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 Given the exponential growth of biomedical data, researchers are faced with numerous 

challenges in extracting and interpreting information from these large, high-dimensional, 

incomplete, and often noisy data. To facilitate addressing this growing concern, the 

“Patterns in Biomedical Data-How do we find them?” session of the 2017 Pacific 

Symposium on Biocomputing (PSB) is devoted to exploring pattern recognition using 

data-driven approaches for biomedical and precision medicine applications. The papers 

selected for this session focus on novel machine learning techniques as well as 

applications of established methods to heterogeneous data. We also feature manuscripts 

aimed at addressing the current challenges associated with the analysis of biomedical 

data. 
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1. Introduction 

 

With great technological advances and numerous ‘big data’ initiatives targeted at generating and 

acquiring large amounts of biomedical information, there has been an astonishing growth in the 

volume of data in recent years [1]. Considering sequencing data alone, the size of data has 

approximately doubled every six months in the last decade [2]. Continuing at this rate, we can 

expect to reach a zettabyte of sequencing data generated per year by 2025 [2].   

 

Thus, the age of big data is upon us, and with its arrival comes the potential to revolutionize 

many aspects of our lives. Decisions previously made using carefully constructed, simulated 

models of reality can now be made using measured data. While the term ‘big data’ is not well 

defined, it will be used herein to describe a situation where the amount of information far 

exceeds that which has been previously available [3]. Big data analyses impact many areas of 

society, culture, and research. To combat crime, law enforcement officials are employing 

seismology-like models to predict areas of high crime, and intervene to prevent them from 

occurring [3]. With large scale surveys, such as the Two Micron All-Sky Survey, which contains 

a petabyte of data, astronomers can now focus their efforts illuminating structures and exploring 

potential connections and hypotheses [4]. In the area of public health and precision medicine, 

large-scale efforts have been made to create datasets aimed at elucidating the genetic 

underpinnings of various traits as a means of disease prevention and development of effective 

treatment. For example, the Precision Medicine Initiative Cohort Program announced by 

President Obama plans to enroll one million participants spanning a multitude of age and race 

groups within the US [5]. Other large-scale genome projects include the UK 100,000 Genomes 

Project [6], and the Geisinger MyCode Community Health Initiative which unites Geisinger 

Health System and Regeneron Genetics Center in a collaboration aimed at bio-banking and 

whole-exome sequencing more than 200,000 patients [7]. Likewise, public datasets, such as The 

Cancer Genome Atlas (TCGA), which provides molecular characterization of cancer genomes, 

continue to provide a wealth of data to researchers with the hope of one day improving clinical 

patient care. 

 

While these potentials are truly revolutionary, there are a number of challenges that can impede 

the promises of big data and make it difficult to extract the true value of this information. The 

sheer volume of available data and the rate at which it is being generated is overwhelming the 

majority of industries, many of which do not yet have the proper management, storage and 

analytical means of assessing this information [8]. Additionally, while small sample sizes are 

often prohibitive in research, the large sample sizes provided by big data initiatives may not be a 

panacea. Large sample sizes may be of little value if they are not representative of the population 

being assessed, are missing information (especially if missingness is nonrandom or important 

data is completely missing), or contain sampling biases [9]. Machine-learning approaches in this 

data-driven space will require an integration of different generated data types. In a biomedical 

setting, this may include clinical measurements, drug usage data, mRNA expression levels, and 

environmental exposures. These informatics methods must also be robust to incompleteness and 
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variable sparsity, as well as heterogeneity which can present mixtures of categorical and 

numerical data. Further considerations that will need to be made include scalability and dealing 

with a feature space that far exceeds the number of samples. 

 

The collection of papers presented in this session demonstrates a diversity of data-driven, pattern 

recognition approaches and challenges within the biomedical and precision health setting. These 

manuscripts span a wide range of categories from applications of well-studied informatics 

methods to novel pattern recognition techniques as well as approaches of overcoming big data 

challenges.   

 

2. Session Contributions: 

 

2.1 Machine Learning and Deep Learning Approaches 

 

Machine learning and deep learning have recently received a great deal of attention due to their 

potentially transformative applications to big data. Machine learning refers to a class of 

algorithms that can learn from and also make predictions on data [10], while deep learning 

describes a branch of machine learning that models data using multiple levels of representation 

and abstraction. These methods do not require explicit rules as they rely on the data, and 

generally speaking, the more data, the better the outcome of these techniques. While the use of 

data-driven approaches is not new, this is an expanding area of biomedical research that is 

gaining momentum due to algorithmic sophistication, computational advancement, and the 

growth in volume and variety of available data. 

 

Shameer et al. describe a data-driven feature selection and machine learning approach to predict 

hospital readmission in heart failure (HF) patients from electronic health records (EHR) in 

“Predictive Modeling of Hospital Readmission Rates using Electronic Medical Record-wide 

Machine Learning: A Cased-Study Using Mount Sinai Health Cohort”. Several data domains 

were extracted from the EHR including diagnoses, medications, laboratory measurements, 

procedures, and vitals. Separate models were generated from the data domains using the Naïve 

Bayes algorithm and then combined. Feature selection was performed using a correlation-based 

method. Their approach was contrasted to using logistic regression, and it performed well over 

all existing predictive models in HF. 

 

In the manuscript "Missing data imputation in the electronic health record using deeply learned 

autoencoders" Beaulieu-Jones et al. tackle the important issue of dealing with missing data, 

commonly encountered in the context of EHR. Specifically, the authors use the Pooled Resource 

Open-Access Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Database (PRO-ACT) to 

evaluate missing data imputation performance of a machine learning approach, namely deeply 

learned autoencoders, and compare it to the performance of several established imputation 

strategies, such as mean, median, K-nearest neighbors, or Singular Value Decomposition (SVD). 

They show that autoencoders outperform other methods in imputation of data missing 

completely at random (MCAR), as well as data missing not at random (MNAR). Furthermore, 
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they used data imputed by different methods to predict ALS progression and identify the most 

important predictors of ALS. 

 

One of the challenges associated with applying machine learning approaches to biological 

problems is the interpretation of the models that arise from them. In the manuscript titled "DG-

Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks", 

Lanchantin et al. present a visualization toolkit called the Deep Genomic Dashboard (DG-

Dashboard), which facilitates interpretation of deep neural network models in the context of 

predicting transcription factor binding sites (TFBS) along genomic DNA. In particular, DG-

Dashboard offers three strategies: saliency maps, temporal output scores, and class 

optimizations, which enable visualization of nucleotide importance within a particular motif, 

critical positions along a DNA sequence, as well as class-specific motif patterns for a particular 

TF based on predictions obtained from convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), as well as convolutional-recurrent neural networks (CNN-RNNs). In addition 

to facilitating interpretation of the three deep neural network architectures, Lanchantin et al. 

demonstrate that CNN-RNNs outperform CNN and RNN in classification of TFBSs. 

 

2.2 Pattern recognition applications in EHR, Medical Imaging, and Mobile Health data 

 

Applications of machine learning approaches are widespread in the biomedical sector. EHRs, 

biomedical images, and mobile health apps are just a few of the many sources researchers are 

mining to advance human health. Data-driven approaches can leverage the wealth of information 

in these sources and extract meaningful knowledge which can then be utilized to study disease 

progression and symptom patterns, classify patient subgroups, and inform clinical practice and 

decision-making.  

 

One such application is digital image analysis that was implemented to classify the bone cancer 

in “Large Scale Image Segmentation and Classification for Viable and non-viable Tumor 

Identification in Osteosarcoma”. Arunachalam et al. demonstrate a high-throughput approach to 

classify the tumor region from images of Hematoxylin and eosin (H&E) stain slides from bone 

cancer patients. They proposed a multi-tier approach where they used pixel and object based 

approach to color and classify different histopathological regions of cancer cells in the digital 

stain images. Further, they used a combination of multiple clustering algorithms to define viable 

and non-viable tumors. 

 

In “Development and Performance of Text-Mining Algorithms to Extract Socioeconomics Status 

from DE-identified Electronic Health Records”, Hollister et al. describe a data mining approach, 

where they developed an algorithm to define a phenotype status from variety of structured and 

unstructured free text in EHR. In order to investigate socioeconomics status (SES) they 

developed seven different algorithms predictive of SES like Education, Occupation, Insurance 

Status, Retirement, Medicaid, and Homelessness. Their work addresses an important question 

associated with health outcomes and the socioeconomic status extracted from various semantic 

categories. They provide performance metric of seven algorithms, but also highlight many 
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shortcoming and challenges that potentially affect phenotype algorithm development in current 

EHR systems.  

 

In “Methods for Clustering Time Series Data Acquired from Mobile Health Apps”, Tignor and 

colleagues present a method to cluster individuals with asthma using data collected from a 

mobile health app. The data represent a time series of daily asthma symptoms which exhibit non-

ignorable missingness. Their work focuses on developing a novel probabilistic imputation 

method, and combined with a consensus clustering algorithm, is used to identify distinct 

symptom patterns. Variations on the algorithm implementation are devised and compared. 

 

Studying the heterogeneous patterns of disease manifestation and progression is important for the 

clinical treatment and management of a condition. In “Learning Attributes of Disease 

Progression from Trajectories of Sparse Lab Values”, Agarwal et al. use the Functional 

Clustering Model (FCM) to cluster sparse clinical lab measures from patients with Chronic 

Kidney Disease (CKD) from the Stanford Health Care (SHC) system. The authors hypothesize 

that using data-driven approaches on trajectories of sparse lab values can create clinically 

meaningful clusters that highlight alternate disease progression patterns in CKD. Irregularity and 

sparsity in longitudinal EHR data creates high variance in trajectory estimates and often leads to 

unstable clusters. The FCM approach addresses this challenge by treating curve coefficients as 

random effects, and then projecting the curve into a subspace where the cluster centers now 

represent the probability of cluster membership. Using this approach, the authors cluster 

creatinine trajectories of CKD patients to create two patient groupings which feature distinct 

clinical attributes. 

 

2.3 Public Data Mining 

 

The extraction and identification of higher level relationships from high-throughput data and data 

repositories is an important area of research. For example, with the ever increasing amount of 

study information existing within PubMed, it is a challenge to integrate that much information to 

gain higher level insights over trends that have been found for genes and diseases. The 

information gained from effectively integrating comprehensive data together in novel ways could 

ultimately result in the “sum being greater than the parts”, providing new insights for further 

research and discovery. 

 

In “A new relevance estimator for compilation and visualization of disease patterns and 

potential drug targets”, von Korff et al. describe a tool, the Disease Relevance Miner 

(DDRelevanceMiner), which was developed using the concept of second order co-occurrence 

which takes advantage of calculating the similarity between two words that do not co-occur 

frequently, but co-occur with the same neighboring word. The authors used the basis of this 

approach but with the advancement of a relevance estimator. Using the DDRelevance Miner, the 

authors used HUGO gene identifiers, and then linked them to PubMed in order to extract 

relevant records for each gene, where each publication record in turn was searched with disease 

MeSH terms. Linking together these data along with a metric of relevance, provided detailed 
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disease-gene and disease-disease associations which could be further explored. This includes the 

identification of gene drug targets that had indications of being highly specific to single diseases.   

 

Wilson et al. evaluate the performance of four community detection algorithms to automatically 

determine groups of genes from protein-protein interaction networks using experimental data in 

“Discovery of Functional and Disease Pathways by Community Detection in Protein-Protein 

Interaction Networks”. To date, biological pathway information has been based on 

experimentally gained understanding. The various pathway repositories that exist are incredibly 

important resources, a testament to how much has been learned of the underlying structure of 

biology. These resources contribute to a greater understanding of gene expression and genetic 

association results, as well as identification of genetic interaction candidates. High throughput 

computational approaches could help fast track the evaluation of new potential pathways. 

Determining communities of biological networks could shed new light on groupings of genes 

with common biological functions or features. With the reliance of many analyses based on gene 

and pathway information, such as the Gene Set Enrichment Analysis (GSEA) [11], Pathway 

Analysis by Randomization Incorporating Structure (PARIS) [12], and other tools like Biofilter 

[13], further identification of pathways could support new hypothesis generation for 

experimental validation. In the manuscript by Wilson et al., several possible community 

detection methods were tested using a STRING protein-protein interaction network [14]. 

Communities obtained were then compared to curated biological pathways, over multiple 

metrics. Both known pathways were re-identified and possibly novel pathways were identified, 

the authors carefully characterized other features of these networks as well, highlighting the 

utility of community detection methods in identifying new pathways for further study.   
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