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The analysis of large biomedical data often presents with various challenges related to not 
just the size of the data, but also to data quality issues such as heterogeneity, 
multidimensionality, noisiness, and incompleteness of the data. The data-intensive nature of 
computational genomics problems in biomedical informatics warrants the development and 
use of massive computer infrastructure and advanced software tools and platforms, including 
but not limited to the use of cloud computing. Our session aims to address these challenges in 
handling big data for designing a study, performing analysis, and interpreting outcomes of 
these analyses. These challenges have been prevalent in many studies including those which 
focus on the identification of novel genetic variant-phenotype associations using data from 
sources like Electronic Health Records (EHRs) or multi-omic data. One of the biggest 
challenges to focus on is the imperfect nature of the biomedical data where a lot of noise and 
sparseness is observed. In our session, we will present research articles that can help in 
identifying innovative ways to recognize and overcome newly arising challenges associated 
with pattern recognition in biomedical data. 
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1. Introduction:
Machine learning methods are designed to identify regularities in datasets and then use the
identified patterns in a subset of the data to make predictions for the rest of the data.
Supervised and unsupervised machine learning methods for pattern recognition have been
widely applied in many fields such as image and speech recognition, medical diagnosis,
business analytics, finance,  as well as in social media, movie recommendations (Netflix),
retails, to name a few2. With technological advancements, biomedical data is increasing
exponentially in size,  and there is a high demand to apply these techniques to understand the
etiologies of complex diseases3. To achieve this goal, it is important to address the challenges
of big data analytics and develop optimized methods for pattern recognition that can handle
complexities of biomedical data.

The biomedical field, in the current era of precision medicine, is recognized for the interest of 
researchers in elucidating the genetic architecture of human traits/diseases to improve clinical 
care. Some of the publicly available ‘Big Data’ datasets include but are not limited to The 
1000 Genomes Project, The Cancer Genome Atlas (TCGA), UK Biobank, Encyclopedia of 
DNA Elements (ENCODE), Gene Expression Omnibus (GEO), the Library of Integrated 
Network-based Cellular Signatures (LINCS), the database of Genotypes and Phenotypes 
(dbGaP), and many other4–7. These resources consist of metadata from association analyses, 
variant information from commercial genotyping chips, whole exome and genome 
sequencing data, phenotype information, structural variation, gene expression, and among 
others. Challenges for identifying patterns arise in one data type and increases more in 
attempts to integrate multiple aforementioned data types/omics8. This expanding knowledge 
is both a blessing and a curse for identifying patterns. Traditional methods of analyzing 
biomedical data obtained from various high throughput sources are inadequate to handle the 
ever-increasing wealth of knowledge that is gathered about genotype and phenotype. In this 
session, we will address the challenges arising from attempts to integrate biomedical data 
from various sources (including, but not limited to, one or across more species, use of raw 
data, or summary level statistics) and identify  patterns from these multi-omic datasets9. 

The data-intensive nature of computational genetics problem sets in the biomedical 
informatics field warrants the development and use of vast computer infrastructure and 
advanced software tools and platforms. Many existing technologies, e.g., Hadoop, Spark, 
MongoDB, Neo4j, make storage and analytics of large-scale datasets feasible10. Additionally, 
many such technologies are also available via various cloud-computing platforms such as 
Amazon Web Services (AWS), Google Cloud Platform, Cloudera, as well as vendors, such as 
DNAnexus, BaseSpace, SevenBridges, Cypher Genomics11,12. However, these options are 
often costly and out of reach for the majority of modest size research groups. While cloud 
computing aids in analytical performance by improving computing time and storage, there is 
considerable room for improvement in current software design in biomedical research for 
cloud-based big-data analysis.  

The manuscripts in this session highlight the importance of network-based methods in 
identifying patterns and address the diverse range of challenges associated with machine 
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learning techniques. The applications of these methods are well demonstrated in EHR, next-
generation sequencing data, as well as in simulated datasets as described below. 

2. Session Contributions:

2.1 Network-based approaches 

Network-based methods for pattern and data mining have gained popularity as efficient 
computational approaches13,14. For example, networks can be used for explaining associations 
among genetic variants and diseases where diseases and variants are represented as nodes, 
and associations are represented as edges. Applying various network analysis techniques has 
also helped in identifying hidden patterns in datasets which are otherwise not visible when 
results are evaluated in a tabular form15,16. The utility of networks is critical in integrating 
results from various association analyses as well as integrating multi-omic data sets in 
identifying combinatorial effects of variations on phenotypes. Along with representing 
associations, networks can also be used in identifying a non-constituent effect of different 
variables on a phenotype. 

In the manuscript titled “Functional network community detection can disaggregate and 
filter multiple underlying pathways in enrichment analysis”, Harrington et al. address 
challenges with identifying pathways from differential expression analyses in non-network 
based methods. They demonstrate how applying a network based approach that combines 
community detection with functional networks can help in identifying true positive pathways. 
They applied the proposed method on simulated dataset and showed its utility on a biological 
dataset to discover pathways enriched across high grade serous ovarian cancer (HGSC). 

Agarwal et al. address the challenge of dealing with imperfect and noisy molecular network 
data to uncover disease pathways and proteins in their manuscript titled “Large-Scale 
Analysis of Disease Pathways in the Human Interactome”. The authors conducted a 
comprehensive network analysis on publicly available data from human protein-protein 
interaction (PPI) network and DisGeNET database containing protein-disease associations. 
They observed that several proteins associated with a disease tend to fall in different 
pathways that are not necessarily well connected. This analysis could be useful in the future 
development of network-based methods to identify robust pathways. 

Biomedical data is highly heterogeneous and incomplete, making extraction of meaningful 
biologically information a major challenge17,18. In their manuscript titled “OWL-NETS: 
Transforming OWL Representations for Improved Network Inference”, Callahan et al. 
propose a novel method for abstracting complex, heterogeneous biological knowledge into 
lossless network representations that facilitate network inference. The OWL-NETS method 
could help in enhancing network inference where multi-omic and complex biological 
information is utilized.  

2.2 Machine learning approaches 
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Deep learning and machine learning techniques are an integral component of evaluating 
biomedical data, and their use has been increasing dramatically over the past decade19,20. 
Machine learning methods are used extensively for identification of correlations between 
variables, e.g. between different phenotypes, or between phenotypes and genotypes. 
Moreover, many methods have demonstrated their applications in other-omics datasets such 
as proteomics, transcriptomics, and metabolomics21–23.  Methods such as unsupervised 
learning are independent of any set rules for identifying patterns to associate or correlate 
variables. These methods have also gained popularity in the field of biomedical data to 
improve prediction of health outcomes by mining biologically relevant data. 

Recently, machine learning methods, both supervised and unsupervised, have been widely 
used in the field of biomedical informatics. Though the concept of machine learning is not 
new, researchers still struggle to identify the best method suited for identifying viable 
solutions to their problems. In their manuscript titled “Data-driven Advice for Applying 
Machine Learning to Bioinformatics Problems”, Olson et al., present a wide range of 
comparisons among various machine learning methods, and show how effectively tuning the 
methods could enable identification of true positive results. 

Machine learning methods are also extensively used in analyses of medical imaging data, 
such us in cancer radiomics, an emerging field focused on quantification of tumor phenotypes 
using various imaging features. In the manuscript titled “Tree-based Methods for 
Characterizing Tumor Density Heterogeneity”, Shoemaker et al. propose a novel decision 
tree-based approach to quantify heterogeneous tumor characteristics from imagining data, 
using CT scans of solid adrenal lesions as an example.  

In the manuscript titled “Improving the Explainability of Random Forest Classifier – User 
Centered Approach”, Petkovic et al. propose a novel approach to explain complex models 
generated from one of the most popular machine learning classifier methods, random forests. 
Through their method and its application, authors provide an effortless way to generate 
summary reports of data to enhance the interpretability of complex random forest classifiers. 

2.2 Application of methods to identify patterns in EHR data 

EHR data consists of a wealth of information about patients. These datasets are present in 
forms of patient records on disease diagnosis, lab tests which include blood tests as well as 
imaging data, demographic information, medication information, as well as physicians’ 
clinical notes. Patients’ EHRs can be linked with their genetic data in a form of biobanks (for 
example Geisinger’s Mycode Community Health Initiative, Vanderbilt’s BioVU, eMERGE 
Network, UK BioBank)24–26, which provides a great opportunity for uncovering novel disease 
associations and, ultimately, improving health care. 
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EHR data are a great source of phenotype information. The criteria used for assigning a 
disease status (case and control status) to a patient sample vary greatly across different 
studies. Some studies use extensive manual curation and development of a phenotypic 
algorithm to assign patients disease status, whereas other studies use instances of disease 
diagnosis codes (ICD-9 codes) to assign case-control status to patients27,28. High-throughput 
techniques to generate phenotypes are necessary to bridge the gap between the two 
techniques described above. In the manuscript titled “Automated Disease-Cohort Selection 
using Word Embeddings from Electronic Health Records”, Glicksberg et al. address this 
problem by evaluating the performance of automated feature learning method, word2vec, 
with the established research-based electronic phenotyping algorithms in extracting cohorts 
for five diseases.  

In manuscript titled “Mapping Patient Trajectories using Longitudinal Extraction and Deep 
Learning in the MIMIC-III Critical Care Database”, Beaulieu-Jones et al. apply deep 
learning techniques to map patient time series data to the preventive care that a patient 
receives in the EHR. The challenge of utilizing dense longitudinal information from EHR 
data is addressed in this manuscript. Machine learning methods and the comparisons of 
methods highlighted in this paper also provide useful insights towards deep learning 
techniques and their applications in pattern identification. 

In the manuscript titled “Causal Inference on Electronic Health Records to Assess Blood 
Pressure Treatment Targets: An Application of the Parametric g Formula”, Johnson et al. 
use EHRs to extract longitudinal blood pressure information from patients suffering from 
hypertension. They use this data to demonstrate the utility of an established causal inference 
technique, parametric g-formula, for the first time in EHR data in the context of 
cardiovascular preventative medicine.  

2.3 Applications in transcriptome and next-generation sequencing data 

With the availability of next-generation sequencing data (NGS), research focused on pattern 
recognition for identification of functional elements in the human genome has become 
widespread. Analyzing gene expression information is helpful in understanding the influence 
of such elements on a trait or disease. 

Jeong et al. hypothesized that analyzing transposable elements (TE), which for a long time 
had been incorrectly labeled as junk DNA, could provide useful functional insights for 
biomedical data. In their manuscript, “An Ultra-Fast and Scalable Quantification Pipeline 
for Transposable Elements from Next Generation Sequencing Data”, the authors propose a 
pipeline to quantify TE in the genome from NGS data. This pipeline could be useful for the 
biomedical informatics community to discover hidden association among TE expression and 
diseases. 

One of the major goals of association analysis is to identify the proportion of phenotypic 
variance explained by genetic variations. Transcriptome-wide association analysis (TWAS) 

Pacific Symposium on Biocomputing 2018

108



are becoming popular methods in explaining the proportion of phenotypic variance that 
cannot be explained by single nucleotide variations alone9,29,30. In the paper titled “How 
powerful are summary-based methods for identifying expression-trait associations under 
different genetic architectures?”, Veturi et al. use a simulation study to analyze two major 
approaches for conducting TWAS, TWAS-MP (multi-SNP prediction) and TWAS-SMR 
(summary-based Mendelian Randomization). The paper describes a comprehensive power 
analysis for detecting gene-trait analysis, which in the future could be expanded to other 
kinds of omics datasets. 
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