concentrations of potassium, creatinine, glucose, and total protein.  It is not yet clear how this 
relates to human physiology, but the fact that 79 SNPs, distributed widely across the HLA locus, 
associate more strongly with this principal component than they do with any of the measures that 
contribute to it suggests some underlying mechanistic connection between this combination of 
variables and the function of the immune system.  Perhaps phenotypic profiles such as this will 
also prove to be useful indicators of disease risk or progression. 
 
This approach also allows us to observe effects that are orthogonal to the primary axis of variation.  
For example, creatinine and urea levels are both indicative of kidney function and they are very 
highly correlated at the population level.  However, urea is a byproduct of all protein metabolism 
while creatinine is produced only by muscles so it is reasonable to assume that various genes 
could influence these traits independently.  Indeed, principal component 22 corresponds to an 
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inverse relationship between these two variables and several variants associate with the ratio of 
creatinine to urea in the blood without a detectable relationship to either variable in isolation.   
 
One of the weaknesses of using principal component scores from a large dataset is that the 
eigenvectors correspond to the maximal variance within a set of measures which may not have any 
relationship to how traits are influenced at the gene regulatory level.  A SNP that might 
correspond to elevated total cholesterol is unlikely to affect every other trait that correlates with 
cholesterol in a population.  It can also become difficult to extract meaning from a principal 
component that is influenced by many, potentially disparate measures.  If we hope to translate 
research findings into clinically relevant information, it can be useful to limit our search space to a 
number of dimensions that a human can understand.  In order to strike balance between exploring 
the full range of complex interactions in biology and maintaining the ability to interpret our 
results, we also investigated a third approach that involved clustering our data based on the 
correlation structure of the variables prior to performing PCA.   
 
While this did not improve our power in all cases, several groups of related measures yielded 
many more genetic associations, and at least a few new associations were discovered within each 
cluster.  In particular, assays of blood cells and kidney function seem to benefit the most from this 
technique.  The first 3 components of the RBC2 cluster collectively associate with 134 SNPs that 
do not show significant associations with any other measure that we tested.  These components 
each measure different ways that the variance in erythrocyte size relates to hemoglobin 
concentration and mean erythrocyte volume.  It is interesting to note that PC3 from this cluster had 
the most unique associations and is related to PC20 from the global PCA, which also identified 
new SNPs.  Within the kidney cluster, PC3 measures the difference between urea and creatinine 
levels and associates with 41 unique variants.  Again, this is related to PC22 from the global 
analysis.  The fact that both clustered and global PCA identify associations with complex 
interactions between multiple blood cell and kidney function measurements indicates that the 
genetic regulation of these traits is not captured well by any single measure.  It will be interesting 
to test if these same interactions are linked to the prevalence or prognosis for any disease states.    
 
It is likely that numerous other combinations of the underlying measures would yield even more 
connections between gene variants and phenotypes but there is no way to exhaustively explore 
them.  As the number of phenotypic measures that we can collect for a GWAS cohort continues to 
grow, it will be increasingly important to develop better strategies for specifying exactly which 
measures to choose test for associations.  Further investigation into this topic will be critical to 
gaining insight into gene function and has deep implications for how we think about concepts such 
as pleiotropy.            
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