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Over the last decades, we have observed an ongoing tremendous growth of available sequencing
data fueled by the advancements in wet-lab technology. The sequencing information is only the
beginning of the actual understanding of how organisms survive and prosper. It is, for instance,
equally important to also unravel the proteomic repertoire of an organism. A classical computational
approach for detecting protein families is a sequence-based similarity calculation coupled with a
subsequent cluster analysis. In this work we have intensively analyzed various clustering tools on
a large scale. We used the data to investigate the behavior of the tools’ parameters underlining
the diversity of the protein families. Furthermore, we trained regression models for predicting the
expected performance of a clustering tool for an unknown data set and aimed to also suggest optimal
parameters in an automated fashion. Our analysis demonstrates the benefits and limitations of the
clustering of proteins with low sequence similarity indicating that each protein family requires its own
distinct set of tools and parameters. All results, a tool prediction service, and additional supporting
material is also available online under http://proteinclustering.compbio.sdu.dk.
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1. Introduction

With current wet-lab technology, we are producing a vast amount of genomic data at an ever
increasing pace.1 The knowledge of the very sequence of the organism is only one part of the
complex puzzle of how organisms survive, reproduce and adopt to changing environmental
conditions.2 In order to benefit from the genomic data of an organism the data needs to be
analyzed in an efficient and automated manner.

Of fundamental importance is the identification and classification of protein families fos-
tering insights in the functional diversity of homologous proteins allowing to investigate the
evolutionary history of the proteins.3,4 Several, hand-curated databases exist providing infor-
mation on protein family classification, e.g., SCOP5 or PFAM.6 Even though these databases
are impressive in size, the number of known protein families is still growing with every se-
quenced organism.7 Therefore, it is of importance to have reliable and automated means of
classifying proteins in families, which can generally be separated into three groups:8,9 pairwise
alignment algorithms, generative models, and discriminative classifiers. Here, we are focusing
on the common approach of pairwise alignments using NCBI BLAST10 followed by a cluster
analysis. There exists a myriad of clustering tools, all of them require different parameters
and can only be used efficiently with a profound understanding of the underlying algorithm.
Furthermore, as every clustering approach uses a different way of determining its optimal
clustering, there is no universal best performer suiting all data sets equally well.11

There have been several studies comparing the performance of various clustering ap-
proaches for this task, discussing the problem from various points of view. For example, the
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study of Chan et al.12 compares the performance of two clustering tools on three different
genomes in order to assess the sensitivity of these tools towards the C+G content. The main
limitation of this study is the small number of data sets and tools utilized. In a different study
by Bernardes et al.3 a larger-scale attempt was taken to compare the general performance
of four different clustering approaches on data sets similar to our setting. The main focus of
the paper was to demonstrate the limitations of sequence-based similarity functions compared
to their novel profile based similarity function. Nevertheless, this work applied the tools in
question only to the entire SCOP data set (with various levels of sequence identities) and
clustered them into families and superfamilies. This approach neglects the variety within the
protein families but gives a good overview of the general performance of the tested tools.

In contrast to previous works, we create several hundred data sets comprising smaller
subsets of the SCOP data set in order to strategically assess the variance of the different
protein families and their consequences to the different clustering tools. Further, we clustered
each of our hundreds of data sets with extensive parameter training (1,000 parameters per
data set per tool) using seven popular clustering approaches which have already demonstrated
to work well on protein data sets.11 This approach allows for a more detailed evaluation of
the performances and limitations of the clustering tools. We further use the massive database
of 100 of thousands clustering results generated during this work in order to conduct a meta
learning approach, comparable to the work of De Souto et al.,13 for the prediction of the
expected clustering performance and thus a tool ranking. We also suggest the parameter
settings for the tools, as we can identify the most similar data set in our database together
with the best parameters.

To summarize, we present an in-depth analysis of protein clustering and the inherent
variability of the data sets. We intensively investigated the performance of the tools on 202
different data sets with 1,000 different parameter settings each. We investigated the behavior
of the tools and their parameters, reflecting the diversity of the different protein families. With
a meta-learning approach we aim to predict the expected performance of the clustering tools
on unseen data sets. We utilized intrinsic properties of the data sets (e.g., matrix rank or the
cluster coefficient) and used them as features of a regression model for the prediction. We also
provide the performance predictor as a web-service together with all results, the source code of
the predictor, and additional information at http://proteinclustering.compbio.sdu.dk.

2. Materials

2.1. Data sets

We based our work on the Astral SCOPe 2.06 data set with less than 40% sequence identity.5

This scenario is very challenging for clustering tools as the alignment scores fall into the so-
called twilight zone when the sequence identity drops below 35%.14 The data set provides
a gold standard classification derived from the SCOP database which we utilize in order to
assess the cluster quality. The Astral data set classifies each protein into a hierarchy of class,
fold, superfamily and eventually family.

For our goal of predicting the expected performance of the clustering tools we require
a multitude of data sets. Therefore, we have created sub-samples of the Astral data set by
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splitting it into classes and folds, i.e., we have created a single data set for each class, containing
only the sequences of the one class and one data set for each fold in the same fashion. In the
remainder we will refer to them as the class data sets and the fold data sets. This serves
two purposes: (1) we received a sufficient number of data sets and (2) we were able to assess
the diversity of the protein families and their impact on the clustering tools. We calculated
pairwise BLAST10 hits (E-value cut-off 100) between all protein sequences and converted them
into similarities using the ”Coverage BeH” method by Wittkop et al.15 (coverage factor f = 20,
cut-off 100, 000).

Given these data sets, we cluster each of them into the corresponding families, leading
to the following two scenarios : Class → Families and Fold → Families. We performed a
final filtering process by excluding all those data sets containing only one cluster, e.g., a fold
containing only one family. We excluded them because they are trivial to cluster and would
hugely distort the parameter prediction. After this final step we created seven class data sets
and 195 fold data sets.

2.2. Clustering Tools

Table 1. Overview of the chosen clustering methods. We assign an abbreviation to
each of the tools. We optimized the denoted parameters for each of the tools.

Abbreviation Name Optimized Parameter(s)
CDP Clusterdp16 Kernel radius dc ∈ [∧,∨]
HC(linkage) Hierarchical Clustering17 Number of clusters k ∈ [2, n]
MCL Markov Clustering18 Inflation I ∈ [1.1, 10]
PAM Partitioning Around Medoids19 Number of clusters k ∈ [2, n− 1]
TC Transitivity Clustering20 T ∈ [∧,∨]

We based our tool selection on the top performers (using the F1-score21) of a previous large-
scale performance comparison of various clustering approaches,11 summarized in Table 1. The
F1-score is defined as the harmonic mean of precision and recall when comparing a cluster
result with a gold standard. Generally, external validity indices (i.e., measures comparing
against a gold standard) evaluate a result with regard to the purity of individual clusters and
the completeness of the clusters.11,21 In that context, the F1-score is a comprehensive measure
that takes both of these into account by combining two external measures (precision and
recall). The F1-score is the quasi-standard in clustering evaluation and has already proved
useful in many biomedical contexts.11,21 All considered clustering tools performed very well
with an average F1-score of over 0.7 in the original study. We excluded tools which return
overlapping clusters, as the F1-Score is undefined for such clusterings. We treat hierarchical
clustering as three tools, depending on the linkage function used (single, complete, average).

3. Methods

3.1. Data Statistics & Clustering

For each data set, we calculated 25 data statistics (see Table 2). We selected these statistics
to reflect a wide variety of properties of the data sets. Note, that some of the statistics are
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2. a) Cluster Data Sets
(Clustering Methods)

1. Analyze Data Sets
(Data Statistics)

3. Prediction Model Selection
(Linear Regression with CV)

2. b) Cluster Validation
(F1-Score)

Outcome

New Data Set

Prediction Model

4. Clustering Method Suggestion 5. Parameter Suggestion

Features

Fig. 1. Overview of the workflow of the presented method. (1) We calculate the features for the models,
(2a) perform a clustering of all data sets and (2b) evaluate their quality. (1) and (2) are used to (3) train a
regression model. (4) This model is used to predict the expected performance of each tool and suggests (5)
the parameters.

correlated; this fact and the influence on the models is discussed in Section 3.2. The ranges
of all statistics except Minimal Similarity, Maximal Similarity and Number Samples were
normalized to [0, 1] to avoid biases in the trained regression models due to differences in the
value ranges.

We utilized ClustEval11 to execute each clustering tool with 1,000 different parameter sets
as indicated in Table 1 and validated the results using the F1-Score. The maximal execu-
tion time of any tool per clustering was limited to 15 minutes as we occasionally observed
degenerated execution times depending on the used parameters.

3.2. Regression & Feature Selection

For each clustering tool we selected an ordinary, Lasso and Ridge regression model. We used
the R functions lm, glmnet (α = 1) and glmnet (α = 0) to train ordinary, Lasso and Ridge
regression models respectively. The data set statistics used as features for the regression models
are potentially correlated and thus might be troublesome for regression models. For this reason,
we perform a feature selection for the ordinary linear regression. Lasso and Ridge regression
already have an intrinsic feature selection, thus they were not subject to an additional feature
selection.

We trained each of the three regression models per tool using the data statistics as feature
variables. The outcome variables are either the best achieved F1-Score of each tool on each
data set, or the parameter leading to the best result; depending on whether we want to predict
the F1-Scores or the parameters. To assess the quality of the prediction, we used the mean
absolute error (MAE) to measure error rates: MAE(ŷ, y) = 1

N

∑N
i=1 |ŷi−yi| where ŷi denotes the

prediction, yi the real value for data set i, and N the total number of data sets. Using MAE
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Table 2. Overview of the calculated data statistics. The Absolute Z-Score, Assortativity and Similarity Per-
centiles are parameterized, i.e., we calculate the same statistic multiple times for different parameters. The
brackets behind the statistic name denotes the number of parameters used.

Data Statistic Name Description
Absolute Z-Scores (4) The fraction of all object pairs having a similarity within {1,2,3,4} stan-

dard deviations from the mean.
Assortativity, un/weighted22 (2) The preference for vertices with same degree to connect to each other in

the similarity graph.
Clustering Coefficient, avg.23 The ratio of fully connected triplets of nodes to connected triplets of

nodes in the similarity graph.
Graph Adhesion24 The number of edges to remove such that the similarity graph falls into

several connected components.
Graph Density25 The ratio of the number of edges and the number of possible edges in

the similarity graph.
Graph Diversity, avg.26 The average scaled Shannon entropy of the weights of the incident edges

on each vertex in the similarity graph.
Graph Min-Cut25 The sum of edge weights to remove such that the similarity graph falls

into several connected components.
Matrix Rank The number of independent rows in the similarity matrix.
Maximal Similarity The largest similarity in the similarity matrix.
Minimal Similarity The smallest similarity in the similarity matrix.
Number Samples The number of objects in the input data set.
Similarity Percentiles (10) The fraction of all object pairs having a similarity within the {[0-10],[10-

20],. . .,[90-100]} similarity percentile.

allows for easy interpretation of the error-rate compared to other measures such as the root
mean squared error (RMSE).27

3.2.1. Cross Validation

In order to estimate prediction errors for a trained model we utilize a 10-fold cross validation.
We repeated the cross validations 100 times with different folds to minimize the influence of
a single fold. Note that the Astral data set has only seven classes, thus when only using the
class data sets, a Leave-one-out cross validation (LOOCV) was performed instead.

3.2.2. Feature Selection for Ordinary Regression Models

We utilized a greedy forward feature selection approach coupled with 10-fold cross validations
to select features and thus models with small prediction error while trying to avoid overfitting.
In each step of the process, we successively added that feature to the model which lead to the
smallest cross validation prediction error estimate.

During this feature selection procedure, we generate models of increasing complexity, i.e.,
using more features. Thus, both training and testing errors of the cross-validation will decrease
in the beginning. However, with increasing number of features, the model will overfit the
training data which is indicated by a growing prediction error. The moment we observe a
growing prediction error, we stop adding features and report the current model as the final
model. A similar feature selection procedure was previously published in Pahikkala et al .28
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4. Results & Discussion

4.1. Data Statistics
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Fig. 2. The distributions of data statistic values for the class and fold data sets. We normalized data statistics
using the theoretical maxima where available. The statistics Minimal Similarity, Maximal Similarity and
Number Samples are not normalized.

Figure 2 summarizes the calculated data statistics for both class and fold data sets. Gener-
ally, some statistics such as Graph Min-Cut, Graph Density or Clustering Coefficient empha-
size the sparsity of the pair-wise similarity matrix of the protein sequences. This is due to the
fact that the proteins in the Astral data set do not have large sequence similarities resulting
in many protein pairs without any significant BLAST hit. Further, we want to highlight two
interesting observations:

(1) There is a clear difference in the statistical properties between the class and fold data
sets. Again, this is due to the many protein pairs without any BLAST hit. The ratio of these
pairs is larger in the class data sets which contain even more distantly related proteins. This is
most clearly seen on Statistics such as Average Graph Diversity, Clustering Coefficient, Graph
Density, Similarity Percentile 10/20 and Absolute Z-Score 0-1/1-2 which are very sensitive
to this proportion.

(2) Even data sets of the same type (i.e., fold or class) vary hugely. This demonstrates the
variety of the different protein families. This is even more pronounced in the fold data sets as
they contain fewer families and thus are more susceptible to ”outlier” families whereas in the
class data sets, the variety of the different statistics is generally more balanced.

4.2. Clustering Tool Performances

We clustered all data sets into protein families using the clustering tools summarized in Ta-
ble 1 to all previously mentioned class and fold data sets. The resulting F1-Scores are de-
picted in Figure 3. Generally, the selected clustering methods perform well on the data sets.
HC(complete), MCL and PAM perform on average slightly worse than their competitors. The
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families (Fam).

performance of PAM on class data sets might be due to our execution time limit of 15 minutes
per clustering. For k-parameter values close to the real number of clusters in the classes, the
algorithm does not finish in time. On the other hand, we only have seven of those data sets
in this study, so the effect on the performance should be limited. None of the other methods
were affected by the time limit. The general trend is that fold data sets can be clustered
better (on average) than class data sets which can be explained by the fact that the class data
sets are sparser. When ranking the tools by their F1-Score performance for each data set it
shows that there is no best performer across all data sets, as expected. Rather, several tools
alternate in taking the top ranks. The lack of a universal best performer and the variance in
the rankings emphasize that performances and rankings are highly data set dependent. This
further motivates the demand of a predictor based on data statistics.

4.3. Clustering Tool Parameters
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parameter k is normalized by the number of objects.

We compared the best parameters of each tool for the two scenarios. Figure 4 summarizes
our findings. Clearly, when clustering a fold data set we can observe a considerably larger
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variety for all tools. Parameters directly reflecting the desired number of clusters, i.e. k, have
been normalized with the number of objects in the data set. Please note, that we cannot
use the mean k parameter as a general ”rule-of-thumb” as this value entirely depends on the
average family size in the data set which is determined by the way we created the data sets.
Nevertheless, the variance in the k parameters certainly demonstrate the variance in protein
families. The only outlier with respect to the k parameter is PAM, again likely due to the
runtime restriction.

Interestingly, the parameters of CDP and MCL have different means when clustering
classes compared to clustering folds. This has practical implications, as for an unknown data
set it is impossible to determine whether it is comprised of a class, a fold or a mixture. The
threshold T of TC remains stable regardless of the data set type, with a larger variance for
the fold data sets, including some significant outliers. Overall, this indicates that a naive
parameter suggestion for arbitrary protein data sets is not feasible at least it does not do
justice to the variety present in different protein families.

4.4. Predicting Tool Performance
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Figure 5 compares the tool performance prediction errors of the final models for all tools
when trained on all data sets. We also calculate a naive predictor serving as baseline which
predicts the average performance of each tool over all training data sets.

Generally, our final models outperform the naive models for all clustering tools except
MCL (difference in MAE of ≥ 0.025). Note that prediction errors are relatively low for both
kinds of models as all clustering tools performed well on the selected data sets. On average,
the predictions of the naive models have an MAE ≈ 0.1, while those of our final models show
an MAE ≈ 0.075. Ordinary models generally outperform Lasso and Ridge regression models
in terms of MAE. The general trend is MAE(ordinary) < MAE(lasso) < MAE(ridge). However,
the differences between ordinary, Lasso and Ridge regression are very small.
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All−>Fam: Feature Coefficients of Best Models In 100 x 10−fold CV

Fig. 6. This figure depicts the features and their average value in the different regression models for tool
performance prediction. The features are sorted according to how often they have been selected by all models.
We treated features with zero coefficient as not being in the model. The small number above each box indicates
how often the feature was selected by the model represented by the box. Please note that the feature Minimal
Similarity was never selected and thus is omitted from the figure.

Here, we want to point out the limitations of the models presented. A meaningful prediction
is only possible in case the features of the unknown data set are in the same range as the
features of the training data sets. We have chosen the ASTRAL data set with only up to 40%
sequence similarity as we expected to observe here the most extreme feature distributions
compared to data sets with higher sequence similarity.

Therefore, we have also tested the performance of the prediction with data sets not used
for training. For that we have used the SCOP data set with proteins having 95% or less
sequence identity; we proceeded as with the original data set and separated it also into the
different classes. The error for the predicted F1 score with 0.083 for Lasso and 0.084 for Ridge
regression was still remarkably small. Only the ordinary regression model showed a clear drop
in performance with an average error of 0.191. This indicates that the ordinary regression is
the most sensitive model with respect to unseen feature values. We will constantly update
the model with new clustering results in order to further improve the quality and robustness
of the models over time. To this point, the presented models should rather be regarded as a
proof-of-concept.

Furthermore, we compared which data statistics have been chosen as features in the dif-
ferent types of models (see Figure 6). Features that have been chosen by all models clearly
have predictive power for the tool performances. Examples for such features are the [10, 20]-
Similarity Percentile, Assortativity, Maximal Similarity and Weighted Assortativity. The coef-
ficients of the maximal similarity are very small compared to the other features, as this feature
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is not normalized and thus takes large values across the data sets.
The Graph Diversity measures whether a node in the similarity graph is very similar to only

few other nodes (low diversity) or is equally similar to many nodes (high diversity). All model
types chose this statistic as a predictor with negative impact on the tool performance. This
might be explained by the fact that a very high diversity implies equal similarities between
all nodes, leading to the lack of an actual cluster structure.

Interestingly, the selected Similarity Percentile statistics indicate that details of the simi-
larity distribution have a large predictive power for the tool performance. For example, many
pairwise similarities between the [10 − 20]-Similarity Percentile indicate a better tool perfor-
mance while fewer pairwise similarities between the [90 − 100]-Similarity Percentile have the
opposite effect.

Surprisingly, the Clustering Coefficient does not enter many models with a large coefficient.
Equally surprising, given the performance difference between the class and fold data sets, is
that the data set size is only very rarely chosen as a feature.

4.5. Predicting Tool Parameters
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Fig. 7. The prediction performances for clustering tool parameters when trained on all data sets. Note that
the various k parameters are summarized in one common plot and are normalized by the data set size.

As already previously discussed, a simple parameter suggestion valid for all data sets is
not feasible due to the large variance in the protein families. Therefore, we applied the same
pipeline as for the quality prediction to the parameters of the tools as well.

The results are summarized in Figure 7 and show a more mixed quality. We do not out-
perform the naive predictor for the threshold parameter T of TC and the Inflation parameter
of MCL. We clearly outperform the naive predictor in the case of the dc parameter of CDP
as well as the k parameters of all tools using such a parameter. Nevertheless, as discussed
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earlier, the k parameter is highly dependent on the way we have sampled the data sets, thus
the predictive power has to be taken into account with care. Overall, the results indicate that
an automated parameter prediction is not reliably possible with the presented simple models
and may require more test data and more sophisticated models. In practice, the user has to
resort to other methods for finding suitable parameters.29

5. Conclusion

With this work, we have thoroughly investigated the performance of seven well-known and
established clustering tools and have particularly investigated the behavior of the tools’ pa-
rameters. We have observed that all tools perform quite well on these data sets. Nevertheless,
the good performance can only be reached when exhaustive parameter finding by means of
a comparison against a gold standard is performed. In practice, such gold standards are not
available and consequently the parameters need to be retrieved by different means. When
investigating the behavior of the parameters, we cannot suggest the user a single parameter
for all data sets due to the high variance of the protein families. Only TC shows a consistent
behavior of a parameter which is not directly dependent on the number of clusters. Overall, a
single fixed parameter cannot account for the potential variety in the data sets. Even though
the k parameter also shows a consistent behavior, it is not suitable for any recommendations
as this behavior results from the way we have sampled our data sets which cannot be expected
in practice.

Given this massive repository of clustering results at hand, we utilized it for learning
regression models for predicting the expected performance of the investigated tools on pre-
viously unseen data sets. The presented model does outperform the naive model. Especially
when considering that all clustering tools performed constantly well, the achieved prediction
accuracy is notable. We also tested the models on data sets which have not been part of
the training process. This can be seen as a strong indicator that it is generally possible to
identify data sets suitable for a particular tool in an automated fashion. We have created a
web-service where the user can upload a data set and receive the expected performance of
the different tools. Please be advised that the model might fail when presented with data sets
whose feature values are outside of the range of values the model was trained on. The web
service also presents the features of the most similar training data set for comparison. The
service is available under http://proteinclustering.compbio.sdu.dk. We will constantly
enhance the model with additional data in order to cover a broader variety of data set features
and thus creating more reliable predictions.

More generally speaking, the study shows that state-of-the-art clustering tools, when pre-
sented only with sequence similarities, have limitations with capturing the high diversity of
protein families and require a specific parameter for every data set which cannot be easily
provided in practice. Nevertheless, the performance achieved by the tools is certainly good
enough to render this approach a viable one; probably the biggest limitation is due to the
rather simple similarity function only using sequence data. Fed with more sophisticated simi-
larity functions, these tools might be able to capture the nature of the data set even better.
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