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In our recent Asthma Mobile Health Study (AMHS), thousands of asthma patients across the country 
contributed medical data through the iPhone Asthma Health App on a daily basis for an extended period of 
time. The collected data included daily self-reported asthma symptoms, symptom triggers, and real time 
geographic location information. The AMHS is just one of many studies occurring in the context of now 
many thousands of mobile health apps aimed at improving wellness and better managing chronic disease 
conditions, leveraging the passive and active collection of data from mobile, handheld smart devices. The 
ability to identify patient groups or patterns of symptoms that might predict adverse outcomes such as asthma 
exacerbations or hospitalizations from these types of large, prospectively collected data sets, would be of 
significant general interest. However, conventional clustering methods cannot be applied to these types of 
longitudinally collected data, especially survey data actively collected from app users, given heterogeneous 
patterns of missing values due to: 1) varying survey response rates among different users, 2) varying survey 
response rates over time of each user, and 3) non-overlapping periods of enrollment among different users. 
To handle such complicated missing data structure, we proposed a probability imputation model to infer 
missing data. We also employed a consensus clustering strategy in tandem with the multiple imputation 
procedure. Through simulation studies under a range of scenarios reflecting real data conditions, we 
identified favorable performance of the proposed method over other strategies that impute the missing value 
through low-rank matrix completion. When applying the proposed new method to study asthma triggers and 
symptoms collected as part of the AMHS, we identified several patient groups with distinct phenotype 
patterns. Further validation of the methods described in this paper might be used to identify clinically 
important patterns in large data sets with complicated missing data structure, improving the ability to use 
such data sets to identify at-risk populations for potential intervention.  
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1.  Introduction 

Handheld mobile devices such as the smartphone are increasingly being utilized by app 
developers to help users better manage their health and chronic disease conditions. These devices 
and the mobile health apps that run on them have the potential to provide critical, longitudinal 
components to an individual’s health record. In fact companies such as Apple have greatly 
facilitated this through their HealthKit, ResearchKit, CareKit, and Homekit platforms, which 
enable acquisition of very high frequency data over long periods of time, thus providing far more 
detailed phenotypic user profiles than could ever be reasonably generated in a typical clinical or 
research setting.  

Recently, benefiting from advances in mobile health technologies, we successfully conducted 
the Asthma Mobile Health Study using an iPhone app.1 Asthma is a common, highly variable and 
heterogeneous disease, and it has therefore been difficult to characterize patient disease subtypes 
precisely enough to inform an optimal individualized treatment plan. Less than half of the 25 
million people in the United States with asthma have optimal asthma control, significantly 
contributing to $56 billion in direct and indirect health care costs annually.2-3 In order to improve 
outcomes and reduce costs on a population level, it will be important to acquire large data sets to 
develop individualized models capable of identifying patients at highest risk to better target 
resources and tailor therapies. Prior efforts at identifying subgroups of asthma patients have been 
made based on demographics, lung function tests, biopsy results and blood testing, response to 
therapy,4 and recently, genetics.5-6 Our Asthma Health App, however, for the first time, enables 
one to collect rich time series data on asthma patients’ activities on a daily basis. This opens up 
the possibility to identify at-risk subgroups of patients based on high-resolution time-course 
symptom data. The ability to identify clinically relevant patterns of disease could potentially allow 
targeting of resources to at risk patients to improve disease control.  

Participants in the Asthma Mobile Health Study (AMHS) were asked to complete daily 
surveys to record symptoms and presumed triggers for the duration of the study. Taking the day 
symptom outcome as an example, the collected data of one user is a vector of 0’s and 1’s 
indicating whether the user experienced any asthma symptom on each day (1 indicating yes and 0 
no symptom experienced). Once collected, the day symptom outcome records of all users can be 
presented as a 0/1 matrix, which can be used to explore whether subgroups of asthma patients with 
distinct symptom patterns exist. However, one particular challenge with this type of survey results 
data is that they contain substantial missing values. While most users may respond to daily survey 
questions or choose to actively input data on their condition when appropriate, for any given 
subset of days for which data are being collected, the response rates will be highly varied among 
different users. Further, for formal studies such as AMHS, users enroll in the study on a rolling 
basis, such that many non-overlapping periods of enrollment among different users must be 
accounted for. Lastly, even for the same user, survey response rates often varied over time. Users 
may be more likely to respond on days when they experience disease symptoms, which further 
complicates analysis of the data.  

A crucial step in handling missing data is to characterize the nature of missing-ness. If the 
probability of missing data does not depend on the missing values, the missing-data mechanism is 
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referred to as missing-at-random; if so, the mechanism is referred to as not-missing-at-random or 
non-ignorable. When the proportion of missing values in a data set is large and the missing 
mechanism is not at random, it is not appropriate to ignore the missing mechanism and perform 
standard statistical analyses based on the observed values.7-8 In our AMHS data, since the 
probability of a user responding to the survey on a particular day depends on the user’s asthma 
symptom on that day, the missing mechanism is non-ignorable. Therefore, in this work, we 
propose a probability model to characterize the missing mechanism underlying such data and 
implement a consensus clustering algorithm incorporating multiple imputations. We compare our 
proposed method with other imputation strategies based on low rank matrix completion 
procedures.9 Through extensive simulation studies, we demonstrate the advantage of the 
probability model based imputation under a range of scenarios reflecting the characteristics of our 
time series data. While our method is applied to AMHS study and simulated data, the approach 
can be applied to any time series data in which the missing data mechanism is non-ignorable.  

2.  Method 

Our primary aim was to develop a method that would cluster users in AMHS based on their self-
reported day symptom outcome time-series data to identify subgroups of app users with distinct 
symptom patterns.  Given the substantial amount of missing data and that the missing data 
mechanism is non-ignorable, existing methods were not sufficient for this purpose.  

2.1.  A probability based imputation model 

Denote the day symptom outcome data matrix as 𝑋!×! = 𝑥!" , where 𝑖 = 1,⋯ ,𝑁, is the index of 
users and 𝑡 = 1,⋯ ,𝑇, is the index of days. Note, since asthma symptoms are often affected by 
environmental and seasonal changes, we align the profiles of different users according to actual 
dates instead of arbitrary days in the study. Each 𝑥!" takes on a value of 1 or 0, depending on 
whether the 𝑖!! user reported an asthma symptom on the 𝑡!! day or not, respectively; 𝑥!" is set to 
NA if the 𝑖!! user did not enroll in the study or did not respond to the daily survey on the 𝑡!! day.  
    We further introduce two binary data matrices: 𝑆!×! = 𝑠!"  to indicate whether users 
responded to the AMHS survey on each day; and 𝐷!×! = 𝑑!"  to represent the underlying 
complete day symptom outcome data. Given these matrices, the observed data 𝑋!×! satisfies: 
𝑥!" = 𝑑!", if 𝑠!" = 1; and 𝑥!" = 𝑁𝐴 if 𝑠!" = 0. If  𝐷!×! was available, existing methods could be 
employed to cluster users based on this data matrix. However, since we only observe 𝑋!×! and a 
substantial proportion of 𝑋!×!  is NA, we need to impute these missing values first before we can 
attempt clustering.   
      The key step for the imputation is to estimate the probability that a given user on a given day 
had a symptom event that should have been recorded, given the user did not respond to the survey 
on that day 𝑃 𝑑!" = 1 𝑠!" = 0 .  In light of the 6-month milestone survey, which is administered 
to each app user 6 months after the enrollment date in our AMHS, 12% of users indicated that 
they were more likely to respond to the survey on days when they experienced asthma 
symptom(s). Given this, we assume that there exists an 𝛼!  (≥ 1) for each user, such that 
𝑃 𝑠!" = 1 𝑑!" = 1 = 𝛼!𝑃 𝑠!" = 1 𝑑!" = 0 = 𝛼!𝑟!"!, where 𝑟!"! = 𝑃 𝑠!" = 1 𝑑!" = 0 . We treat 
each 𝛼! as a random variable, which takes the value of 1 with probability 0.88, and 2 with 
probability 0.12, in accordance with feedbacks from AMHS.  The choice of 2 is based on the 
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median level of possible range of 𝛼!   (1< 𝛼!  <3) that ensures realistic scenarios given the observed 
distribution of user response rates. Sensitivity analysis on choices of  𝛼!    is shown in Section 3.  

We further denote 𝑝!" = 𝑃 𝑑!" = 1 , 𝑝!" = 𝑃 𝑑!" = 1|𝑠!" = 1 , and 𝑟!" = 𝑃 (𝑠!" = 1). Thus 
we have that 𝑟!" =  𝑃 𝑠!" = 1 𝑑!" = 1 𝑃 𝑑!" = 1 +  𝑃 𝑠!" = 1 𝑑!" = 0 𝑃 𝑑!" = 0 = 𝛼!𝑟!"!𝑝!" +
𝑟!"! 1− 𝑝!" ;  𝑝!" =

 ! !!"!! !!"!! ! !!"!!
 ! !!"!! !!"!! ! !!"!! !! !!"!! !!"!! ! !!"!!

= !!!!"
!!!!"! !!!!" 

.  it follows that 

𝑝!" =
!!"

!! !!!!" !!!"
,   and    𝑟!"! = 𝑟!"

!! !!!!" !!!"
!!

.                                (1) 
And we have that 

  𝑃 𝑑!" = 1 𝑠!" = 0 = ! !!"!! !!"!! ! !!"!!
! !!"!! !!"!! ! !!"!! !! !!"!! !!"!! ! !!"!!

 

                                          = (!!!!!!"
!)!!"

(!!!!!!"
!)!!"!(!!!!"

!)(!!!!")
= (!!!!!!"

!)!!"
(!!!!!!"

!)!!"!!!(!!!!"
!)(!!!!")

. (2) 

We then propose to estimate 𝑝!" and 𝑟!"based on the observed data in a time window around 
the 𝑡!! day such that  

𝑝!"=
! !

!!′
!!,   !

!!′
!! 

!′!! !!

! !
!!′

!!
!′!! !!

, and  𝑟!" =
!(!!"′!!)!′!! !!

!
!′!! !!

 ,                       (3)    

 
where 𝐼 ∙  is the indicator function, and 𝛿 defines the size of the time window. If we plug equation 
(3) into equations (1) and (2), then we can obtain an estimate of 𝑃 𝑑!" = 1 𝑠!" = 0 . In the 
simulation and real data analysis below, we set  𝛿 to be 30 days. This choice resulted from a 
tradeoff between the robustness to estimate empirical response/symptom rates and sensitivity to 
capture changes within a short time period.    

2.2.  Multiple imputation and consensus clustering 

The probability model in section 2.1 provides a convenient framework for integrating the 
multiple-imputation procedure8 and the consensus clustering procedure.10 Specifically, in the 𝑏!! 
imputation run, we first simulate a vector of {𝛼!!}!. Then to impute an unobserved 𝑑!", we 
calculate 𝑃! 𝑑!! = 1 𝑠!" = 0  based on 𝛼!!, and randomly sample a value from a Bernoulli 
distribution with success probability of 𝑃! 𝑑!" = 1 𝑠!" = 0 .  We denote the final imputed 
complete matrix as 𝐷!×!! = 𝑑!"

! .  
Naively, we could perform clustering analysis based on 𝐷!×!!. However, when we compare 

the day symptom profiles of two users, it makes more sense to define distance based on their 
symptom frequencies over a time window instead of based on events on individual days. For 
example, suppose there are two users: one has symptoms on Monday, Wednesday and Friday in a 
given week, while the other has symptoms on Tuesday, Thursday and Saturday in the same week. 
If we considered the 0/1 vectors of daily symptom events of these two users for this week, they 
would be extremely different. However, if we consider the symptom frequency over the week, 
these two users actually show a similar pattern. Therefore, we propose to calculate the frequency 
profile of each user by performing a running average of the symptom profile: 
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𝑓!"! = 1 (2ℎ − 1) 𝑠!"′
!

!′!! !!  .  Then, we can derive clusters of users by performing K-means 
clustering based on the frequency matrix 𝐹!×!! = 𝑓!"! .  We can record the clustering result with 
an adjacency matrix ( 𝐴!"! )!×!, where 𝐴!"! = 1 if the 𝑖!! user and the 𝑗!! user are assigned to 
the same cluster; and 𝐴!"! = 0 otherwise. We repeat the above imputation-cluster process 𝐵 times. 
This gives us B adjacency matrices {( 𝐴!"! )!×!}! corresponding to B sets of clustering results. 
Intuitively, a large value for 𝐴!" suggests a high similarity between the 𝑖!! and 𝑗!! user. We can 
define an average adjacency matrix, 𝐴!" = 1 𝐵 𝐴!"!! , over all adjacency matrices, and then 
perform the final cluster assignment via another round of K-mean clustering based on the ( 𝐴!" ) 
matrix.  We refer to the above procedure as the probability based imputation with consensus 
clustering (PIC) method.  For the special case of ℎ = 1, clustering is performed on the imputed 
day symptom matrix 𝐷!×!!. We refer to this special case as the PIC.s method.                             

One variation on the PIC method worth exploring is to first perform Principal Component 
Analysis (PCA) on the 𝐷!×!! = 𝑑!"

!  matrix, and then select the loading matrix of the leading L 
principle components to further perform the clustering analysis.  We denote this variation of the 
PIC procedure as PIC.PC.     

3.   Simulation Studies 

In this section, we investigate the performance of the proposed methods through simulation 
studies under a range of scenarios reflecting real data conditions. 

3.1.  Methods to compare 

In addition to the three methods defined above, PIC, PIC.s and PIC.PC, we also consider 
performing the probability imputation without taking into account the non-random missing pattern 
(i.e. set 𝛼! = 1). We denote this strategy as “PIC(𝛼! = 1)”. We also include a few low-rank (LR) 
matrix completion based approaches for comparison. LR matrix completion has been recently 
demonstrated to be extremely powerful in recovering large scale matrices9.  Specifically, we 
employ the R package softImpute,11 which uses convex relaxation techniques to provide 
regularized low-rank solutions for large-scale matrix completion problems. We considered three 
strategies to apply the LR matrix completion (referred to as “LR” in below): (1) we directly apply 
LR on the raw data matrix (𝑋!×!); (2) for each user, we first imputed the missing data based on 
the probability model of PIC for days within his/her enrollment period, and then apply LR to 
impute the missing data on days outside the enrollment period; and (3) similar to (2) except that 
we further derive the frequency matrix following the imputations. Here, enrollment period of one 
user is defined as the period from the first to the last instance of non-missing observation based on 
the empirical day symptom data. In all three strategies, after data imputation, consensus clustering 
is performed in the same way as for PIC. We denote these three strategies as LR, PIC.S.LR, and 
PIC.LR, respectively.      

3.2.  Simulation settings  

To mimic the data from AMHS, in our simulations (see section 4), we set N=334, T=136, and the 
total number of clusters to be 3. In addition, we assumed 3 roughly equal-sized clusters (n1=111, 
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n2=111, and n3=112), so the accuracy of clustering result could be more intuitively assessed. We 
then generated multiple sets of frequency curves representing a variety of hypothetical symptom 
frequency profiles (i.e. {𝑃 (𝑑!" = 1)}!) (see Fig. 1). We assume the samples belonging to the same 
cluster share the same underlying symptom frequency profile.  To generate time-series data for 
each sample, we simulated symptom events of the 𝑡!! day by Bernoulli sampling of 0/1 based on 
the 𝑡!!  point of the corresponding frequency curve. To simulate non-overlapping enrollment 
periods, we sampled from the empirically observed enrollment period distribution from the 
AMHS data.  
    To further generate non-ignorable missing-ness, we used information from the milestone survey 
results in AMHS. In this survey, users are asked to provide their reasons for not responding to the 
daily survey during the study period. Based on users who provided milestone survey responses 
before April 4, 2016, 12% indicated that they tended to skip the daily surveys on days in which 
they had no symptoms. Thus, in the simulated data we sampled from a Bernoulli distributed 
random variable I to identify whether a user was among those whose response depended on 
symptom state, with p (I = 1) = 0.12. For samples assigned to I = 1, we introduced a parameter ∆ 
to modify the rate of missing data depending on symptom state such that 𝑠!" = 1 𝑑!" = 1 =
𝑃 𝑠!" = 1 + ∆ and 𝑃 𝑠!" = 1 𝑑!" = 0 = 𝑃 𝑠!" = 1 − ∆.  For other samples assigned to I = 0, 
we imposed uniformity over time such that 𝑃 𝑠!" = 1 𝑑!" = 1 = 𝑃 𝑠!" = 1 𝑑!" = 0 =
𝑃 𝑠!" = 1 . For each user, 𝑟!" = 𝑃 𝑠!" = 1  was set to be a constant 𝑟!, which is either a pre-
determined value or is sampled from an empirical distribution of missing rates calculated from the 
AMHS data. We then used 𝑃 𝑠!" = 1 𝑑!" = 1  and 𝑃 𝑠!" = 1 𝑑!" = 0  to generate missing data 
within the enrollment period.  

We considered various simulation settings to evaluate how the performances of the different 
methods were affected by various factors including: (1) the shapes of the frequency profiles, (2) 
the overall missing percentages, (3) the severity level of the non-random missing, (4) alternative 
scenarios for setting 𝛼! , and (5) we evaluated the power to detect association between a generic 
simulated covariate and the inferred cluster assignments derived from the application of each 
method on simulated data.  In the following, we varied one factor at a time, where unless 
specified, the default setting is to use the frequency profile set labeled b in Figure 1, ri = 0.4 for all 
users, ∆ = 0.3, and 𝛼! is 1 with probability 0.88 or 2 with probability 0.12. For all settings, the 
window size h used to derive the frequency profiles is simply set to be a fix value of 15, as we 
observed that the performance of all strategies are not sensitive to the different choices of h (data 
not shown).    

1. We considered 8 different sets of symptom frequency profiles as illustrated in Figure 1. 
2. We considered 4 different ways for setting ri, where for (1)-(3), ri = 0.2, 0.4, or 0.6; and for (4) 

ri is sampled from an empirical distribution of missing rates calculated from the AMHS data.  
3. We varied the value of ∆, where ∆ = 0.1, 0.3, or 0.5. 
4. We considered 3 alternative scenarios for setting 𝛼!, where for (a1)-(a3): 𝛼! is 1 with 

probability 0.88 and is 1.5, 2, or 2.5 with probability 0.12.  
5. We simulated a binary covariate based on true cluster assignments, where the probability of 

taking a value of 1 was set to 10% across all clusters (p1), or was set, depending on cluster 
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assignment, to: (p2) 10%, 15% or 20%, or (p3) 10%, 20% or 30%.  For these 3 scenarios, we 
evaluated the power to detect association between the simulated covariate and the predicted 
cluster assignments using a p-value cutoff of 0.05 based on Fisher’s Exact Test. 

3.3.  Simulation results 

For each simulation scenario, we applied each of the strategies in section 3.1 to derive predicted 
cluster assignments from simulated data sets.  True and predicted cluster assignments were 
compared using the adjusted Rand index.12 Based on the results from simulation Setting 1, 
strategies PIC and PICs perform well across a range of symptom profile scenarios (Fig. 1). 

	
Figure 1. Simulation results for Setting 1, where we consider 8 different sets of symptom frequency profiles while 
fixing ∆ = 0.3, and using 𝑟! = 0.4 for all users. Symptom profiles (a-g, left) are defined for sets of 3 clusters, where 
each cluster is color-coded from highest (dark) to lowest (light blue) overall mean symptom rate. Average adjusted 
rand indices and their standard deviations across 50 simulations with 100 iterations of imputation each are shown for 
all strategies.  
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The strategies involving low rank matrix completion display more variability across symptom 
profiles, particularly the LR strategy which shows a clear decrease in performance as simulation 
scenarios become more difficult. The accuracy of all methods tend to decrease with the overall 
missing rate of the data (Fig. 2A). LR is particularly worse in cases where the overall non-
response rate (ri) or the severity level of non-random missing (∆) is high (Fig. 2B). We also 
observe disadvantages of PIC(𝛼! = 1) compared to PIC under these same circumstances, due to 
the lack of treatment of non-ignorable missing (Fig. 2A and Fig. 2B). Most strategies show 
comparable performance across different 𝛼!  scenarios, with the exception of LR, which shows 
enhanced performance when 𝛼! is set to a2 (Fig. 2C). In the end, Fig. 2D suggests that PIC 
achieves better power to detect association between covariates and predicted clusters than other 
clustering strategies when the strength of association is simulated to be more moderate.  

	
Figure 2. Simulation results based on 50 data simulations with 100 multiple imputations each. A. Results for setting 2, 
where we consider several values of 𝑟!, including: 0.2, 0.4, and 0.6, where 𝑟! is a constant for all users; and EMP, 
where 𝑟! is sampled from the empirical distribution of missing rates calculated from AMHS data.  B. Results for 
setting 3, considering several values for ∆. C. Results for setting 4, where we consider different scenarios for 
assigning values to the random variable 𝛼!, where the maximum fold-difference in 
𝑃 𝑠!" = 1 𝑑!" = 1 /𝑃 𝑠!" = 1 𝑑!" = 0  varies from 1.5 (a1) to 2 (a2) to 2.5 (a3). D. Power analysis based on 3 
scenarios of simulated covariate data varying from null (p1) to strongest association (p3) with true cluster 
assignments. 
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4.  Analysis of the AMHS data using PIC 

Clustering analysis was performed for several data types, including daily symptoms and daily self-
reports of asthma triggers on air quality, heat, and pollen. Study participants were first clustered 
into subtypes using daily symptom data collected by the AMHS. To further characterize these 
subtypes, we tested for associations between predicted cluster assignments and clinical variables 
(age of diagnosis, GINA control level, smoking status, and weight), demographic variables 
(gender, income, and ethnicity), as well as self-reported trigger data collected by our app (pollen, 
heat, and air quality).  Tests of association were performed using Fisher’s exact tests, where we 
filtered out categories with fewer than 10 individuals where applicable. Supplemental Table 1 
summarizes these results (http://icahndigitalhealth.org/wp-content/uploads/2016/08/Clustering-
Supplemental-Data.pdf). 

 
Figure 3. A. Heatmap is based on the adjacency matrix derived from consensus clustering of daily asthma symptoms 
for 334 users over 136 days using strategy PIC based on 100 iterations of imputation. Three distinct clusters (n

1
 = 60, 

n
2
 = 98, and n

3
 = 176) are identified by color and enumeration (1-dark, 2-medium, and 3-light blue) where pairs of 

users most frequently found in the same cluster are found in the red regions along the diagonal.  B. Mean curves for 
the clusters are based on the average of smoothed-imputed data on asthma symptoms. Each curve shows the mean 
symptom rate for users belonging to each cluster. Clusters are color-coded from dark to light blue by the overall mean 
symptom rate for each cluster. C. Day symptom clusters are significantly associated with smoking status (p = 0.0005), 
gender (p = 0.02), and age of diagnosis (p = 0.03) based on Fisher’s exact test with simulated p-values based on 2,000 
replicates. Barplots show the percentage distribution for each category within each day symptom cluster.  

 
To conduct clustering analysis, we considered daily survey data collected by the app over the 
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without congestive heart failure or lung diseases other than asthma.  We further required that each 
user have at least 50 survey responses over the entire 6-month period. These filterings led to 334 
users in total. To ensure adequate overlap among enrollment periods across these users for 
comparing among methods in our simulation studies, we restricted our analysis to the 136-day 
period from April 2, 2015 (early spring) to August 8, 2015 (late summer), which corresponds to 
136 days in total.   

Based on daily survey data from 334 users over a period of 136 days, the average number of 
surveys provided per user was 70 (SD = 25), with an average per user enrollment period of 109 
days (SD = 25). The average within enrollment missing rate was .4 (SD = 0.2). Clustering on the 
daily asthma symptom data was performed using the PIC strategy.  After running the PIC method 
separately using different cluster numbers ranging from 2 to 5, we determined that users were well 
grouped into 3 clusters based on visual comparison of heatmaps derived from the adjacency 
matrices produced during the consensus clustering step of each run (Fig. 3A). Mean curves based 
on the average symptom rate for the users belonging to each of these clusters is shown in Figure 
3B based on the average of the smoothed imputed data across 100 iterations of imputation, where 
curves are color-coded from dark to light blue to identify clusters with high, middle, and low 
symptom rates based on averaging across days.  

We first sought to characterize our derived day symptom subtypes by comparing them with 
clinical and demographic variables. We found a significant association between asthma symptoms 
and smoking status (Fisher’s exact test: p = 5e-4; n = 333), gender (Fisher’s exact test: p = 0.02; n 
= 292), and age of diagnosis (Fisher’s exact test: p = 0.03; n = 330). To study the relationship 
between asthma subtypes and environmental triggers, we used a similar approach to cluster self-
reported data on daily asthma triggers collected by the AMHS. In the daily survey, participants 
were asked to self-report on symptom triggers on a given day. Specifically, users were able to 
choose from a list of 22 known asthma triggers, including allergens such as pollen, pet dander, and 
weather conditions. We chose to focus our analysis on air quality, heat, and pollen trigger data 
based on results from previous validation efforts comparing trigger data with more objective 
measures (PM2.5, max daily temperature, and pollen counts) using publicly available datasets1.  

Triggers were coded as 0/1 depending on whether a user cited a given trigger on a given day. 
Although we know that missing data in symptom reports were not random, we have little basis for 
attributing non-reported symptoms to one trigger over another with greater probability.  Therefore, 
in conducting missing data imputation for trigger data, we used PIC(𝛼! = 1).  Heatmaps resulting 
from the application of this method are shown in Supplemental Figure 1A-C 
(http://icahndigitalhealth.org/wp-content/uploads/2016/08/Clustering-Supplemental-Data.pdf). 

Based on these groupings, self-reported asthma triggers were associated with the day symptom 
cluster groupings. Specifically, with Fisher’s exact test, we found highly significant associations 
between day symptom clusters and clusters derived from self-reported data on pollen (p = 5e-4; N 
= 333), heat (p = 5e-4; N = 333), and air quality (p = 0.02; N = 333) triggers. As expected, we 
found a significant association between heat and US climate regions13 broken down by northern 
and southern regions (Supplemental Table 2), with users belonging to cluster H1, who reported 
peak heat trigger complaints in late July, more frequently located in the northern US climate 
regions (72%) (p = 0.01; N = 288). We found that asthma trigger clusters differentiated by asthma 
subtype such that users who complain most frequently of pollen and heat are most frequently 
found in day symptom cluster 1, corresponding to the group with the highest average day 
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symptom levels (Fig. 4A-B). By contrast, individuals frequently citing air quality as their asthma 
trigger are more frequently found in cluster 3, corresponding to the lowest overall day symptom 
rate. 

 
Figure 4. A. Curves depict the mean percentage of users reporting air quality, heat, and pollen for each cluster derived 
from the application of PIC(𝛼! = 1) using 100 multiple imputations. Clusters are color-coded from dark (high) to light 
(low) according to the overall mean percentage for each cluster averaged across days. B. Day symptom clusters are 
significantly associated with trigger clusters for air quality (p = 0.02, N = 333), heat (p = 5e-4, N = 333), and pollen (p 
= 5e-4, N = 333), based on Fisher’s exact test with simulated p-values based on 2,000 replicates.  

5.  Discussion 

Here we have considered the problem of clustering time series data collected from mobile health 
apps in which there is a high proportion of missing data for which the missing data mechanism is 
at least partially known. For such cases, regular clustering methods cannot be applied directly. To 
bridge this gap, in this paper, we developed an integrated PIC strategy to both impute the missing 
data using a probabilistic model and then clustered samples to identify subgroups with distinct 
patterns.  The advantage of our PIC approach over other strategies based on low-rank matrix 
completion is demonstrated through extensive simulation studies.  

When applying PIC on the AMHS data, we identified a unique subgroup of patients who have 
relatively high symptom rates and are more sensitive to distinct environmental factors with 
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seasonal changes, such as heat and pollen. Furthermore, we noted relatively lower reported 
symptom rates associated with air quality, which may be attributed to the multi-factorial, reduced 
variability, and less well defined nature of this asthma trigger. With further validation, the ability 
to identify unique disease patterns in data sets with non-random missing data could be extremely 
useful in the conduct of environmental epidemiologic research as it could be used to track and 
identify novel environmental risk factors linked to worsening asthma. Moreover, it could enable 
us to identify at risk populations in large data sets and design targeted interventions to apply to 
reduce risk and improve outcomes. The ability to monitor asthma symptoms longitudinally by 
mobile technology, and identify specific subgroups of patients who have destabilization of asthma 
control based on specific triggers creates the opportunity to intervene early therapeutically.  For 
example, if high heat or high pollen conditions are identified using personalized reports available 
by mobile technology, personalized alerts regarding presence of triggers would allow patients to 
seek medical advice and potentially adjust therapy in order to avoid the need for urgent care.  R 
code implementing PIC (probability based imputation and consensus clustering) can be found 
here: http://icahndigitalhealth.org/wp-content/uploads/2016/10/PIC.R. 
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