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Repurposing existing drugs for new uses has attracted considerable attention over the past years.
To identify potential candidates that could be repositioned for a new indication, many studies make
use of chemical, target, and side effect similarity between drugs to train classifiers. Despite promising
prediction accuracies of these supervised computational models, their use in practice, such as for rare
diseases, is hindered by the assumption that there are already known and similar drugs for a given
condition of interest. In this study, using publicly available data sets, we question the prediction
accuracies of supervised approaches based on drug similarity when the drugs in the training and the
test set are completely disjoint. We first build a Python platform to generate reproducible similarity-
based drug repurposing models. Next, we show that, while a simple chemical, target, and side effect
similarity based machine learning method can achieve good performance on the benchmark data set,
the prediction performance drops sharply when the drugs in the folds of the cross validation are not
overlapping and the similarity information within the training and test sets are used independently.
These intriguing results suggest revisiting the assumptions underlying the validation scenarios of
similarity-based methods and underline the need for unsupervised approaches to identify novel drug
uses inside the unexplored pharmacological space. We make the digital notebook containing the
Python code to replicate our analysis that involves the drug repurposing platform based on machine
learning models and the proposed disjoint cross fold generation method freely available at github.
com/emreg00/repurpose.
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1. Introduction

Computational drug repurposing has gained popularity over the past decade, offering a pos-
sibility to counteract the increasing costs associated with the conventional drug development
pipelines. Several studies have focused on training similarity-based predictors (also known as
knowledge-based or guilt-by-association-based methods) using drug chemical, target and side
effect similarity between drugs (see Refs. 1–3 for recent reviews). These studies often combine
various features including but not limited to chemical 2D fingerprint similarity, overlap or in-
teraction network closeness of drug targets and correlation between drug side effects and build
a machine learning model based on different algorithms, such as support vector machines, ran-
dom forests and logistic regression classifiers.4–11 The proposed models are then compared in
a cross validation setting, in which a portion of the known drug-disease associations are hid-
den during training and used for the validation afterwards. The areas under reciver operating
characteristic (ROC) curves in the cross validation analysis reported for these models range
between 75-95%, suggesting that some of these models can accurately identify novel drug-
disease associations. Nevertheless, in reality, the applicability of these methods for discovery
of novel drug-disease associations has been limited due to “the reliance on data existing nearby
in pharmacological space” as highlighted by Hodos et al.2 Moreover, Vilar and colleagues alert
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the community about the potential “upstream bias introduced with the information provided
in the construction of the similarity measurement” in similarity-based predictors.12 Yet, since
many studies do not provide the data and code used to build the models for repurposing, it
is often cumbersome to validate, reproduce and reuse the underlying methodology.

In this study, first, we provide a Python-based platform for reproducible similarity-based
drug repurposing and then seek to quantify the effect of the assumptions on the existing data
nearby in pharmacological space. Following similar works evaluating various cross validation
approaches for drug-target and protein-protein interaction prediction,13,14 we adopt a stratified
disjoint cross validation strategy for splitting drug-disease pairs, where none of the drugs in
the training set appear in the test set. We show that, although a simple logistic regression
classifier can achieve good performance on the data set under a conventional cross validation
setting, it performs poorly when it faces with drugs it has never seen before.

Overall, our results suggest that the prediction accuracies reported by existing supervised
methods are optimistic, failing to represent what one would expect in a real-world setting.
We believe that the platform provided in this study could be useful for prospective studies to
perform benchmarking in a unified manner.

2. Results

2.1. A Python platform for reproducible similarity-based drug repurposing

To incentivize reproducibility in computational drug repurposing research, we provide a
Python-based platforma encapsulating several machine learning algorithms available in Python
Scikit-learn package15 available both as stand alone code and Jupyter notebook. The platform
consists of methods to (i) parse a publicly available data set containing drug chemical sub-
strucuture, target, side effect information, (ii) calculate drug similarity using a combination
of the three features provided in the data set, (iii) balance data such that the drug-disease
pairs have the same proportion of positive and negative instances, (iv) apply cross validation,
and (v) build classifiers (Fig. 1).

The platform facilitates access to several machine learning algorithms and cross validation
utilities available in Scikit-learn. By changing the configuration values, the user can build a
classifier using default parameters based on logistic regression, k-nearest neighbor classifier,
support vector machine, random forest, and gradient boosting classifier. We note, however,
these methods are provided as is and the user still has to take the necessary steps for parameter
optimization for these methods. The user can also adjust the proportion of the positive and
negative pairs within each fold by changing the parameter file. Furthermore, the platform is
easily customizable, allowing the user to define her own data balancing, cross validation and
classifier building methods.

2.2. Evaluating similarity-based drug repurposing via cross validation

Next, we show the utility of the platform by building a logistic regression based drug repur-
posing classifier that incorporates drug chemical, target, and side effect similarity, a simplified

aAvailable at github.com/emreg00/repurpose
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    - similarity calculation
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. . .

(powered by NumPy 
and Scikit-learn)

Fig. 1. Overview of the reproducible similarity-based repurposing platform.

version of the classifier suggested in a seminal paper by Gottlieb and colleagues.4 Our model
uses three drug-drug similarity based features compared to the combination of five drug-drug
similarity (similarity of targets in terms of gene ontology functions and protein interaction
network closeness in addition to the drug chemical, target, and side effect similarity) and two
disease-disease similarity-based features (ten in total) proposed by Gottlieb and colleagues.
We also incorporate the k-nearest-neighbor approach used by Zhang and coworkers,7 who
recently, built a classifier based on similarity to the 20 most similar drugs and compared it
to Gottlieb and colleagues. We build our model on the same data setb used by Zhang and
coworkers. We calculate the Pearson correlation between drugs using each of the three features
mentioned above. For each feature, we assign a score corresponding to the likelihood of a given
drug to be indicated for a disease based on the similarity scores and labels of the most similar
20 drugs. These scores are then combined in a logistic regression model and coefficients of the
model is derived using a cross validation scheme (see Methods).

We test the prediction accuracy of the classifier under a ten fold cross validation scheme,
where we split the available data set into ten groups, leave one group for testing the accuracy
of the classifier and use the remaining groups to train the classifier. We repeat the cross
validation analysis ten times to get estimates on the mean and standard deviation of the areas
under ROC curves (AUC) and report these values in Table 1. We find that the AUC of the
classifier is 84%, comparable to 87% reported by Zhang and coworkers. The slight discrepancy
between the values can be explained by (i) the original study using imputation on the feature
set and/or (ii) the authors reporting the AUC value from a single run instead of the mean

bMade publicly available by the Zhang et al. at http://astro.temple.edu/~tua87106/drugreposition.

html
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over multiple cross validation runs (due to the random subsampling of the data, the AUC
values in consequent runs might vary slightly).

Table 1. Areas under ROC and Precision-Recall curves (AUC and AUPRC) under vari-
ous validation schemes averaged over ten runs of ten-fold cross validation (S.d.: Standard
deviation).

Disjoint folds Mean AUC (%) S.d. AUC (%) Mean AUPRC (%) S.d. AUPRC (%)

No 84.1 0.3 83.7 0.3
Yes 65.6 0.5 62.8 0.5

2.3. Revisiting cross validation using disjoint folds

Existing studies often assume that the drugs that are in the test set will also appear in the
training set, a rather counter-intuitive assumption as, in practice, one is often interested in
predicting truly novel drug-disease associations (i.e. for drugs that have no known indications
previously). We challenge this assumption by evaluating the effect of having training and test
sets in which none of the drugs in one overlaps with the drugs in the other. Accordingly,
we implement a disjoint cross validation fold generation method that ensures that the drug-
disease pairs are split such that none of the drugs in the training set appear in the test set
(Fig. 2, see Methods for details).
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Fig. 2. Schematic representation of similarity-based repurposing and cross validation strategy. On a toy data
set consisting of four compounds c1, c2, c3, c4 and two phenotypes p1, p2, the similarity-based drug repurposing
approach is illustrated. c1 and c2 are indicated for p1 and p2, respectively. For instance, c3 can be inferred to
be useful for p1 due to its similarity to c1. Conventionally, k-fold cross validation randomly splits the data into
k groups preserving the overall proportion of the labels in the data. We propose a disjoint cross validation
scheme for paired data, such as drug-disease pairs in drug repurposing studies, that does not only preserve
the proportion of the labels but also ensures that none of the drugs from the pairs in one fold are in the other
folds. We demonstrate this on the toy data for k = 2 (two-fold cross validation).

In fact, several studies aim to investigate the prediction performance when the drugs in
the test set are dissimilar to those in the training data set. Nonetheless, they usually do not
guarantee that the trained models are unbiased with respect to unseen data. For instance,
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Luo et al.11 use an independent set of drug-disease associations, yet, 95% of the drugs in
the independent set are also in the original data set (109 out of 115). On the other hand,
Gottlieb et al.4 create the folds such that 10% of the drugs are hidden instead of 10% of the
drug-disease pairs, but they do not ensure that the drugs used to train the model are disjoint
from the drugs in the test set.
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Fig. 3. ROC curves for each fold with and without disjoint cross validation (in a single run).

2.4. Effect of the cross validation strategy on classifier performance

We use the drug-wise disjoint cross validation strategy to study its effect on the classifier
performance. We observe that the AUC drops significantly from 84% to 66% (P = 6.9 ×
10−23, assessed by two-sided t-test) when the classifier is trained with drug-disease associations
coming from the drugs that do not exist in the test data set (Table 1).

We suspect that this is due to the limited information within the test set from which the
similarity-based drug-disease associations are calculated (using 20 most similar drugs) before
they are fed to the classifier. To verify this, we repeat the analysis using two-fold, five-fold
and 20-fold cross validation and show that the number of folds does indeed have an effect
on the classifier performance (Table 2). In the two-fold disjoint cross validation scheme, the
classifier accuracy is almost as good as the ten-fold cross validation accuracy without using
disjoint folds, probably due to the number of drug-disease pairs within the test fold being
large enough to capture the similarity relationships between drugs. Conversely, in the 20-fold
disjoint cross validation scheme, the AUC drops to 59%, emphasizing the effect of the test set
size due to the increased number of folds.

We next turn to the ROC curve of each cross validation fold under the two different
strategies to examine the consistency among different folds (Fig. 3). We recognize that the
variance between the ROC curves is higher when the folds are drug-wise disjoint compared to
when drugs are shared among folds. As a result, the standard deviation over the corresponding
AUC values is larger in the drug-wise disjoint case (6.0% in disjoint vs 1.5% in non-disjoint),
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Table 2. Areas under ROC and Precision-Recall curves under disjoint k-fold cross validation
scheme for k = 2, 5, 10 and 20 averaged over ten runs.

Number of folds Mean AUC (%) S.d. AUC (%) Mean AUPRC (%) S.d. AUPRC (%)

2 80.7 0.3 79.3 0.3
5 73.6 0.7 71.9 0.7
10 65.6 0.5 62.8 0.5
20 59.1 0.6 57.0 0.3

suggesting that the predictions are less robust against the partitioning of the drugs in disjoint
cross validation.

Compiled mainly via text mining, the drug side effect information in SIDER is prone to
a high number of false positives. Given the reduced number of drugs with high similarity, the
effect of false positive associations might be more pronounced in the disjoint cross validation
than the non-disjoint scenario. Thus, to inspect whether the observed decline in the AUC can
be attributed to one of the features used in the classifier –such as side effect based similarity–,
we check the contribution of each feature under the disjoint cross validation scheme (Fig.
4). We confirm that this is not the case. In fact, the feature based on side effect similarity is
slightly more predictive than the rest (AUC=65% for side effect similarity vs 62% and 61% for
chemical and target similarity, respectively), corroborating the promise of side effect profiles
to describe similarities between drugs,4,7,16,17 despite potential noise in the annotations.

50
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target

side effect
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)

Fig. 4. Prediction accuracy (AUC) when each similarity feature used individually in disjoint cross validation.
Error bars show standard deviation of AUC over ten runs of ten-fold cross validation.

2.5. When similarity does not suffice

The drop in the AUC confirms that many drug-disease associations are missed when the drugs
in the test set have not been seen while training the classifier. For instance, the gold standard
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data contains several lipid lowering agents indicated for hypercholesterolemia: cholesterol ab-
sorption inhibitors (ezetimibe); fibrates (clofibrate, fenofibrate, gemfibrozil); and statins (ator-
vastatin, fluvastatin, lovastatin, pravastatin, simvastatin). We observe that most of these drugs
can be predicted for hypercholesterolemia due to their chemical, target, and side effect based
similarity to the other drugs within the same family when drugs are allowed to overlap across
cross validation folds. However, when the classifier is trained using disjoint cross validation,
most of these drug-disease associations can not be predicted correctly. Likewise, the drugs used
for juvenile rheumatoid arthritis (diclofenac, ibuprofen, methotrexate, naproxen, oxaprozin,
sulfasalazine, toletin) fail to manifest similarity to other drugs in the cross validation fold,
hence missed by the classifier. We also note a similar trend for acute myeloid leukemia drugs
(cyclophosphamide, daunorubicin, etoposide, idarubicin, mitoxantrone). In Table 3, we high-
light the similarity-based scores of the drug to the other drugs and the probability calculated
by the logistic regression classifier in a cross validation fold for several of these drug-disease
associations.

Table 3. Similarity scores and logistic regression based probabilities for several known drug-disease associa-
tions missed using disjoint cross validation.

Non-disjoint cross validation Disjoint cross validation

Drug Chemical Target Side effect Probability Chemical Target Side effect Probability
score score score score score score

Hypercholesterolemia drugs
fenofibrate 0.76 0.71 1.10 0.82 0.57 0 0.46 0.36
lovastatin 1.93 1.97 2.92 0.99 0 0 0 0.14

Juvenile rheumatoid arthritis drugs
ibuprofen 0.82 3.50 1.08 1.00 0 0.50 0.43 0.43
sulfasalazine 1.39 1.99 0.43 0.96 0 0.50 0.43 0.43

Acute myeloid leukemia drugs
daunorubicin 1.77 1.50 0 0.87 0 0 0 0.15
idarubicin 0.78 2.00 0.81 0.97 0 0 0 0.14

3. Methods

3.1. Data sets

We have retrieved the data set Zhang et al. curated for the analysis of the drug repurposing
classifier they proposed.7 They collected 1,007 approved drugs and their targets from Drug-
Bank,18 the chemical structure information of these drugs from PubChem19 and the side effect
information from SIDER.20 The drugs were represented by a combination of 775 targets ex-
tracted from DrugBank and 881 substructures in PubChem. They were able to map side effects
of 888 out of 1,007 drugs using SIDER, covering 61,102 drug-side effect associations coming
from 1,385 side effects. The known drug-disease indications span 3,250 associations between
799 drugs and 719 diseases and were extracted from the National Drug File - Reference Ter-
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minology (NDF-RT) as suggested in a previous study by Li and Lu.21 The data set is publicly
available online at http://astro.temple.edu/~tua87106/drugreposition.html. We used
the 536 drugs that were common among chemical, target, side effect, and indication data,
corresponding to 2,229 drug-disease associations covering 578 diseases and 40,455 drug-side
effect associations covering 1,252 side effects.

3.2. Drug similarity definitions

We used the data sets described above to build a drug-drug similarity matrix for each one of
the three feature types: chemical substructures, targets, side effects. For each feature type, the
drug i was defined by a binary vector Xi = [x1, x2, . . . , xn]T , corresponding to the existence of
the feature for that drug (1 if exists, 0 otherwise). The Pearson product-moment correlation
coefficient between two drugs i and j was then calculated using ρij = Cij√

Cii∗Cjj

, where Cij given

by

Cij = cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))]

The corrcoef function implemented in NumPy Python package was used to calculate cor-
relation coefficients for each drug-drug pair.

3.3. Similarity-based logistic regression classifier

We trained a logistic regression model to predict the drug-disease associations based on the
drug-drug similarities defined by the targets, chemical substructures, and side effects combined
for the 20 most similar drugs to the drug in concern. Therefore, the probability of observing
an association between the drug i and the disease j is

P (Yij = 1|schemical
ij , starget

ij , sside effect
ij ) =

1

1 + e−(β0+β1∗schemical
ij +β2∗stargetij +β3∗sside effect

ij )

where for each feature f ∈ { chemical, target, and side effect }, the similarity-based drug-
disease score sfij is defined as

sfij =
∑

k∈NN(i)

simf (i, k) ∗X(k, j)

with simf (i, k) being the similarity between two drugs i and k (calculated via Pearson
product-moment correlation coefficient as explained above), NN(i) is the set of 20 most similar
drugs to drug i (nearest neighbors in the similarity space), and X(k, j) being an indicator
function with values 1 if drug k is a known indication for disease j, and 0 otherwise.

We used the LogisticRegression function in Scikit-learn Python package with the L2 reg-
ularization option and the default values (inverse regularization strength of 1 and stopping
tolerance of 0.0001).
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3.4. Prediction accuracy evaluation

To assess the prediction performance of the logistic regression classifier, we calculated the area
under ROC curve (AUC) using k-fold cross validation scheme (e.g., k = 2, 5, 10, 20). We used
2,229 known drug-disease associations as the positive instances and marked all remaining pos-
sible associations between 536 drugs and 578 diseases (536×578−2, 229 = 307, 579 associations)
as negative instances. Following the previous studies, we balanced the data set such that it
contained twice as many negative instances as positives.4,7 Thus, in a k-fold cross validation
run, we created k groups containing 2, 229/k positive instances and 2 × 2, 229/k negative in-
stances that were randomly chosen among all negative instances. Each fold was used as the
test set once, in which all the remaining folds were used to train the classifier. In order to
get robust estimates of the AUC, we repeated the cross validation procedure ten times and
recorded the mean and the standard deviation of the AUC values over these runs. Note that,
the classifier we built relies on both the similarity and the labels of the training drug-disease
associations, as we calculate a drug-disease association score using the most similar 20 drugs
and their indication information. We made sure not to use the training information in the test
phase and calculated the drug-disease association scores within the training and test folds
separately. We used the roc curve and auc functions in Scikit-learn Python package to first
get the true and false positive rates at various cutoffs and then to calculate the AUC using
the trapezoidal rule.

3.5. Stratified disjoint cross validation for defining non-overlapping drug
groups

To investigate the robustness of the drug-disease association classifier in the case of unseen
data, we used a disjoint cross validation scheme, in which none of the drugs in one fold appear
in another fold. We created cross validation folds such that all the drugs with the same name
were in the same fold by first converting the drug’s name into an integer value and then taking
the modulo (k) of this value (for k-fold cross validation). To produce different groupings at
each run, we added a random integer to the integer value of the drug calculated based on its
name. The details of the algorithm are as follows:

D: data set containing drug-disease pairs, c: drug, p: disease,
l: label (1 if c is known to be indicated for p, 0 otherwise), k: number of cross validation folds,
fold: dictionary containing the fold index of each drug-disease pair
i := random([0, 100])
fold := {}
for each (c, p, l) ∈ D do
sum := 0
for each x ∈ characters(c) do
sum := sum+ to integer(x)

fold(c, p) := modulo(sum+ i, k)
return fold

To preserve the balance between positive and negative instances (stratified cross valida-
tion), we first grouped the data set into positive (Dl=1) and negative (Dl=0) pairs and applied
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the proposed disjoint fold generation algorithm above to each group.

4. Conclusions

Many recent similarity-based drug repurposing studies reported stunningly high prediction
performances, suggesting that drugs can be predicted for novel uses almost with perfect accu-
racy. Yet, there has not been an observable improvement in the drug discovery in the pharma
industry over the past years. We suspect this could be (i) because similarity-based methods
do not provide insights on the mechanism of action of drugs, failing to explain clinical failures
due to the lack of efficacy and safety and/or (ii) the reported accuracies being unrealistic due
to the underlying validation scheme.

To look into various validation schemes and toward increasing the reproducibility in com-
putational drug repurposing research, we provide a Python-based platform encapsulating ma-
chine learning algorithms available in Python Scikit-learn package and propose a disjoint cross
fold generation method. This platform allows us to easily evaluate the prediction performance
of a logistic regression classifier built using drug chemical, target, and side effect similarity
under various experimental settings. Using this platform, we investigate the role of the experi-
mental settings in similarity-based drug repurposing studies in producing optimistic prediction
accuracies. In particular, we seek to validate the drug repurposing model when it has never
seen the drug beforehand. To test this idea, we use a cross validation approach in which the
data is split such that none of the drugs in the test set are in the training set. We show that
the high success rate of the model drops sharply under such cross validation setting.

Indeed, in many computational biology problems dealing with paired data, such as predict-
ing drug targets, side effects, drug-drug interactions, protein-protein interactions, functional
annotations, and disease-genes, researches aim to leverage machine learning methods using
similarity between biomolecules. Our findings suggest that failure to take into account the
parity in such data sets can produce optimistic prediction accuracies, supporting earlier stud-
ies on drug-target and protein-protein interaction prediction.13,14 We particularly point out
the effect of the training set size when the drugs in the training and test sets do not over-
lap. Hence, we argue that, though useful in highlighting potential unknown drug-disease pairs,
similarity-based methods are likely to be ineffective to explore drugs that are not in the nearby
pharmacological space, i.e. the drugs with low chemical similarity or for which target and side
effect data are not abundant.

Alternatively, systems-level drug discovery approaches can offer insights on the mecha-
nism of action of the drugs by matching gene expression signatures upon drug treatment
to compensate the genomic changes caused by the disease22,23 or exploiting the paths from
drug targets to the genes perturbed in the diseases to explain the efficacy of treatments given
the interaction network.24 Nonetheless, these approaches are still at their infancy and their
accuracies remain modest,24,25 leaving room for improvement.
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