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Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery 
applications including drug repurposing and elucidation of drug mechanisms. However, limited 
data availability across cell types has hindered our capacity to leverage or explore the cell-
specificity of these perturbations. While recent efforts have generated a large number of drug 
perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial 
drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific 
drug perturbation profiles using available expression data from related conditions--i.e. from other 
drugs and cell types. We developed a computational framework that first arranges existing profiles 
into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses 
either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured 
profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods 
have complementary performance, each superior in different regions in the drug-cell space. 
Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially 
expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for 
making downstream associations with drug targets and therapeutic classes. 
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1. Introduction

Genome-wide expression profiling of in vitro drug perturbations has proven to be useful for many 
aspects of drug discovery and development1. Applications include elucidation of drug 
mechanisms2, lead identification3, and drug repurposing4, 5. Despite this success, the capacity to 
leverage cell-specific responses has been hindered by limited data availability across cell types6, 7. 
To address this limitation, the Library of Integrated Cellular Signatures (LINCS) program8, 9 has 
greatly expanded the publicly available data to nearly one million profiles characterizing 
thousands of drugs exposed to dozens of cell types. However, this combinatorial space of drugs 
and cell types is vast, and many gaps remain in this space (see white space in Figure 3B). These 
gaps present difficulties both for large-scale analysis as well as for making cell-matched 
comparisons, e.g. between two drugs or between drug and disease. Therefore, we asked whether it 
is possible to leverage existing expression profiles to predict the remaining unmeasured profiles. 
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Expression responses to drug exposure are often highly cell-specific, e.g. due to differences in 
expression of drug targets. Indeed, we observe a high degree of cell-specificity for many drugs in 
the LINCS data (see Figure 1). The utility of such cell-specific gene expression has previously 
been demonstrated for a variety of applications. For example, a recent analysis10 found that LINCS 
expression profiles were more predictive of anti-cancer drug efficacy when using cell lines sharing 
a common lineage with the queried cancer type. Similarly, another study11 showed that using 
transcriptional similarity to predict drug-target interactions is more accurate when comparing drug 
profiles in the same cell line.  

Prior studies have described methods to predict expression profiles using outside information. 
For example, Gamazon, et al. (12) predict tissue-specific expression profiles from genetic variants, 
but are limited to heritable variation in expression. Conversely, Lagunin, et al. (13) predict drug-
induced expression responses from a drug’s chemical structure, but are agnostic to cell type. There 
are also many techniques to impute missing entries of a gene expression matrix, generally using 
either local (e.g. nearest neighbors) or global (e.g. low-rank matrix approximation) information14, 

15. However, most of these methods are not directly applicable to our setting, as they rely on 
having at least some measurements available in the target experimental setting.  

Here, we draw inspiration from this prior work to solve a new problem: predicting entire 
expression profiles for cell-specific drug perturbations that have not yet been measured. Our two 
approaches are complementary in their use of local vs. global information. The local algorithm, 
Drug Neighbor Profile Prediction (DNPP) is inspired by K-nearest neighbors but adapted to this 
de novo prediction setting. The global algorithm, Fast Low-Rank Tensor Completion (FaLRTC)16 
fills in the missing entries of a tensor using the observed entries. The underlying assumption here 
is that the data are low-rank, i.e. some small set of underlying factors (e.g. drug targets) explain 
most of the variation in the data. 

We evaluate our methods along with two baselines using several approaches. We use cross-
validation (CV) to measure correlation of true and predicted expression, as well as accuracy of 
differentially expressed genes (DEGs). We also study the dependence of accuracy on the amount 
of input data and explore the cell-specificity of our predictions. Finally, we demonstrate that the 
completed dataset adds value for downstream prediction of therapeutic classes and drug targets. 

Fig. 1: Distribution of cell-specificity of 2,130 drugs in the 
L1000 dataset. The cell-specificity is quantified per drug as the 
mean pairwise cosine distance between all of its cell-specific 
profiles, with a range of 0 (all cells identical) to 2 (perfect anti-
correlation). Four examples are shown (L to R: 
homoharringtonine, terfenadine, dexamethasone, and JNJ-
38877605). While some drugs induce very similar expression 
across cell types, the majority have higher cell-specificity 
corresponding to distinctive patterns in different cell types. 
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2.  Methods 

2.1.  Notation and terminology 

T refers to a tensor, with Td,g,c for drug d, gene g, and cell c. A colon subscript refers to all 
elements of that index. Cd and Dc respectively refer to the cell lines measured for drug d, and the 
drugs measured in cell c. Error bars in figures and text refer to ± one standard deviation. All 
correlations are Pearson’s correlations, denoted by r or 𝑐𝑜𝑟 ∙,∙ . ‘Drug’ refers to compounds 
represented in the data, including approved drugs, drug-like compounds, and tool compounds.  

2.2.  Data processing 
 
The LINCS drug expression data (herein, the “L1000 data”) is measured on a targeted 
expression profiling platform called L100017. The platform measures the expression of 978 
“landmark” genes (roughly 1000, hence the name), selected to be maximally predictive of the 
other genes while being widely expressed across many cell and tissue types.  

Differential expression computed from the level 3 L1000 data were downloaded from 
amp.pharm.mssm.edu/public/L1000CDS_download. The dataset was generated using the 
Characteristic Direction (CD) method18 and is validated and described more fully in19. Briefly, a 
CD was calculated for each replicate using linear discriminate analysis, to find the direction in 
gene space that best separates cases and controls. Replicates were averaged and normalized to unit 
length. Average cosine distance (ACD), i.e. the mean pairwise cosine distances between an 
experiment’s CD replicates, was used to estimate significance. The null distribution of the ACDs 
was calculated per batch using random sampling (n = 10,000) of replicates in the same batch. A p-
value for each profile (ACD p-value) was computed by comparing its ACD to the null. 

Tensor construction: The 201,484 CD profiles (20,413 drugs, 72 cell types) were filtered to 
34,716 profiles (6,928 drugs, 72 cell types) with ACD p ≤ 0.1 in order to remove the most 
unreliable data. Drugs and cell types with < 3 remaining experiments were removed, as well as 
duplicate drug id’s corresponding to the same drug, for a final count of 25,672 profiles (2,130 
drugs, 71 cells, 12.7% of all CDs). Profiles were averaged across all available concentration and 
time points, renormalized to have unit norm, and then arranged into a tensor (see Figure 2A). Of 
the 151,230 possible drug-cell pairs, the tensor contains 15,855, corresponding to 10.5% 
observation density. A smaller, more dense subset of this tensor was also used for some of the 
experiments, using the top 300 drugs and 15 cell lines, reaching an observation density of 71.4%. 
The tensor element Td,g,c is the gth coordinate of the CD vector for drug d in cell c. All values lie in 
the range [-1,1] after normalization, where a positive [negative] value corresponds to up- [down-] 
regulation. The 10 cell lines with the most data are listed in Table 1, along with the corresponding 
tissue of origin and number of profiles (i.e. drugs) present. Most of the 71 cell lines are cancer cell 
lines, and represent a range of human tissues including skin, lung, brain, kidney, and prostate.  

cell line MCF7 VCAP PC3 A375 A549 HA1E HT29 HCC515 HEPG2 NPC 

tissue breast prostate prostate skin lung kidney colon lung liver brain 

# profiles 1505 1368 1340 1168 1139 1127 1022 934 798 441 

Table 1. The top ten cell types in the data tensor, along with tissue of origin and number of drug profiles available. 
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2.3.  The Drug Neighbor Profile Prediction algorithm 

The DNPP algorithm (Figure 2E) is an adaptation of K-nearest neighbors (KNN) to the de novo 
prediction setting. In other words, KNN normally requires at least some data present in the target 
condition in order to identify neighbors. To overcome this limitation, DNPP defines similarity 
between drugsa instead of profiles. The similarity (S) between two drugs d and d’ is defined based 
on average correlation between the two drugs’ profiles as measured in other cell types:  

 S(d , ʹd ) = 1
Cd ∩C ʹd

cor(Td ,:, ʹc ,T ʹd ,:, ʹc ).ʹc ∈Cd∩C ʹd
∑  (1) 

DNPP then estimates the profile for drug d and cell c as a weighted average of (up to) K profiles 
from cell type c corresponding to neighboring drugs. To generate a prediction for (d, c), drug 
neighbors of d are chosen only amongst drugs that have data in cell c, and hence neighbors can 
differ per cell type. Finally, the weights on the K profiles are chosen proportional to 𝑆 𝑑, 𝑑( , 
normalized to sum to 1. We use K = 10 (CV results not shown). 

2.4.  The Fast, Low-Rank Tensor Completion algorithm 

Since there are many tensor completion algorithms available, we benchmarked a variety of 
algorithms for speed and accuracy (see supplementary for details) and subsequently selected the 
FaLRTC algorithm. The FaLRTC algorithm16 is sometimes referred to herein as simply ‘Tensor’ 
or ‘the tensor approach.’ We briefly describe the algorithm here, in a simplified form (see Figure 
2F). Like most tensor completion algorithms, FaLRTC assumes that the data has some low-rank 
structure. While there is a notion of rank for a tensor20, this is in general hard to compute. Hence, 
FaLRTC resorts to low-rank matrix approximations instead. A three-dimensional tensor can be 
                                                             
a We also tested a similar approach defining neighbors between cell lines, but the performance was not as strong. 

Fig. 2: Schematic overview. A. Expression profiles 
are compiled into a tensor of 978 genes x 2,130 
drugs x 71 cell types. Profiles are either completely 
missing, in grey, or fully observed, denoted by both 
white and multicolor columns. B. CV setup, where 
entire profiles are held out. C-D Averaging 
baselines; target value is in grey and the averaged 
entries are colored. E. DNPP algorithm. Target 
value is in grey. Drug neighbors are identified by 
comparing profiles in other cell lines, then neighbor 
profiles in the target cell line are combined to form 
the prediction. F. FaLRTC algorithm. The data 
tensor is input on the left, and then unfolded in step 
2 to form three matrices with dimensions G x CD 
(top), D x GC (middle), and C x DG (bottom). Each 
matrix is approximated using a spectral method and 
then reshaped into a tensor. The three tensors are 
then combined into one. Observed entries are reset 
to their initial values, and the process is iterated to 
minimize the matrix trace norms. 
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reshaped or ‘unfolded’ into matrices in three mathematically distinct ways20, i.e. a 𝐷×𝐶×𝐺 tensor 
can be unfolded into a 𝐷× 𝐶𝐺 , a 𝐶× 𝐷𝐺 , and a 𝐺× 𝐷𝐶  matrix. The algorithm forms all three 
such matrices, and then performs low-rank matrix approximation via a spectral method. The 
prediction of missing values is based on a weighted combination of the three matrix-derived 
estimates, where these weights (𝛼., 𝑖 = 1,2,3)	are user-defined parameters, constrained to be 
positive and sum to one. Observed elements are reset to their true values, and then this process is 
iterated using gradient descent to minimize (an upper bound on) the matrix ranks. Due to the 
column-structured pattern of missing entries in our tensors, gene correlation structure is less useful 
for predictions than correlations in the other two dimensions, and hence estimates from the matrix 
(𝐺×(𝐷𝐶))	that most strongly leverage gene correlations, were down-weighted by a factor of 100 
relative to the other two (i.e. 𝛼7 ≡ 𝛼9 100 ≡ 𝛼9 100). This can be seen as an adaptation of the 
algorithm to the present setting defined by the column-structured pattern of missing entries. 

2.5.  Baseline averaging schemes 

While many methods exist to impute randomly missing entries in a gene expression matrix, we are 
not aware of prior work predicting entire expression profiles without additional data inputs. Thus 
we use two simple baselines that make predictions by averaging relevant subsets of data. 1D-Mean 
(Figure 2C) predicts missing expression profiles for each drug by averaging all profiles available 
for that drug in the tensor (i.e. across cell lines). 2D-Mean (Figure 2D), combines the 1D-Mean 
average across cell lines with a similar average in the other dimension across drugs, i.e. 

 2DMean(d ,g,c;λ) = λ 1
Dc

T ʹd ,g ,c +ʹd ∈Dc
∑ (1−λ) 1

Cd
Td ,g , ʹcʹc ∈Cd

∑ ,  (2) 

We use λ = ½ based on CV experiments (results not shown).  

2.6.  Cross-validation for predicting gene expression profiles 

10-fold CV experiments were performed, where entire expression profiles were held out and then 
predicted (see Figure 2B), randomly selecting 10% of the profiles per fold. All of these predictions 
were compiled into a tensor, 𝑇, with the same dimensions and pattern of missing entries as the 
original tensor. Accuracy was measured as the Pearson correlation with truth (PCT). This is 
defined simply as PCT? = 𝑐𝑜𝑟 𝑇?, 𝑇? , where Ω corresponds to some subset of the tensor, the 
correlation is taken element-wise, and missing entries are ignored. For example, Ω might 
correspond to an individual drug-cell profile, a CV fold, or the entire tensor.  

2.7.  Predicting drug targets and ATC codes 

In order to build binary classifiers of drug-target interactions and Anatomic Therapeutic Chemical 
(ATC) classifications, drug profiles were compiled for all drugs represented in the data tensor, 
restricting to the top ten most-sampled cell lines (see Table 1). Measured profiles were used as is, 
and predicted profiles were generated using the DNPP method. The drug profiles and 
corresponding binary labels were used to train KNN, Random Forests (RF), and Regularized 
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Logistic Regression (LR) models via the caret package21. For each experiment (i.e. one profile 
type, prediction task, model, and choice of either measured or completed dataset; see Figure 5A) a 
grid search was performed using 10-fold CV to select model hyperparameters (see 
supplementary). The cross-validated predicted probabilities from the selected set of parameters 
were recorded and then used to compute several versions of AUC scores. In the first set of 
experiments, AUCs are compared between (a) classifiers trained on the completed data, versus (b) 
the same classifiers trained on only the measured subset of profiles. Here, AUCs are calculated on 
the common set of labels corresponding to the measured drug profiles only, and results were 
excluded from the analysis when both AUCs were < 0.5. In the second set of experiments, AUCs 
were computed on two complementary sets of predictions from the same model trained on the 
completed data, where the complementary sets are the drugs with measured profiles, vs. the set of 
drugs for which only predicted profiles are available. Here, experiments were again excluded if 
both AUCs were < 0.5, or if either drug set (for the measured or predicted profile sets) had < 3 
positive examples.  

3.  Results 

3.1.  Overall accuracy 

We start with an evaluation of the overall correlation between true and predicted values. Figure 3A 
shows a smoothed scatterplot of all Tensor (FaLRTC) predictions versus true values, where each 
point corresponds to a single, numeric entry in the tensor. The four methods achieved correlations 
(i.e. PCT, see Methods) of 0.53, 0.54, 0.46, and 0.40b.  
 

3.2.  Tradeoffs in accuracy across drug-cell space 

While DNPP and Tensor have similar overall performance, we observe a clear tradeoff in 
accuracy between the two methods across different regions of the space. Figure 3B shows which 
method was most accurate (based on PCT) for each profile in the tensor. We see that for drugs 
                                                             
b All results are reported in the following order: Tensor; DNPP; 2D-Mean; 1D-Mean. 
 

Fig. 3. Prediction accuracy. A. Scatterplot of Tensor-predicted vs. true values. B. Top-performing method per 
drug-cell profile in the tensor. C. Accuracy vs. observation density, where lower densities correspond to entire 
profiles being held out of the small tensor. D. ROC curves assessing prediction of DEGs. See text for details. 
 

Pacific Symposium on Biocomputing 2018

37



 
 

 

 

with profiles in many cell lines (i.e. near the bottom), the tensor approach is usually the top 
performer, while in the region on the left where fewer cell lines but many drugs have been 
profiled, DNPP is generally superior. 

3.3.  Effects of varying observation density 

Next, we studied the dependence of accuracy on the amount of input data by varying the percent 
of observed profiles in the small (and more dense) tensor. Observation density was varied by 
subsampling profiles in the tensor in 10% intervals from 10-60%, evaluating on a held-out set 
covering another 10% of the tensor. This sampling process was repeated 25 times generating the 
error bars in Figure 3C. At or above an observation density of 30%, Tensor had superior 
performance, while at lower densities, 2D-Mean was the top performer. We also observe that the 
tensor approach had a more dramatic improvement in performance with increasing density, 
reaching a mean PCT per fold of 0.68. 

3.4.  Accuracy of differentially expressed genes 

We also evaluated the ability to predict DEGs in the unmeasured drug-cell experiments. To do 
this, we first identified DEGs in the measured profiles, and then thresholded expression values in 
the corresponding predicted profiles to generate ROC curves. More specifically, for each 
expression profile, a gene was considered a “true” DEG if its absolute expression value was at or 
above the pth percentile relative to all genes in the profile, where p was set to either 1% or 10% 
(other approaches were also tried with little effect on the outcome; results not shown). ROC curves 
shown in Figure 3D were then generated by varying an analogous percentile threshold across the 
range 0-100% for the predicted profiles in the CV tensors, thereby defining a set of predicted 
DEGs for each profile at each possible threshold value. Each ROC curve represents aggregate 
results across all profiles in the tensor. The methods achieved area under the ROC curve (AUC) 
values of 0.81, 0.80, 0.76, and 0.73 at p = 1%. At p = 10%, a similar relationship between methods 
was observed (0.72, 0.73, 0.68, 0.65). For all four methods, AUC’s were higher at the 1% 
threshold relative to the 10% threshold, and this pattern was observed more generally (results not 
shown), where smaller values of p correspond with higher accuracy. This is reasonable in that 
smaller percentile thresholds correspond to genes with stronger differential expression signals. 

3.5.  Analysis of cell-specificity 

While some L1000 drugs show very similar responses across cell types, others induce highly cell-
specific responses. One such example is M-3M3FBS (herein “M3”), a PLC agonist that induces a 
variety of effects ranging from modulation of neutrophil function to apoptosis. The tensor contains 
M3 profiles in 15 different cell lines, shown on the left-most panel of Figure 4A. Responses 
cluster into two primary groups, with one group (on the left) enriched for down-regulation of both 
spindle pole genes as well as valine, leucine, and isoleucine degradation, perhaps indicating a pre-
apoptotic response. The mean profile of the second group (A549, AGS, RKO, and MCF7 cells) is 
enriched for very different types of processes including up-regulation of Akt signaling, insulin 
signaling, and salivary secretion, all of which have established connections to PLC22, 23. Figure 4A 
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shows that the tensor approach was able to accurately recapitulate these two classes of responses. 
DNPP, on the other hand, seems to “misclassify” some of the cell types into the wrong group, 
while 1D-Mean and 2D-Mean predictions are nearly identical across cell types.  

Another example (Figure 4B) with highly cell-specific expression patterns is Carbetocin, an 
oxytocin analog. In contrast to the previous example, here DNPP outperforms the tensor approach. 
One explanation for DNPP’s success with Carbetocin is that all three measured cell lines (MCF7, 
A549 and VCAP) are among the top five most-sampled cell lines in the tensor, and therefore have 
many drug neighbors from which to choose. On the other hand, M3 has data in many cell types, 
which is associated with better Tensor predictions. In addition to M3 and Carbetocin, two more 
examples are presented in the supplementary information, one (ABT-751) in which both methods 
do similarly well, and a second (GNF-2), where both have similarly poor performance. 

3.6.  Utility of completed data for downstream prediction of drug properties 

In this final section, we aim to show that the completed data provides added value for downstream 
prediction of drug targets and therapeutic classes. To do this, we trained binary classifiers using 
the drug profiles as inputs, and designed experiments to address two questions (see Figure 5A). 
First, we asked whether classifiers trained on the completed data are of higher quality than those 
trained on only the measured subset of profiles. Second, we asked whether ATC and target 
predictions have comparable accuracy on measured vs. predicted profiles. Toward both of these 
aims, we identified the top 7 drug targets and 3 ATC classes (see Figure 5C) represented in the 
tensor, and trained classifiers for each of these tasks using 12 different versions of input drug 
profiles (cell-specific profiles from the top 10 most-represented cell lines in the tensor, as well as 
the mean and maximum value of each gene across these 10 cell lines). Finally, since our questions 
are focused on the value of the drug profiles and not about a specific algorithm, we included three 
different algorithms in our experiments (LR, KNN, and RF). 

 
 
Fig. 4: Cell-specificity of 
predictions. A. True and 
predicted expression 
profiles for the compound 
M-3M3FBS (see text for 
details). Rows correspond 
to genes, and columns to 
cells. B. Analogous plots 
for Carbetocin, in the 
three available cell lines, 
MCF7, A549, and VCAP. 
See text for details.  
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The results addressing the first question were generally positive. More specifically, of the 360 
experiments (12 profile types x 3 models x 10 prediction tasks), after removing 21 experiments 
where no signal could be found, 223 (65.6%) showed an increase in AUC when training on the 
completed data compared with only the measured subset, with a mean improvement of 0.03 (p < 
1e-8, paired t-test). Differences were also significant (p ≤ 0.01) for each of the models 
individually, with mean AUC improvements of 0.05 for LR and 0.02 for RF and KNN. The 
improvements also varied by profile type, as shown in Figure 5B. More specifically, we observed 
that cell types such as NPC (neural progenitor cells) that had fewer measured profiles available 
saw the most gains when including the additional profiles. Overall, four profile types (NPC, 
HEPG2, HCC515, and HA1E cell-specific profiles) showed significant AUC improvements across 
models and prediction tasks (adjusted p < 0.05, paired t-test), with two additional profile types 
(HT29 and max) reaching marginal significance, and none showing significant decreases. Figure 
5C shows a similar analysis per prediction task. The median AUC difference was positive for all 
prediction tasks, reaching statistical significance for 4 out of 10: ATC D code (dermatological 
indications), and RORC, STK33, and ATAD5 targets, with MLL reaching marginal significance. 

Figures 5D and E summarize the second set of experiments addressing the question of whether 
accuracy is comparable on predicted vs. measured profiles. While one might expect that accuracy 

Fig. 5: Utility of completed data for downstream predictions. A. Illustration of experimental setup. Binary 
classification models are trained to predict drug targets and ATC codes, using either the measured subset of profiles 
(e.g. for a particular cell type) or the completed data, and cross-validated prediction scores are recorded. Then two 
types of ROC curve comparisons are made, as described in the text. B. Improvements in AUC per drug profile type, 
across experiments for different prediction tasks and models. C. Improvements in AUC per prediction task, across 
different profile types and models. D. ATC prediction accuracy on measured vs. predicted profiles, for different 
profile types. E. Target prediction accuracy on measured vs. predicted profiles. For both D and E, median values 
across models were computed to simplify the plots, but were kept distinct for all reported results. 
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would always be worse on the predicted profiles, this is not the case. We find instead that the 
results are mixed, and vary per feature and outcome. For example, predicting the ATC L code 
(antineoplastic and immunomodulating agents), had similarly high accuracy using either measured 
or predicted profiles, likely due to strong expression signals for this class of drugs, as well as high 
relevance of the cancer cell lines for observing antineoplastic effects. However, across 
experiments for the ATC codes, there was a mean loss of 0.08 AUC using the predicted profiles. 
On the other hand, in the case of target prediction, there was no significant loss of AUC across 
experiments. Interestingly, the predicted HT29 profiles had better accuracy than measured profiles 
for 19 of the 21 target prediction experiments (mean AUC improvement 0.12), perhaps indicating 
de-noising in the predicted profiles. Additionally, we found that for all 10 tasks, there were 
multiple profile types for which the AUC was higher on the predicted profiles.  

4.  Discussion 

Expression profiles characterizing in vitro drug perturbations are useful for a variety of 
applications in drug discovery. While many thousands of such expression profiles have been 
measured, large gaps remain in the combinatorial space across drugs and cell types. Hence, we 
asked whether it is possible to leverage existing data from other drug-cell combinations to predict 
unmeasured profiles. We tested both local and global approaches, finding that predictions are not 
only accurate in an overall sense but preserve signal that is biologically and therapeutically 
relevant, e.g. maintaining accurate DEGs and signal to predict targets and therapeutic classes.  

Both Tensor and DNPP almost uniformly outperformed the averaging baselines, with highly 
complementary performance between the two methods (Figure 3B). This complementarity is 
concordant with intuition in that, the global approach can leverage all information available and 
hence outperforms when a large amount of information is available per drug; whereas the local 
approach has better performance when many drugs neighbors are available. In addition to this 
complementarity, there are other tradeoffs. On the one hand, Tensor was able to “learn more” than 
DNPP with increasing observation density (Figure 3D). On the other hand, DNPP is conceptually 
simpler, uses only a single parameter, and requires less computation time.  

In our experiments with ATC and target prediction, we note that the purpose is not to 
demonstrate state-of-the-art accuracy, but to show that the completed data adds predictive value to 
the LINCS L1000 drug profiles. Indeed, we observed many cases showing significantly improved 
accuracy, with no cases of significant decreases in accuracy. These results are likely explained by 
several factors. For cell-specific profiles, the completed data contains more profiles, and hence 
models can be trained with more labels. For the max and mean profiles, the incomplete data has 
heterogeneous cell-type availability per drug whereas the completed data is summarized across a 
uniform set of cell lines. Additionally, it is possible that the predicted profiles may, in some cases, 
have a stronger signal-to-noise ratio than their measured counterparts, which could explain, e.g. 
the high performance of the predicted HT29 profiles (Figure 5E) in multiple prediction tasks.  

Our framework produces testable and usable predictions at the L1000 profile level. More 
specifically, each value corresponds to the differential expression (CD) value of one gene in one 
cell line perturbed by one drug. However, the CD values do not map directly to measurable gene-
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level quantities such as fold change. Therefore, we advise that, unless one compares predictions to 
the result of a CD analysis, predictions should either be treated at the level of a ranked list of 
genes, or thresholded to define DEGs. 

We noticed while processing the L1000 data that roughly 2/3 of the > 20K drugs did not have 
any experiments with reliable (i.e. nominal ACD p < 0.1) measurements between replicates. While 
replicate consistency may improve with advances in data processing, it is likely that many of the 
drugs simply do not induce a strong enough expression response to overcome biological and 
technical sources of noise. We believe that this should be taken into consideration for any project 
working with L1000 drug profiles. 

One limitation of this study is the lack of established baselines. The baselines used in this 
study were relatively basic, but help to demonstrate that our predictions outperform alternatives 
that might be considered safe and intuitive. While few methods currently exist for systematic 
prediction of cell-type specific drug expression profiles, we expect that the methods and results 
presented in this study would serve as useful baselines for future work on improved methods. 

Several factors may have introduced bias into the results. First, almost all of the cell lines are 
cancer lineages, which may result in more similarity between cell lines than otherwise expected. 
Second, the selection of landmark genes may have biased the results. One line of thinking is that, 
due to the way these genes were selected, one would expect them to be relatively independent and 
therefore more difficult to predict than a random set of genes. If true, this would bias the results in 
a more conservative direction. Third, the presence of chemically similar drugs in the tensor could 
potentially make the prediction problem easier than otherwise. However, our analysis indicates 
that this bias is quite small (< 0.02 PCT difference), and we also verified that none of the drugs 
highlighted in Section 3.5 have structural cognates in the tensor (i.e. all Tanimoto coefficients are 
less than 0.5). Fourth, our CV experiments reduced observation density by 10%, and hence results 
would likely be further improved by using all available data. Finally, the L1000 data has highly 
imbalanced sampling across the drug-cell space (see Figure 3B), and this is likely a source of 
positive bias. Predictions made in the less-dense regions of the drug-cell space should therefore be 
used with caution and would likely benefit the most from methodological improvements. 

There are many directions to explore in future work, grouped into a few categories. First, the 
data inputs could be expanded in a variety of ways. E.g., one could use the full, imputed 
transcriptome as opposed to only landmark genes. Also, more inclusive data filtering could be 
evaluated. The Broad Institute is also continuing to generate more data across this space; however, 
this will likely never be comprehensive, and hence we expect that this work will continue to be 
relevant. The second category of extensions are methodological, including: 1) nonlinear modeling; 
2) use of auxiliary similarity information24; 3) addition of a time dimension to the tensor; 4) 
modeling measurement reliability; and 5) adopting a probabilistic framework. The final category 
of future work relates to applications. First, our approach could readily be applied and evaluated 
on many other biological datasets where data span at least three categorical axes. Such datasets 
include CMap25, with dimensions of drugs, genes, and cell types, and the Genotype-Tissue 
Expression (GTEx)26 and Braineac datasets27, each spanning individuals, genes, and tissues. 
Second, one could extend this framework to be able to prioritize the remaining experiments, e.g. 
using active learning, in order to optimally map out this transcriptional landscape across drugs and 
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cellular contexts. Finally, another exciting direction would be to make possible ‘out-of-sample’ 
predictions28 which would be particularly useful when measurements are difficult to obtain (e.g. 
for human in vivo brain tissue expression) but where related measurements could be obtained from 
more accessible tissues (e.g., neuronal cell types from induced pluripotent stem cells). This would 
likely require an integrative approach leveraging additional datasets and metrics24 (e.g., cell line 
genetic similarity as auxiliary data for tensor completion).  

To the best of our knowledge, this work is the first attempt at prediction of expression profiles 
using only expression from related experimental conditions. Hence, we consider this work to be a 
compelling proof-of-concept demonstrating the feasibility and value of such predictions. It is our 
hope that completing the space across drugs and cell types will enable new types of analyses and 
predictions of cell-specific drug action that could lead to translational insights and applications.  
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Supplementary information including figures, code, and data can be found at goo.gl/nTy8sH. 
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