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Electronic health records (EHRs) have become a vital source of patient outcome data but the widespread 
prevalence of missing data presents a major challenge. Different causes of missing data in the EHR data may 
introduce unintentional bias. Here, we compare the effectiveness of popular multiple imputation strategies 
with a deeply learned autoencoder using the Pooled Resource Open-Access ALS Clinical Trials Database 
(PRO-ACT). To evaluate performance, we examined imputation accuracy for known values simulated to be 
either missing completely at random or missing not at random. We also compared ALS disease progression 
prediction across different imputation models. Autoencoders showed strong performance for imputation 
accuracy and contributed to the strongest disease progression predictor. Finally, we show that despite clinical 
heterogeneity, ALS disease progression appears homogenous with time from onset being the most important 
predictor. 
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1.  Introduction 

1.1.  Background 

Electronic health records (EHRs) are a core resource in genetic, epidemiological and clinical 
research providing phenotypic, patient progression and outcome data to researchers. Missing data 
presents major challenges to research by reducing viable sample size and introducing potential 
biases through patient selection or imputation1,2.  

Missing data is widely prevalent in the EHR for several reasons. EHRs are designed and 
optimized for clinical and billing purposes meaning data useful to research may not be recorded2. 
Outside of the design of EHRs, the reality of the clinic results in missing data. For example, 
clinicians must consider financial burden in ordering lab tests for patients and issue the minimum 
amount of testing and diagnostics to effectively treat their patients3.  

The various reasons data may be missing create different types of missing data: missing 
completely at random, missing at random and missing not at random1,4,5. This work focuses on 
data missing completely at random and data missing not at random. Data missing completely at 
random indicates that there is no systematic determination of whether a value is missing or 
present. The likelihood of response is independent of the data and any latent factors. Data missing 
not at random occurs when data is missing due to either observed values in the data or unobserved 
latent values. An example within the EHR would occur if a lab test is only issued based on a 
clinicians observation of the patient. Whether or not the test is issued provides insight into the 
patient’s status.  

Non-imputation approaches often exclude data from the analysis to allow for downstream 
analysis. One approach, complete-case analysis, throws out records with missing data. Within the 
EHR this would severely limit sample size, in addition if incomplete records have a systematic 
difference from complete records unintentional bias can be introduced6. As computational 
resources have increased, computationally complex imputation techniques have become feasible 
and are growing in popularity1. Computationally intensive techniques such as Singular Value 
Decomposition (SVD) based methods and weighted K-nearest neighbors (KNN) methods have 
joined less complex methods like mean and median imputation. Both SVD and KNN-based 
methods have been shown to perform effectively in microarray imputation7. Popular multiple 
imputation methods show particular challenges with data that are not missing at random1. 

Autoencoders are a variation of artificial neural networks that learn a distributed representation 
of their input8. They learn parameters to transform the data to a hidden layer and then reconstruct 
the original input. By using a hidden layer smaller than the number of input features, or “bottle-
neck” layer the autoencoder is forced to learn the most important patterns in the data9. To prevent 
overreliance on specific features two techniques are commonly used. In a denoising autoencoder, 
noise is added to corrupt a portion of the inputs9,10. Alternatively, a technique called dropout in 
which random units and connections are removed from the network forcing it to learn 
generalizations11. Autoencoders were shown to generate useful higher representations in both 
simulated and real EHR data. Because autoencoders learn by reconstructing the original input 
from a corrupted version, imputation is a natural extension12,13.  
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1.2.  ALS and the Pooled Resource Open-access Clinical Trials 

We evaluate each of the imputation methods on the ALS Pooled Resource Open-access Clinical 
Trials (PRO-ACT). Pooled clinical trial datasets present an ideal option for evaluating EHR 
imputation strategies because they include patients from differing environments with potential 
systematic biases. In addition, clinical trials represent the gold standard for data collection making 
it possible to spike-in missing data while maintaining enough signal to evaluate imputation 
techniques.  

Prize4Life and the Neurological Clinical Research Institute (NCRI) at Massachusetts General 
Hospital created the Pooled Resource Open-Access ALS Clincial Trials (PRO-ACT) platform 
with funding from the ALS Therapy Alliance in and in partnership with the Northeast ALS 
Consortium. The PRO-ACT project was designed to empower translational ALS research and 
includes data from 23 clinical trials and 10,723 patients. In this work, we use the subset of 1,824 
patients included in the Prize4Life challenges14. 

ALS is a progressive neurodegenerative disorder affecting both the upper and lower motor 
neurons causing muscle weakness, paralysis and leading to death14. ALS patients typically survive 
only 3 to 5 years from disease onset and show large degrees of clinical heterogeneity15–18.  

A common measure used to monitor an ALS patient’s condition is the ALS functional rating 
scale (ALSFRS)19,20. The ALSFRS consists of 10 tests scored from 0-4 assessing patients’ self-
sufficiency in categories including: feeding, grooming, ambulation and communication. The 
change over time, or slope, is commonly used as a statistic to represent ALS progression. 

2.  Methods 

We compare and evaluate a variety of methods to impute missing data in the EHR. We spiked-in 
missing data to the PRO-ACT dataset, and evaluated each approach’s performance imputing 
known data. We also evaluated prediction accuracy using each of the imputation methods on the 
ALSFRS. Each of these is described in detail below and all analysis was run using freely available 
open source library packages, DAPS12, FancyImpute21, Keras22 and Scikit-learn23. 

2.1.  Data preparation and standardization 

The PRO-ACT dataset includes patient demographic data, family history, concomitant 
medications, vital sign measurements, laboratory results, and patient history (disease onset etc.). 
PRO-ACT performed an initial data cleaning and quality assurance process. This process included 
extracting quantitative variables, merging laboratory tests with different names across trials, 
removable of indecipherable records and converting units. After processing the PRO-ACT dataset 
includes only quantitative values (continuous, binary, ordinal and categorical).  

Our analysis encoded categorical variables using Sci-kit learn’s OneHotEncoder23. Temporal 
or repeated measurements were encoded as the mean, minimum, maximum, count, standard 
deviation and slope across all measurements, creating 572 features for each samples. Additional 
measurements were standardized across scales (i.e. inches to cm). Non-numeric values in numeric 
measurements were coerced to numeric values. Where coercion failed they were replaced by NaN. 
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Input features were normalized and scaled to be between 0 and 1, with missing features remaining 
as NaN.  

2.2.  Imputation Strategies 

2.2.1.  Imputing missing data with Autoencoders 

We constructed an autoencoder with a modified binary cross entropy cost between the 
reconstructed layer z and the input data x to better handle missing data as in Beaulieu-Jones and 
Greene (2016) (Formula 1)12. The modified function takes into account missing data, with m 
representing a “missingness” vector; m has a value of 1 where the data is present and 0 when the 
data is missing. By multiplying by m and dividing by the count of present features (sum of m) the 
result represents the average cost per present feature. The weights and biases of the autoencoder 
are trained only on present features and imputation does not need to be performed prior to training 
the autoencoder.  

𝑐𝑜𝑠𝑡 = 	− [𝑥* log 𝑧* 	/
*01 𝑚* + (1 − 𝑥*) log 1 − 𝑧* 𝑚*]	/	𝑐𝑜𝑢𝑛𝑡(𝑚)	     (Formula 1) 

With the exception of the modified cost function autoencoders were trained as described by 
Vincent et al. with a 100 training epoch patience10. If a new minimum cost was not reached in 100 
epochs, training was stopped. The autoencoder with dropout was implemented using the 
FancyImpute21 and Keras22 libraries with a Theano24,25 backend. 

 We performed a parameter sweep to determine the hyperparameters for the autoencoder. In 
the sweep we included autoencoders of one to three hidden layers and each combination of 2, 4, 
10, 100, 200, 500 and 1000 (over-complete representation) hidden nodes per layer. Autoencoders 
with two hidden layers made up of 500 nodes each are shown for all comparisons (Figure 1). 
Dropout levels of 5, 10, 20, 30, 40 and 50% were evaluated with 20% being shown for all 
comparisons.  

 
Figure 1. Schematic structure of the autoencoder used for evaluations, with two hidden layers and 20% dropout 
between each layer. 
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Binary cross entropy was used for training because it tends to be a better evaluator of quality when 
training neural networks9,10,26,27. We use a root mean squared error for comparison to other 
methods to prevent a bias in favor of autoencoders, as most other methods are not trained with 
cross entropy. 

2.2.2.  Comparative imputation strategies 

We used the FancyImpute21 libraries implementations for each of the other imputation strategies: 
1) IterativeSVD, matrix completion by low rank singular value decomposition based on 
SVDImpute7, 2) K-nearest neighbors imputation (KNNimpute), matrix completion by choosing 
the mean values of the K closest samples for features where both samples are present 3) 
SoftImpute28, matrix completion by iterative replacement of missing values with values from a 
soft-thresholded singular value decomposition, 4) column mean filling and 5) column median 
filling. The standard implementations of the remaining algorithms in the FancyImpute library, 
MICE, Matrix Factorization and Nuclear Norm Minimization are known to be slow on large 
matrices and were impractically slow on this dataset29–33.  

We performed a parameter sweep for SVDimpute analyzing ranks of 5, 10, 20, 40 and 80. 
Ranks of 40 showed the strongest performance with this dataset and are shown for all 
comparisons. The parameter sweep for KNNimpute included 1, 3, 5, 7, 15 and 30 neighbors, k of 
7 showed the strongest performance of the parameter sweep and is used for all comparisons.  

2.3.  Missing Completely at Random Imputation Evaluation 

To evaluate imputation accuracy in a missing completely at random environment we performed 
trials replacing 10, 20, 30, 40 and 50% of known features at random with NaN. We performed 
each imputation strategy on the data with spiked-in missingness and evaluated the root mean 
squared error between the imputed estimates and the original data. We performed five trials for 
each amount of spiked-in data (Figure 2A). Performance was evaluated using the root mean 
squared error between the known value before spiking in missingness and the imputed value. 

2.4.  Missing Not at Random Imputation Evaluation 

To perform a basic imputation simulation where data was missing not at random, varying 
percentages (10, 20, 30, 40, and 50%) of features were chosen at random. Half of the highest or 
lowest (randomly selected) quartile of values was replaced by NaN at random. Each imputation 
strategy was evaluated on five independent spike-in trails. Performance was evaluated using the 
root mean squared error between the imputed values and original values. This type of imputation 
could occur when the highest or lowest values represent the normal range and the clinician is able 
to determine a patient is normal through other factors. Alternatively the extreme values could 
represent a clear result where an additional is not needed to determine the result. Performance was 
evaluated using the root mean squared error between the known value before spiking in 
missingness and the predicted value. 



Pacific Symposium on Biocomputing 2017 
 

 

 

212 

2.5.  Progression Prediction Evaluation 

To predict disease progression as represented by the ALSFRS score slope, we first imputed the 
missing data using column mean averaging, column median averaging, SVDImpute, SoftImpute, 
KNNimpute, and an autoencoder with dropout. For prediction purposes we excluded all ALSFRS 
score and Forced Vital Capacity-related features. 

 
Figure 2. Evaluation outline (a) Imputation Evaluation. PRO-ACT patient data of 10,723 subjects has known data 
masked with spiked in missing data. Imputation strategies are performed in parallel and the RMSE is calculated 
between the masked input data and each strategies imputations. (b) Progression Prediction. PRO-ACT patients are 
imputed using each strategy. Ten-fold cross validation of a random forest regressor is performed on imputed patients.  

We then used the scikit-learn implementation of a random forest regressor23 to predict the 
ALSFRS score slope. The random forest regressor was chosen because four of the top six teams in 
the DREAM-Phil Bowen ALS Prediction Prize4Life challenge used variants of random forest 
regressors14. We also compare a random forest regressor modified to predict progression from the 
raw data without imputation34. Ten-fold cross validation was performed and the root mean squared 
error between the predicted slope and actual slope was calculated. We then extracted the top 10 
most important features used in the trained model for analysis (Figure 2B). 

3.  Results 

Most patients were missing approximately half of the features we extracted from the EHR (3A). 
The pooled aspect of the PRO-ACT data is particularly evident in the distribution of missing 
features as different clinical trials collected different amounts of data. Features tended to be 
observed in either less than 25% or in greater than 75% of patients (Figure 3B). Lab tests in 
particular demonstrated high variability of missingness among patients, with many present in 
small numbers of patients. It is impossible to determine the level of each type of missing data that 
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exists, but it is clear that at least some of data missing is due to clinical factors (trial group etc.). 
The most complete features are demographics and family history information, information likely 
collected before entry into any of the clinical trials. 

 
Figure 3. Histogram distribution and rug plot showing the number of patients each feature is present in. (a) The 
number of features each patient has. Ticks at the bottom indicate one patient with the count of features, bins indicate 
the number of patients in a range. (b) The number of patients having a recorded value for each feature. Ticks at the 
bottom indicate the number of patients a feature is present in, bins indicate the number of features in a range.  

3.1.  Missing completely at random spike-in results 

 
Figure 4. Effect of the amount of spiked-in missing data on imputation. Error bars indicate 5-fold cross validation 
score ranges. 

Mean, Median and Singular Value Decomposition imputation perform poorly when data is 
missing completely at random. However, they do not appear to degrade as the spike-in ratio 
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increase (Figure 4). This is not surprising for mean and median imputation because missing data is 
chosen completely at random and is unlikely to have a large effect on statistical averages. The 
autoencoder had the highest imputation performance despite increasing as the spike-in ratio 
increased.  

3.2.  Not missing at random spike-in results 

  
Figure 5. Effect of non-random spiked-in missing data on imputation (measured in root mean squared error). 
Autoencoder w/Dropout (2 layer 500 nodes each), SVD – SVDImpute with rank of 40, KNN - KNNimpute with 7 
neighbors, Mean – Column Mean Averaging, Median – column median averaging, SI – SoftImpute.  

The trends seen in the missing completely at random experiment largely repeat when the data is 
missing not at random. The autoencoder approach shows strong performance but is closely 
followed by the KNN, Softimpute and SVD approaches (Figure 5). KNN works by finding the k-
nearest neighbors for shared values and taking the mean for the missing feature. Autoencoders 
work by learning the optimal network for reconstruction. Similar input values will have similar 
hidden node values. This similarity could explain the relatively even performance between the two 
methods. In addition to recognizing similar samples, autoencoders have been shown to perform 
well when there is dependency or correlation between variables35; this is the scenario when data is 
missing not at random. When spike-in ratios increase to high levels the methods begin to converge 
to the performance of mean and median imputation. This is likely because too much of the signal 
is lost as missing data to learn the correlation structure. 

3.3.  ALS disease progression 

Imputation strategy has a modest but statistically significant impact on the root mean squared error 
of ALS disease progression prediction, but the autoencoder approach is the strongest performing 
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(Figure 6). Despite showing poor performance in the imputation accuracy exercises Singular 
Value Decomposition does approximately as well as k-nearest neighbors and SoftImpute in this 
experiment. A random forest regressor applied to the raw data is the worst performing, but is not 
significantly worse than any of the methods other than the Autoencoder. In terms of ALS disease 
progression, imputation does not appear to have a large effect on prediction, but can be vital to 
allow the use of other algorithms (prediction, clustering etc.) without modification. 

 
Figure 6. ALS Functional Rating Scale prediction accuracy shown for an autoencoder, k-nearest neighbors, mean 
averaging, median averaging, the raw input including missing values, soft impute and singular value decomposition. 
The box indicates inner quartiles with the line representing the median; the whiskers indicate outer quartiles excluding 
outliers. 

3.4.  ALS progression predictive indicat 

Nine out of the top ten most important features in the autoencoder-imputed random forest 
regressor were among the top fifteen identified in the DREAM Prediction challenge (Figure 7A). 
The amount of time using Riluzole was not among the top fifteen previously identified. Riluzole is 
the only FDA approved medication for ALS treatment but it is believed to have a limited effect on 
survival36–38. The finding that Riluzole is protective of ALS slope indicates some level of efficacy. 

Of the top ten most important features, five are missing in more than 50% of patients in the 
data set. This is a possible explanation for the improvement shown by Autoencoders, SVDimpute 
and KNNimpute over mean imputation. 
 By far the most important feature for prediction is the time from onset and several of the most 
important features are highly correlated with time from onset. ALSFRS slopes resemble a normal 
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distribution (Figure 7B). When including the entire PRO-ACT dataset, the Kolmogorov-Smirnov 
test score is 0.05 for patients with negative slopes. This indicates the progression of the disease is 
similar to a truncated normal distribution. We exclude positive slopes because ALS patients do not 
typically get better, and signs of doing so are likely the result of measurement error. Despite 
presenting in clinically heterogeneous manners, ALS progression as defined by the ALSFRS 
appears to be largely homogenous. Patients fall within a relatively normal distribution and have 
increasingly negative slopes the longer they ALS. 

 
Figure 7. Prediction feature importance. (a) Importance levels of the top 10 features to the random forest regressor 
with autoencoder imputed data. (b) Histogram distribution of patient ALSFRS slope levels. 

4.  Discussion and Conclusions 

In this study, we compared the performance of an autoencoder approach with popular imputation 
techniques in ALS EHR data. A multi-layer autoencoder with dropout showed robust imputation 
performance across a variety of spiked-in missing data experiments designed to be both 
completely at random and not at random. Furthermore, we found that imputation accuracy may not 
strictly correlate with predictive performance but the most accurate imputer provided the most 
accurate predictor. The importance of imputation is demonstrated by five of the top ten most 
important features for prediction being missing in more than 50% of patients.  

Increased deterioration of imputation performance for KNNimpute and SVDimpute with 
increased missing data is at odds with previous research of imputation in microarrays7. Possible 
explanations include either reaching a threshold of missing data where the burden is too high for 
these methods to accurately impute or that a confounding systematic bias is introduced from the 
different clinical trials. 

This work is a promising first step in utilizing deep learning techniques for missing data 
imputation in the EHR but challenges remain. Autoencoders are computationally intensive, but 
less so than imputation techniques like MICE, Matrix Factorization and Nuclear Norm 
Minimization. With GPU resources, autoencoders train in similar amounts of time to both KNN 
and SVD methods for these clinical trials. As data increases, autoencoder training time increases 
linearly in line with the number of samples. Methods like KNN require computing a distance 
matrix, which increases in exponential time. In addition, further examination is necessary to 
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determine whether the strong performance shown by autoencoders is a result of the structure of 
this pooled clinical trial dataset. The subset of 1,800 patients is relatively small and methods may 
differ in performance increases with more patients.  
 This work offers promising results but has several limitations especially because it specifically 
analyzes pre-processed pooled clinical trial data. Clinical trials have more complete and cleaner 
data than raw EHR. Follow up work should be performed with other diseases and in the general 
patient population. These methods have also only been evaluated for quantitative values; in raw 
EHR data there will be an additional extraction step for raw text and qualitative observations that 
was not necessary due to PRO-ACT’s preprocessing. 

Additional future work will be concentrated on developing tools to better understand and 
interpret the structure of the trained autoencoder networks. We anticipate being able to recognize 
patterns in the trained weights to see correlation between input features. Understanding correlation 
will empower new clustering and visualization opportunities. Spike-in evaluations can provide a 
supervised context to otherwise unsupervised learning problems; further analysis should be 
performed on the higher-level learned features in the hidden layers of the autoencoders. We 
suspect these features may be useful in patient outcome classification and regression problems. 
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