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Analysis of single-subject transcriptome response data is an unmet need of precision medicine, 
made challenging by the high dimension, dynamic nature and difficulty in extracting meaningful 
signals from biological or stochastic noise. We have proposed a method for single subject analysis 
that uses a mixture model for transcript fold-change clustering from isogenically paired samples, 
followed by integration of these distributions with Gene Ontology Biological Processes (GO-BP) 
to reduce dimension and identify functional attributes. We then extended these methods to develop 
functional signing metrics for gene set process regulation by incorporating biological repressor 
relationships encoded in GO-BP as negatively_regulates edges. Results revealed reproducible and 
biologically meaningful signals from analysis of a single subject’s response, opening the door to 
future transcriptomic studies where subject and resource availability are currently limiting. We 
used inbred mouse strains fed different diets to provide isogenic biological replicates, permitting 
rigorous validation of our method. We compared significant genotype-specific GO-BP term results 
for overlap and rank order across three replicate pairs per genotype, and cross-methods to reference 
standards (limma+FET, SAM+FET, and GSEA). All single-subject analytics findings were robust 
and highly reproducible (median area under the ROC curve=0.96, n=24 genotypes x 3 replicates), 
providing confidence and validation of this approach for analyses in single subjects. R code is 
available online at http://www.lussiergroup.org/publications/PathwayActivity 
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1.  Introduction 

While precision medicine  moves towards understanding disease in individuals, transcriptome 
expression analysis remains largely in the realm of cohort-level understanding. In large part, this is 
due to the high dimension, broad range of expression values, and dynamic nature of the 
transcriptome. However, these qualities also mean that the transcriptome has major potential to 
reveal important processes during the dynamic course of a disease including onset, progression, 
and response to therapy1,2. Extracting signal from these data requires combating biological noise 
as well as platform and analysis pipeline factors, with variability in transcript expression levels 
influenced by an individual’s genome sequence, environment, and stochastic processes3-5.  

To counter these challenges, computationally focused investigations using whole 
transcriptome data to draw inferences about single subjects have typically required either a large 
set of reference samples for comparison, or used paired samples drawn from the same subject (e.g. 
tumor-normal) to control for a large component of individual variation. Then, they have (1) sought 
to find outlier expression patterns correlated with the phenotype of interest6-9, or (2) used 
clustering algorithms to bin individuals into a priori interpretable classifiers (ex. disease 
subtypes)10,11. Other more biologically focused approaches have limited the dimensionality of the 
whole transcriptome by constructing curated gene panels with known functional relevance for 
targeted analysis9,12. Combination approaches have integrated expression pattern discovery with 
biological knowledgebases (ex. Gene Ontology; GO)13,14 to identify functional gene set level 
signals that require the coordinated activation of many genes, thus reducing the dimension and 
impact of false positive gene-level prioritization. However, establishing how well a computational 
analysis method of transcript or pathway prioritization represents the ground truth of a disease is 
elusive and reproducibility between experiments or across analysis methods has been an issue that 
must be solved before transcriptomics can be applied to clinical data for non-research use, whether 
used for diagnosis, clinical decision making, or used to evaluate a patient’s response to therapy. 

We have previously described the “N-of-1-pathways MixEnrich” combination method for 
identification of physiologically responsive biological processes (gene sets) in a single subject 
using paired RNA-Seq data15. That study established that the MixEnrich method could recapture 
an average signal when applied to single subjects, though there were pathways identified by 
MixEnrich that did not appear as significant in the cohort analysis. In the absence of available 
replicate data or access to biological samples, we could not confidently establish whether these 
individually identified pathways were, in fact, biologically true for those patients, indicating 
heterogeneous characteristics relevant for personalized medicine. The goal of this study is to 
quantify reproducibility of single-subject results in a controlled setting with real biological data, as 
well to extend our bioinformatics methods development to incorporate functional logic that reveals 
activation, suppression or other regulatory alterations to a biological process. 

Some of the most powerful genetic tools for modeling human biology are inbred laboratory 
mouse strains that have been maintained via brother-sister mating for over a hundred generations, 
becoming genetically fixed and identical (isogenic) in the process16. As such, within a given strain 
they are genotype replicates, while across strains they maintain differences and can be considered 
as modeling distinct individuals, exhibiting a broad range of phenotypic variation17. We used this 
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principle to select a microarray dataset of inbred mice placed on an atherosclerotic high fat diet, 
originally published by Shockley and colleagues18. Biological/genotype replicates in this set 
allowed us to explore the data as a cohort (n=3/group) using paired limma19+FET, SAM+FET and 
GSEA analyses comparing high fat diet cohorts to normal diet cohorts within a genotype, or as 
three independent isogenic pairs by MixEnrich (3 replicate pairs of high fat:normal/strain).  

 
2.  Methods 

2.1.  Details of microarray and annotation datasets 

We downloaded 144 raw microarray samples from GEO (GSE10493), where Shockley et al.18 
used transcript profiling to study the effect of an atherosclerotic high fat diet on 12 inbred mouse 
strains. Microarray labeling errors were corrected as indicated on the Center for Genome 
Dynamics website (http://cgd.jax.org/datasets/expression/10strain.shtml). Briefly, male and female 
mice of each strain were fed a high-fat diet (30% Kcal from dairy fat) or a normal (6% fat) chow 
diet for 4 weeks. Then, livers were dissected and total mRNA expression profiling was done on 
n=3 mice per group using Affymetrix Mouse 430 v2 arrays.  

Probe sets were converted to 18, 017 gene identifiers using mouse4302mmentrezgprobe v21, 
downloaded from Brainarray at the University of Michigan 
(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/21.0.0/entrezg.asp). GO 
Biological Process (GO-BP) terms with gene annotations were downloaded from Mouse Genome 
Informatics20,21 (http://www.informatics.jax.org/downloads/reports/index.html#go; 
gene_association.mgi.gz) on 8 March 2017, and ontology terms were filtered to those 4,682 GO 
IDs with annotated gene set size between 15-500 (with subsumption) for increased biological 
resolution. The resulting GO-BP file was used for all enrichment analyses. 

2.2.  Data normalization and pre-processing 

All data files were individually normalized using R/bioconductor package SCAN.UPC for 
Single-Channel Array Normalization (SCAN)22,23. Batch effects were removed using ComBat24 
implemented via the SVA package25.  

2.3.  Creation of diet-responsive “individuals” through pairing of isogenic mice 

Although we were using these data to model individual responses to diet, we could not use 
paired microarrays drawn from a single biological individual as collection of liver RNA is a 
terminal procedure, and being assigned to one diet precludes the other.  

So, we created pairs of microarrays matched according to strain and sex (hereafter, 
“genotype”), but comprised of one chow-fed mouse and one high fat-fed mouse to create three 
replicates for quasi-single subject analysis. For example, if we consider the male C57BL/6J (B6) 
mice fed regular chow as #1-3 while those on high fat diet are #4-6, we would pair #1&4 (rep. 1), 
#2&5 (rep. 2), and #3&6 (rep. 3). As mice within a strain are isogenic and the experiment was 
conducted under rigorously controlled conditions, differences in gene expression for these pairs 
should represent the differences attributable to variation in the mouse’s diet, plus stochastic noise. 
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Within a strain, 0.8%26-11%27 (FDR=0.1) of transcripts expressed in mouse liver have been 
estimated to vary between individuals at baseline due to developmental, hormonal, circadian, and 
other factors. This may introduce some “false positive” results in our single-subject analyses that 
are more indicative of inter-individual variation than diet effect. Still, overall gene expression is 
highly consistent between mice of the same strain18,28 (Suppl. Fig. 1) and we consider this an 
acceptable caveat, as similar levels of variation can be observed in human blood samples collected 
from healthy individual volunteers over a time series29,30. An advantage of our model in contrast to 
simulations, is that by using biological replicates, we do not require manually set parameters to 
model noise and can capture a more realistic biological scenario – encompassing a range of 
expression variation, distributing that variation non-randomly across genes, and including gene-
gene interactions and gene-gene expression correlation where these apply in natural systems. 

2.4.  Calculation of reference standards from cohorts (limma+FET, SAM+FET and GSEA) 

To establish reference results for diet-responsive pathways in each genotype, we used three 
algorithmically distinct methods. For differentially expressed genes (DEG) followed by GO term 
enrichment (DEG+Enrichment) references, we used both the Linear Models for Microarray 
(limma)19,31 package for single channel microarray experiments and Significance Analysis of 
Microarrays (SAM)32 using siggenes33 to identify DEGs using the pairing matrix described in 2.3 
and matching that used for MixEnrich analyses. For limma, DEGs were identified for each 
genotype (n=3 high fat versus n=3 normal diet) at padj≤0.05 following Benjamini-Hochberg (B-H) 
multiple test correction. SAM was conducted as a moderated paired t-test with unequal variance 
with DEGs determined as significantly responsive according to within-genotype delta values 
based on 8 permutations and q-values calculated by the software. Deltas ranged from 0.8 (DBA/2J 
female) to 7.4 (CAST/EiJ female) with a median of 1.95, each selected to balance false positive 
and true positive rates. DEGs were used as input in a Fisher’s Exact Test (FET) to identify 
overrepresented GO-BP terms at FDRB-H ≤ 5% (Fig 3A). 

We also created a non-parametric reference of diet-responsive GO-BP terms for each genotype 
using Gene Set Enrichment Analysis (GSEA)8 software downloaded from the Broad Institute 
(http://software.broadinstitute.org/cancer/software/gsea/) and implemented in Java. GSEA GO-BP 
terms were called significant at FDR padj≤0.20, following the package developers recommended 
default parameters8. FDR was calculated via permutation after shuffling transcript labels 5000 
times without replacement. Note that GSEA does not allow paired sample design. 

2.5.  Identification of individually responsive GO-BP terms using MixEnrich 

We used the MixEnrich method published recently in Li et al (2017)15 to identify GO-BP 
terms for each sample pair, representing diet-responsive pathways in single subjects (72 files: 3 
isogenic replicate pairs x 12 strains x 2 sexes). Briefly, MixEnrich uses paired data from the same 
subject to control for genotype effects, and models the absolute value of the log-transformed fold 
change (|log2FC|) across conditions by a probabilistic Gaussian mixture. MixEnrich assumes that 
these log2FCs follow two distributions where one corresponds to transcripts whose expression is 
biologically altered between the two conditions (DEGs), and the other distribution corresponds to 
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the transcripts whose expression remains unaltered. Transcripts assigned to the “altered” 
distribution with a posterior probability >0.5 become inputs to an FET for identification of 
overrepresented GO-BP terms, with a Benjamini-Yekutieli multiple hypothesis testing correction 
applied (Fig. 3B). See full details and equations in Li (2017)15. R code for MixEnrich is available 
online at http://www.lussiergroup.org/publications/PathwayActivity 

2.6.  Assigning gene set functional direction in significant GO-BP terms 

We mined the ontology structure of GO to identify parent-child relationships with the edge 
annotation of negatively_regulates, representing child GO-BP terms whose gene product 
annotations have been curated as functional repressors of the activity described in the parent 
(Suppl File 1)34. For these transcripts, an increase in expression indicates functional repression or 
a decrease of GO-BP activity, while a decrease in expression indicates activation of GO-BP 
activity, or, more accurately – removal of suppression (Fig. 3C). When transcripts with these 
annotations were identified as DEGs, we reversed the sign of the log2FC in the parent term to 
mirror the functional impact of that gene’s change in expression on the parent term’s function.  

To sign a GO-BP term as activated, we identified DEGs with increased expression and no 
regulatory annotation (or exclusively regulates and/or positively_regulates edges), plus those 
genes with decreased expression and negatively_regulates edges in a direct child term as 
described. This ‘upregulated and upregulatory’ set was used in a new contingency table (Fig. 3D), 
and an FET for functional enrichment of BP activation was conducted. In parallel, a separate FET 
calculation was done to determine evidence that each GO-BP term was functionally suppressed, 
based on DEGs with decreased expression across the paired condition plus those with increased 
expression and a negative_regulates edge. These differ from the original FET for GO-BP term 
over-representation per se by using only the subset of signal from the (reciprocally) concordantly 
responsive transcripts. Final functionally signed pathway outputs were generated using the FET p-
value and OR from the complete set of altered transcripts (Fig 3A), together with a categorical 
direction determined from the FET described in this section and Fig 3C. Functional direction was 
assigned as (1) activated: FDR<5% FET in up-regulated/up-regulatory and non-significant FET in 
down-regulated/down-regulatory, (2) reduced activity: non-significant FET in up-regulated/up-
regulatory and FDR<5% in down-regulated/down-regulatory, (3) bi-directionally altered: 
FDR<5% in both FETs, or (4) ambiguous: non-significant in both FETs. GO-BP edge annotation 
files and R code are available online at http://www.lussiergroup.org/publications/PathwayActivity 
 
3.  Results and Discussion 

3.1.  GO-BP pathway discovery by MixEnrich, limma+FET, SAM+FET, and GSEA 

Across all of the analysis methods we observed that each genotype responded differently to the 
high fat diet (Table 1), which was as expected based on a large body of related work including 
original analyses using these data18,35-37. GSEA tended to identify fewer pathways than 
limma+FET or ME, even with a more relaxed FDR threshold at 20%. This could be due to the 
approach’s requirement that the underlying data contributing to the enrichment signal must be 
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directionally concordant8. SAM+FET results were also generally low with variable numbers of 
significant GO-BP term results relative to the other methods for certain strains (male A/J,, B6, 
I/Ln, female NZB). This could be the result of the increased solution space due to use of two 
parameters (delta, FC), and likely represents increased stringency applied by the SAM algorithm 
at the chosen values. On average, 55% of MixEnrich pathways identified in a given genotype 
replicate pair was common to all three ME replicate analyses of the same genotype, with an 
average of 42% overlap between all three ME replicates and limma+FET, and 41% overlap with 
SAM+FET analysis. These values are comparable to the overlap observed between SAM+FET 
and limma+FET (41% of limma+FET). Exact GO-BP term overlap across all six analyses was 
modest, averaging 40% of the smallest input value (range: 9%-75%). Based on its ubiquitous use 
in transcriptome analysis, high power and robust performance with smaller sample sizes38, we 
chose limma+FET as our reference standard when conducting more in-depth comparisons. 

3.2.  MixEnrich identified GO-BP terms are highly convergent with reference standard 

We compared the set of GO-BP terms identified in-common across all three MixEnrich genotype 
replicates to the set of “orphan” GO-BP terms identified by only one MixEnrich replicate (Fig. 
1A). Terms identified by all 3 MixEnrich replicates were highly overlapping with terms identified 
as significant by limma+FET at FDR 5%. The set of terms that were identified in common across 
MixEnrich replicates but not limma did still approach significance for the majority of cases, with a 

Table 1. Count of GO-BP terms identified for each genotype by limma+FET (n=3 paired 
subjects/genotype; FDR 5%), SAM+FET (n=3 paired subjects/genotype; FDR 5%), GSEA 
(n=3/diet/genotype; FDR 20%), or as 3 replicate isogenic single-subjects via MixEnrich (ME; n=1 
pair/genotype; FDR 5%).  

 Method 129 A/J BALB C3H C57BL CAST DBA/2 I/Ln MRL NZB PERA SM/J 

M
al

es
 

limma+FET 1034 1085 609 926 393 507 84 298 253 1317 1275 955 
SAM+FET 827 13 408 295 11 229 38 74 62 397 192 555 

GSEA 1171 1102 251 648 1181 524 19 588 21 1316 714 1203 
ME rep 1 1015 1155 934 872 865 727 269 816 530 1493 885 1182 
ME rep 2 1231 1121 649 752 1351 691 541 343 285 1050 868 817 
ME rep 3 970 1005 774 921 633 728 295 1170 394 1280 962 1045 

 all 3 ME 670 752 439 554 470 427 166 276 199 857 580 578 
 3 ME+limma 582 698 368 524 306 322 65 204 165 823 551 534 
 all methods 368 5 67 159 1 127 6 15 14 283 123 277 

Fe
m

al
es

 

limma+FET 70 1422 156 342 123 1100 48 797 127 1165 515 140 
SAM+FET 40 171 102 93 71 99 91 245 73 119 134 88 

GSEA 150 811 0 62 31 752 12 230 39 1117 25 77 
ME rep 1 400 1521 603 474 440 843 355 652 575 932 719 241 
ME rep 2 465 1256 275 435 252 1235 306 528 306 1096 708 281 
ME rep 3 386 1496 361 324 450 870 273 850 318 1225 470 338 

 all 3 ME 217 923 189 217 178 630 158 366 171 737 305 157 
 3 ME+limma 53 866 118 198 85 571 41 329 104 705 236 110 
 all methods 5 127 0 12 3 64 9 59 9 62 6 9 

 

Pacific Symposium on Biocomputing 2018

405



 
 

 

 

median FDR ~20% suggesting a threshold effect. In contrast, orphan GO-BP terms were largely 
far from significant by limma analysis, achieving a median FDR ~66%. 

    Next, we compared GO-BP lists using the receiver operator characteristic (ROC). ROC is most 
commonly used for estimating accuracy of a classifier, based on the balance between identification 
of true positives relative to false positives. A curve following the diagonal with area under the 
curve (AUC) equal to 0.5 indicates random performance, while, a curve that hugs the Y-axis up to 
a square turn at the top of the plot (AUC-ROC = 1) represents perfect accuracy39. In this case, a 
‘true positive’ was defined as the MixEnrich, SAM+FET or GSEA analysis identifying a GO-BP 
term that was also identified by limma+FET analysis of that genotype (FDR 5%), and a ‘false 
positive’ was defined as the MixEnrich, SAM+FET or GSEA analysis calling a significant GO-BP 
term that the limma+FET analysis did not. This should be considered an approximation as the 
limma method – though widely used and well-validated – is still likely to contain errors in the 
totality of the result, and selecting FDR 5% as a binary decision threshold for truth is somewhat 
arbitrary. In addition, for these analyses, we used exact GO-BP term matching only and did not 
credit similar but non-identical terms appearing on the comparison lists, which is a property we 
hope to investigate in future analyses. Nonetheless, MixEnrich replicates were highly accurate, 
capturing much of the signal detected by limma+FET (Table 1, Fig. 1B). Across all genotypes, the 
median AUC-ROC for single subject MixEnrich replicates was equal to 0.96 (males: 
median=0.96, 1st quartile= 0.94, 3rd quart=0.98; females: med=0.96, 1st quart=0.94, 3rd 
quart=0.97). In contrast, SAM+FET achieved a median AUC-ROC of 0.87 (males: med=0.84, 1st 
quart=0.80, 3rd quart=0.91; females: med=0.89, 1st quart=0.84, 3rd quart=0.93). GSEA scored 
median 0.81 for males (1st quart=0.67, 3rd quart=0.84) and 0.69 for females (1st quart=0.57, 3rd 
quart=0.81). Fig. 1B shows curves for four representative male genotypes. 
     We also examined the performance of MixEnrich and GSEA in terms of precision (positive 
prediction value) and recall (sensitivity) (Fig. 1C). Precision and recall are related to the true 

Figure 1. (A) Distribution of limma+FET adjusted p-values for GO-BP terms identified in common by all 
3 ME replicates in B6 male mice versus orphan GO-BPs identified by a single ME replicate. (B) ROC 
and (C) precision-recall curves assessing the results of GO-BP enrichment for three replicate pairs 
analyzed for each genotype by MixEnrich (red, three lines), or cohort-derived reference sets of n=3 high 
fat diet versus low fat diet mice analyzed by SAM+FET (dark gray, one line) and GSEA (light gray, one 
line). All curves were compared to a reference standard generated limma+FET at FDR 5%. 
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positive and false positive measurements in the ROC but provide additional evaluative 
information in terms of relevance. Precision can be interpreted as the probability that a retrieved 
positive result by MixEnrich, SAM+FET or GSEA is a true positive, again, based on limma 
analysis as the reference. Recall assesses the ability of those methods to retrieve the complete list 
of relevant results (those matching limma analysis of that genotypes). We observed all three of the 
MixEnrich replicates outperforming both SAM+FET and GSEA for all genotypes. Relative to the 
other three strains, precision measurements for the DBA/2J strain were poor, likely reflecting the 
subtler phenotypic and liver transcriptomic responses in this strain, with accordingly short 
significant GO-BP pathway list in the limma+FET derived reference. 

3.3.  Similarity by rank based correlation 

We next examined whether the GO-BP term lists were similarly ordered between the output of 
MixEnrich and limma. More than simple overlap, it is clearly important in terms of biological or 
clinical significance that reproducing the strongest and most salient signals should be afforded 
more weight than reproducing those near the bottom, as these may be of marginal significance 
despite meeting the set statistical threshold. We used the R package OrderedList40 to compare GO-
BP rank order according to their FET-derived GO-BP odds ratios (ORs). Each MixEnrich 
replicate was compared to the other two and limma+FET, resulting in 6 pairwise comparisons per 
genotype. P-values across all strains were extremely low (p<10-25), supporting the assertion that 
the GO-BP results of MixEnrich were highly consistent across replicates, and their order was 
highly consistent with the GO-BP pathway order determined by limma. Examining a correlation 
plot of the ranks (Fig. 2B) further supports this, as points largely follow the diagonal with the top 
left corner (highest ranks, sorting from lowest OR to highest OR) highly enriched for 
commonality. Thus, these analyses were reproducing the same dominant signals. 

We also examined each pairwise comparison using Spearman’s correlation coefficient (rho; 
Fig. 2A) on the rank of the FET odds ratio (Fig. 2B) and log2OR values themselves (Fig. 2C). 
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Figure 2. High correlation between rank order of GO-BP terms based on odds ratio. (A) high Spearman's correlation 
coefficient (rho) across all strains, only males shown. (B) Example plot of rank correlation using NZB female data, 
comparing MixEnrich replicate 3 to the limma analysis conducted across all NZB females, rho=0.75, p>10-25. Data 
are ranked from smallest to largest, so the largest ORs are ranked at (~1500, ~1500), rather than (1,1). (B) Example 
plot of log2(OR) values for the same pairwise comparison. 
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Correlation was high between MixEnrich genotype replicates and relative to limma (p-value <10-20 
for all pairwise comparisons), with no significant difference in correlation when cross-replicates 
were considered (MixEnrich-to-MixEnrich) versus MixEnrich-to-limma comparisons (p>0.05). 

3.4.  Novel signing of GO biological process activity 

Biologically, it is important to know whether the activity in an enriched GO-BP is increased or 
decreased by the disease state or intervention being studied. GSEA identifies uses concordant 
direction of gene expression changes, reporting results with a signed enrichment score. However, 
DEG+enrichment (as in limma+FET, SAM+FET, or MixEnrich analyses) only provides an odds 
ratio and statistical significance rating (p-value or FDR). Altered transcripts adding to the 
enrichment signal may be increased in expression, decreased, or bi-directionally split. In addition, 
the biological activity of genes annotated to a term can include negative regulators of that process, 
whose increased expression logically decreases the parent process when considered as functional 
biology. (Fig. 3B, 3C)34. In the mouse genome, 4889 unique gene products have been annotated as 
having negative regulatory activity in at least one biological process context (annotated to 
GO:0048519 or child terms), representing 20% of GO-BP annotated genes21. However, despite 
prevalence and utility, this regulatory relationship logic remains underused by the translational 
bioinformatics and related communities. 

We incorporated ontology relationships based on negatively_regulates edges into our analysis 
as described in Methods section 2.6 and Fig 3, then used FET on ‘upregulated and upregulatory’ 
genes and ‘downregulated and downregulatory’ genes separately. Comparing the results from 
incorporation of the negatively_regulates terms to a set of results without this relationship changed 
the categorical direction of approximately 10-15% of significant GO-BP terms, primarily shifting 
towards the green/bi-directionally altered category (not shown).  

Plotting these significant and functionally signed GO-BP terms in a heat map (Fig. 3D) 
highlights several findings. First, it is again clear that the transcriptional response to high fat diet 
across mouse genotypes shares some common responses, and some genotype-dependent 
differences. In the data shown, the most notable difference is between the relatively non-
responsive DBA/2J versus the other strains, though genotype-specific blocks of terms can be seen 
by unsupervised Euclidean clustering. Second, it is apparent that the GO-BP terms identified as 
significant by all of the methods and across all three biological replicates find a lot in common, as 
all four columns for a given genotype are visually consistent for much of their length. Third, we 
can see that the majority of significant DEG+enrichment identified pathways are signed in a 
common direction across replicates and methods. For GSEA columns (G), we used the sign of the 
enrichment score which results in either a unidirectional positive upregulation (blue) or negative 
downregulation (yellow), without the capacity for calling bidirectionality or including repressor 
function. As a result, the signing/color code of GSEA identified pathways appears as an outlier for 
a substantial number of pathways. Interestingly, GSEA also failed to identify most of the 
downregulated metabolic and biosynthesis pathways that comprised about 1/5 of the results in the 
other methods. These mechanistic responses have been verified and confirmed in other 
experiments18,37, so we consider this an omission from GSEA rather than a false positive. Looking 
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at trends across those pathways in our data, the high fat diet appeared to increase immune and 
inflammatory activity, increase response to stimulus activity, and decrease metabolic biosynthesis 
activity, each with some GO-BP specific and genotype-specific variability.  

 

3.5.  Biological interpretation of results 

We selected the strain comparison of NZB versus B6 to explore in greater detail. Across 
MixEnrich replicates and limma+FET, we found 268 common enriched GO-BP terms in response 
to diet with a further 190 GO-BP terms that appeared on 7/8 lists. These included many terms 
relating to induction of immune related responses and a reduction of cholesterol biosynthesis (Fig. 
3D) which is consistent with what was reported in the original analyses of these data18. Comparing 
strain-specific responses that may underlie differential phenotypic responses, we found 16 GO-BP 
terms that appeared as significantly enriched in 4/4 NZB analyses and 0/4 B6 analyses, with 5 
GO-BP terms significantly enriched in 4/4 B6 analyses and 0/4 NZB. NZB-specific responses 
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were suggestive of tissue remodeling in the liver, including angiogenesis related processes, 
homeostasis, actin and cellular/tissue differentiation. Meanwhile, B6-specific processes were all 
related to ‘entry into host’, suggesting immune or cell surface receptor mediated changes. 

We next determined if there were any GO-BP terms in common between the two strains where 
the direction of activity was opposed. Filtering the eligible list to only those GO-BP terms that 
were significant across all three MixEnrich replicates for both genotypes (n=436 terms), we found 
only one term that was significant and activated in B6 while significant and repressed in NZB 
mice. Cofactor catabolic process is involved in metabolism, and the participating transcripts 
contributing to the enrichment signal include Acat1, Aldh1l1, Blvra, Blvrb, Cbr3, Hmox1, Hmox2, 
Ncf1, Nudt7, suggesting that the specific processes of heme metabolism, Acetyl-CoA and NADPH 
oxidation may all be responding differentially across strains. Changes to energetic processes 
including each of these is consistent with what we would expect from a high fat diet, but without 
external validation we do not want to draw strong conclusions at transcript resolution. 

4. Limitations and future studies

Results described here demonstrate the MixEnrich method is reproducible across isogenic
replicates and provides interpretable insights at an accuracy level equivalent to other leading 
cross-method comparative analyses. However, there are limitations. First, GO-BP is designed to 
capture the normal behavior of a gene product within its cellular context14. If a biological process 
exists only within a pathogenic state (i.e. cancer), or if a gene product participates in a GO-BP 
exclusively in the pathogenic state, annotations will not be captured and true biology may be 
missed. This is a limitation of all gene set methods using GO, but should be acknowledged. In 
well-understood systems, a custom gene set or alternative ontology may be possible and preferred. 
Second, regulatory relationships may be context dependent, which we have not accounted for. 
Bidirectional regulatory capacity is known for certain transcription factors and epigenetic 
modifying proteins, depending on their interaction partners and which target(s) are being 
investigated. Our current strategy of treating all DEGs with negative_regulates edges as 
suppressors of their parent process may over-emphasize their down-regulatory capacity. We hope 
to incorporate a representation of dual annotations in the future. Third, our calculation of gene set 
overrepresentation via FET, though common, was not thoroughly tested, and alternative statistics 
(i.e. Mann-Whitney, hypergeometric) may better suit these data41. A final constraint on 
applicability of MixEnrich is that it has exclusively been tested in conditions where a paired 
sample approach can be used. This applies to many biological questions, but not all, and accurate 
interpretation of results relies on the ‘goodness’ of that assay’s experimental design. 

5. Conclusions

Developing and validating new methods capable of providing insight into the transcriptomes
of individuals has the potential to provide important information in aberrant, rare, highly stratified, 
or clinically relevant patient-level responses. In this study we examined cross-replicate and cross-
method reproducibility of GO-BP signal using the paired liver transcriptomes of isogenic mice. 
Overall, we the MixEnrich method was successfully reproduced the same GO-BP signals as other 
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methods including limma+FET, SAM+FET and GSEA, ranking signals in roughly the same 
priority order as limma+FET. The advantage of MixEnrich is that it only requires a single sample 
pair and allows individualized conclusions, while the mathematics of limma+FET and most other 
comparably validated methods require at least three pairs to capture an average response.  

In addition, to our knowledge, this is the first example of computational method that exploits 
regulatory edge relationships in signing GO-BP directionality as activated or repressed. These 
edges have been a component of the ontology structure since 201134, but primarily used to reason 
with logic for knowledge representation rather than incorporated into data analysis pipelines.  
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