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Hypertension is a major risk factor for ischemic cardiovascular disease and 
cerebrovascular disease, which are respectively the primary and secondary most common 
causes of morbidity and mortality across the globe. To alleviate the risks of hypertension, 
there are a number of effective antihypertensive drugs available. However, the optimal 
treatment blood pressure goal for antihypertensive therapy remains an area of controversy. 
The results of the recent Systolic Blood Pressure Intervention Trial (SPRINT) trial, which 
found benefits for intensive lowering of systolic blood pressure, have been debated for 
several reasons. We aimed to assess the benefits of treating to four different blood pressure 
targets and to compare our results to those of SPRINT using a method for causal inference 
called the parametric g formula. We applied this method to blood pressure measurements 
obtained from the electronic health records of approximately 200,000 patients who visited 
the Mount Sinai Hospital in New York, NY. We simulated the effect of four clinically 
relevant dynamic treatment regimes, assessing the effectiveness of treating to four different 
blood pressure targets: 150 mmHg, 140 mmHg, 130 mmHg, and 120 mmHg. In contrast to 
current American Heart Association guidelines and in concordance with SPRINT, we find 
that targeting 120 mmHg systolic blood pressure is significantly associated with decreased 
incidence of major adverse cardiovascular events. Causal inference methods applied to 
electronic methods are a powerful and flexible technique and medicine may benefit from 
their increased usage. 
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1.  Introduction 

1.1.  Global Burden of Hypertension 

Ischemic cardiovascular disease and cerebrovascular disease are the primary and secondary 
causes of global disease burden respectively, both in the United States and the rest of the world 
(1). Hypertension (HTN), also known as elevated blood pressure (BP), is a primary risk factor for 
both diseases (2). Additional evidence continues to accumulate for the role of HTN as a central 
risk factor for a wide variety of chronic diseases such as dementia (3) and type 2 diabetes mellitus 
(4). As both developed and developing countries continue to experience greater chronic disease 
burden, treatment and prevention of HTN is one of the most important issues in medicine. 

1.2.  Challenges in Previous Efforts to Discover Optimal Target Blood Pressures 

There are up to 69 different drugs from 15 different classes available to manage HTN, 
demonstrating the widely understood importance of managing this condition. Even with this 
plethora of available medications, current estimates indicate that up to 65% of patients with HTN 
have difficulty controlling their blood pressure (5). One issue confounding this matter is a lack of 
consensus on the appropriate target blood pressure. In 2014, the Eighth Joint National Committee 
on Hypertension (JNC 8) released the latest guidelines for hypertension treatment which 
recommend that patients over 60 years old be medicated to a target BP of 150 mmHg systolic 
(SBP) and 90 mmHg diastolic (DBP) (6). Additionally, they recommended that patients 30-59 
years old be medicated to a DBP target of 90 mmHg. Notably, the JNC 8 could not establish an 
evidence-based SBP goal for individuals within this age range. In 2015, investigators for the 
Systolic Blood Pressure Intervention Trial (SPRINT) released highly anticipated findings in the 
New England Journal of Medicine for the benefit of intensive HTN treatment measured against the 
standard hypertension treatment regime (7). The SPRINT investigators defined intensive therapy 
as medical therapy intended to reduce BP to 120/80 mmHg or below, instead of the standard goal 
therapy of 140/90 mmHg. This large trial recruited 9,361 patients from 102 different clinical sites 
(from 5 clinical networks) across the country and followed them for adverse outcomes for a 
median of 3.26 years.  
 

SPRINT was intended to provide a definitive answer for the benefits of intensive 
antihypertensive therapy. The trial results seemed to demonstrate that intensive antihypertensive 
therapy was strongly associated with lowered risk for the study’s primary study endpoint of 
myocardial infarction, acute coronary syndrome, stroke, congestive heart failure, or cardiovascular 
death (HR=0.75, p<0.001) (7). However, this conclusion provoked a firestorm of controversy in 
the cardiovascular medicine community. Blood pressure is a difficult phenotype to measure, since 
readings vary from minute to minute, many patients suffer from “white-coat hypertension” in the 
presence of a physician, and measurements are usually taken with a manual sphygmomanometer 
and stethoscope (8,9). In contrast, the SPRINT trial broke with decades of precedence by using an 
automated electronic BP measurement device to capture a series of six measurements (8,9). Three 
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measurements were spaced one minute apart in the presence of a researcher and three more were 
recorded outside of the presence of the researcher after a five-minute break (10,11). It has been 
suggested that this difference in BP measurement technique may make their results impossible to 
apply to the clinic (10). This is because the SPRINT blood pressure measurement method is 
known to produce systematically different blood pressure readings when compared to the standard 
technique used in many hospitals and in previous trials (9). Typical systolic blood pressure 
measurements are 14 mmHg lower using the SPRINT method compared to the standard method 
(9). For example, this implies a SPRINT target of 120mmHg may be equivalent to a real-world 
target of 134mmHg. Thus, the external validity of the SPRINT findings is unclear–SPRINT 
targets result from BP measurements that may not be comparable to normal BP measurements 
made outside of the clinical trial’s setting. Due to this controversy, we believe that additional 
complementary evidence supporting aggressive antihypertensive treatment could provide insight 
on treatment decisions and outcomes. 

1.3.  Causal Inference from Electronic Health Records As a Tool to Answer Difficult 
Clinical Questions 

Electronic health records (EHR) present an excellent potential data source to analyze and 
determine optimal blood pressure treatment goal. EHR contain longitudinal information captured 
during the routine care process such as visit dates, patient demographics such as age; sex; self-
declared race/ethnicity; medication prescription orders, disease and procedure billing codes, and 
most importantly, blood pressure measurements. Of note, the BP measurements contained within 
the EHR will reflect what is routinely measured clinically, instead of BP as is measured within a 
contained clinical trial setting such as SPRINT. 

 
One challenge in the use of EHR for BP analysis is the clinical situation in which hypertension 

is managed. Hypertension is a chronic disease in which BP measurements are longitudinally 
manipulated by the administration of a variety of drugs over an extended period of time. This is in 
contrast to a clinical trial, where other exogenous factors are explicitly modeled and a drug may be 
consistently administered throughout the study. Confounding post-baseline time-varying 
dependent relationships such as these cannot be modeled using conventional statistical methods 
such as regression or survival analysis without many potentially unrealistic assumptions (11). 
While observational analyses are restricted to a framework where one can only test interventions 
that have been explicitly carried out in the data, the g-formula approach enables us to simulate 
dynamic treatment strategies and estimate their effects, even if those strategies have not been fully 
carried out in the data used to construct the model (12). G methods may be used to estimate the 
effect of different interventions on an outcome in the presence of time-varying confounders. For 
example, an extension of g methods called the parametric G formula has been used to measure the 
effect of different treatment regimes for highly active retroviral therapy (HAART) in AIDS (13); 
to estimate the effect of different governmental policies on radon and lung cancer (14); and to 
decide upon optimal anemia management strategies (15). However, these causal inference 
methods have never been applied to real, hospital-derived EHR. Here, we use the parametric g 
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formula to model the effect of different BP treatment targets on major adverse cardiovascular 
outcomes (MACE). 

2.  Methods

2.1.  Data Acquisition from the Mount Sinai Hospital EHR 

The Mount Sinai Hospital (MSH) is a tertiary-care urban hospital located on the Upper East Side 
of Manhattan in New York City. MSH’s EMR contains longitudinal information for more than 
two million patients (800,00 with at least 1 prescription) collected from 2008-2016. We identified 
hypertensive patients using a phenotyping algorithm combining International Classification of 
Disease (ICD-9) billing codes, blood pressure measurements, natural language processed 
physician notes, and the prescription of antihypertensive medications (Figure 1). Phenotyped 
patients must have had at least two elevated blood pressure measurements (SBP>140 or DBP>90) 
and two instances (each on different days) of one of the following: hypertensive medications, ICD 
hypertension billing codes, or mentions of hypertension in the physician notes. Medications in the 
EMR were normalized to Anatomical Therapeutic Chemical (ATC) Classification System drug 
classes using RxNorm (16). Antihypertensive medications were defined as those belonging to 
ATC classes C02 (Antihypertensives), C03 (Diuretics), C04 (Peripheral vasodilators), C07 (Beta 
blocking agents), C08 (Calcium channel blockers), and C09 (Agents acting on the renin-
angiotensin system) and then further filtered by intersection with JNC 8 recommended 
antihypertensive medications. Essential hypertension billing codes were identified as those starting 
with 401.xx. We assessed cardiovascular adverse outcomes with the commonly used major 
adverse cardiovascular event (MACE) composite endpoint, which is often composed of 

Figure 1: Hypertension phenotyping algorithm patient counts 
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myocardial infarction, stroke, and heart failure events. We identified patients with a MACE using 
the corresponding ICD9 codes 410.xx, 411.xx, 428.xx, 433.xx, 434.xx, and 436.xx. 

2.2.  Problem setup 

We evaluated the effect of treating patients to four different SBP targets: 150 mmHg, 140 mmHg, 
130 mmHg, and 120 mmHg. We chose these four targets because they have each been suggested 
as SBP blood pressure targets. We assume the causal pathway demonstrated by the directed 
acyclic graph in Figure 2, where, blood pressure measurements are related to drug choice selection 
as well as MACE outcomes. Additionally, at each time step an individual may be censored (i.e., 
lost from the EHR). Finally, antihypertensive medications act to reduce blood pressure 
measurements subsequent to their administration.  
 
 
 
 

2.3.  Parametric g formula 

The g formula directly models probabilities for a given outcome conditional upon covariates and 
exposures. For real-world datasets, modeling all conditional probabilities directly is not feasible, 
especially in the presence of continuous covariates such as BP. The parametric g formula is an 
extension of the g formula where parametric models are used to model probabilities instead of 
direct calculations. Parametric methods have the advantage of being computationally feasible, able 
to handle continuous covariates, and more efficient given the data. Analysis using the parametric g 
formula requires a three-step algorithm (Figure 3). 
 

Figure 2: Directed acyclic graph for relationship between blood pressure measurement, drug  
administration, MACE, censoring, and modeled intervention policy 
 

Blood Pressure
t = k

Drug choice
t = k+1

Blood Pressure
t = k + 1

MACE
t = k + 1

Censored
t = k + 1

 .   .   .

Intervention:
   if   BP > Goal BP
      then   initiate drug
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1. Model Conditional Probabilities 
 

First, we model effect sizes and conditional probabilities for all person-times for (a) all covariates 
and (b) outcomes in our dataset using Bayesian logistic regression. Bayesian prior regression 
models are implemented in the R package arm (17). Models are restricted to those who survive 
and remain uncensored to time t = k + 1 and include the effects of baseline covariates as well as 
time-varying covariates at time k. 
 

2. Monte Carlo Simulation 
 
Second, we perform Monte Carlo simulation for 10,000 individuals for each treatment target using 
the probabilities from step 1, intervening as required with drug treatment if BP exceeds our target 
BP. Each individual’s baseline covariates are sampled from the dataset, and time-varying 
covariates are simulated using the predicted probability as the conditional mean in a random draw 
from the Bernoulli distribution in the case of binary variables. In the case of BP, we used the 
predicted blood pressure as the mean for a normal distribution with standard deviation equal to the 
mean standard deviation for individuals with matched baseline covariates. 
 

3. Risk computation under different treatment goals 
 
We fit Cox proportional hazards models to evaluate the relative efficacy to the results from each of 
the different simulated treatment policies and estimate their efficacy. 
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Figure 3: Explanation of parametric g formula analysis for BP target  

3.  Results

3.1.  Electronic Health Records Data 

We obtained health records from the Mount Sinai Hospital for 218,221 different hypertensive 
patients. 104,514 individuals were female, 98,048 individuals were male, and 4 individuals were 
of indeterminate sex and dropped from the analysis due to insufficient power. The remaining 
individuals did not have sex coded. 81,054 individuals were Caucasian, 38,134 were African 

} 
3.   Comparison of survival outcomes under different BP treatment goals

Estimate Cox proportional hazards model h(MACE, t) ~ BP goal + baseline covariates

1.   Model conditional responses

 M1:   Blood Pressuret=k+1 ~ Blood Pressuret=k + Drugt=k  + Baseline Covariates | Censoredt=k=MACEt=k=0 
 M2:   P(Drugt=k+1=1) ~ Blood Pressuret=k+1 + Drugt=k  + Baseline Covariates | Censoredt=k=MACEt=k=0
 M3:   P(Censoredt=k+1=1) ~ Blood Pressuret=k+1 + Drugt=k  + Baseline Covariates | Censoredt=k=MACEt=k=0
 M4:   P(MACEt=k+1=1) ~ Blood Pressuret=k+1 + Drugt=k  + Baseline Covariates | Censoredt=k+1=MACEt=k=0  

2.   Monte Carlo Simulation
    
For BP goal in {150, 140, 130, 120 mmHg}:
 For individual I in 1. . Nsimulated individuals

  i. Draw baseline covariates B from EHR data
  ii. Let time-varying variables V drug = censored = MACE = 0
  
While individual is not censored and has not experienced MACE:
 1) Simulate BPt=k+1 ~ Normal( E[M1|IB,t=k; V,t=k] , SD )
 2) If new BP > BP goal --> give drug; else do not
 3) Simulate Censoredt=k+1~ Bernoulli( E[M3|IB,t=k; V,t=k] ) 
     If Censored=0:
  4) Simulate MACEt=k+1~ Bernoulli( E[M4|IB,t=k; V,t=k] ) 

 

} Individual’s
baseline
values

Individual’s experience over
course of simulation

Algorithm pseudocode

Analysis workflow

Obtain
probabilities

from EHR data

Use computed
probabilities to

simulate
treatments

Analyze
simulated

patient
outcomes

(1) (2) (3)
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American; 37,008 listed “Other;” 24,435 were Unknown; 12,108 were Hispanic/Latino; 7329 
were Asian; and the rest were composed of known but rare ethnicities (Native American, Pacific 
Islander, etc., – sample counts not shown to preserve patient confidentiality) and subsequently 
combined into “Other.” These individuals were collectively prescribed medications 3,678,597 
times (16.9 medication prescriptions per person). The EHR contained 31,088,598 measurements 
of SBP and 31,039,040 measurements of DBP, although the count of BP measurements per 
individual was significantly right-skewed likely due to frequent measurements of hospitalized 
critical-care unit patients. 

3.2.  Survival time by goal blood pressure target 

We simulated 10,000 patients for each BP target. The 40,000 simulated patients experienced a 
total of 14,501 major adverse cardiovascular events. The number of MACE was highest in the 150 
mmHg target group (3853 events), followed by 140 mmHg group (3722 events), followed by 130 
mmHg group (3559 events), followed finally by the 120 mmHg target group (3367 events). 
Median MACE-free survival times were similarly ordered: 150 mmHg, 31 encounters (95% CI: 
29-33); 140 mmHg, 33 encounters (95% CI: 31-34); 130 mmHg, 34 encounters (95% CI: 33-35); 
120 mmHg, 35 encounters (95% CI: 34-37). 
 
Survival was significantly associated with BP target (Figure 4), with survival highest at the lowest 
target goal (120mmHg) and less at 130 mmHg and 140 mmHg. Setting the reference target BP as 
150 mmHg, we found hazard ratios of 0.934 (Target goal of 140 mmHg, p=0.003); 0.895 (Target 
goal of 130 mmHg, p=1.94x10-6); and 0.846 (Target goal of 120 mmHg, p=1.46x10-12). Male sex 
was significantly associated with elevated hazard compared to females (HR=1.27, p<10-15). 
Compared to Caucasian individuals, those of self-declared Hispanic/Latino and Unkown ancestry 
were more likely to have a MACE (HR=1.364, p<2x10-16 and HR=1.134, p=0.0003 respectively). 
Interestingly, those of Native American or African American ancestry actually had a slightly lower 
hazard ratio for MACE outcomes compared to Caucasian individuals (HR=0.932, p=0.023 and 
HR=0.922, p=0.016 respectively). Those of Asian or Other ancestry did not have a significantly 
different hazard ratio than Caucasian ancestry individuals (p=0.33 and p=0.279, respectively). 
 

Table 1: Results of Survival Analysis 
 

Covariate Reference Level Hazard Ratio   H.R. 95% CI P-Value 

140 mmHg Target 150 mmHg Target 0.934 (0.8928, 0.9770) 0.002975 

130 mmHg Target 150 mmHg Target 0.895 (0.8553, 0.9370) 1.94x10-6 

120 mmHg Target 150 mmHg Target 0.846 (0.8079, 0.8862) 1.46x10-12 

Male Female 1.270 (1.2294, 1.3124) <2x10-16 
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African American Caucasian 0.922 (0.8631, 0.9849) 0.015937 

Asian Caucasian 0.970 (0.9101, 1.0326) 0.334363 

Hispanic/Latino Caucasian 1.364 (1.2773, 1.4566) <2x10-16 

Native American Caucasian 0.932 (0.8775, 0.9904) 0.023023 

Other Race Caucasian 0.934 (0.8394, 1.0518) 0.278997 

Unknown Race Caucasian 1.134 1.0584    1.2138 
 

0.000341 

 
Interestingly, examination of the blood pressures of survivors revealed that the distribution of 

survivors’ blood pressures tended to shrink as time advanced. This can be explained by the fact  

Figure 4: Kaplan-Meier survival plot for observed survival times stratified by target blood 
pressure. Survival was greatest at a target blood pressure of 120 mmHg, second best at 130 
mmHg, third best at 140 mmHg, and worst at a BP target of 150 mmHg. The overall P value 
for the model was <10-16. 
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that those with very high or very low blood pressures tended to either have their blood pressure 

managed toward a goal target or else experienced MACE (Figure 5). 

 

4.   Conclusion 

In this study, we applied an established causal inference technique to a large EHR database to 

simulate the effects of four different antihypertensive treatment regimes on MACE outcomes. Our 

findings are concordant with the recent conclusions from SPRINT, where a target systolic blood 

pressure goal of 120 mmHg was found to dramatically lower the incidence of adverse 

cardiovascular outcomes. Our estimated hazard ratio of 0.85 for 120 mm target compared to 150 

mmHg compares to the SPRINT hazard ratio estimate of 0.75 for the same comparison, although 

our estimated hazard ratio is less optimistic than the SPRINT hazard ratio. 

This contrasts with the current recommendations from the American Heart Association and the 

American Association of Family Physicians, who both do not recommend targeting 120 mmHg. 

Interestingly, BP measurements obtained at the Mount Sinai Hospital are generally measured 

Figure 5: Plots of overall conditional predicted blood pressures 
over time (Beginning time at top of plot, final predictive models at 
the bottom of the plot). Distribution of conditional blood pressure 

predictions tends to shrink as there are a) fewer individuals 
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using a manual sphygmomanometer and stethoscope, instead of with an automated device as in the 

SPRINT trial. Despite this difference, we arrived at similar conclusions for the efficacy of 

intensive antihypertensive therapy. This may suggest that SPRINT BP estimates are not as 

discordant with past literature as is believed. Certainly, as hypertension is a vitally important topic, 

we believe our finding points out the need for additional studies. Future studies for BP goal 

measurements will likely benefit greatly from the inclusion of more personalized drug treatments 

strategies and a more “precision medicine” approach.  

 

There are several limitations to our study. First, the typical definition of major adverse 

cardiovascular events (MACE) often includes death from a cardiovascular etiology. Due to the 

limitations of EHR, we were not able to include death as a MACE outcome in our study. This 

limitation may be partially mitigated by the fact that many of those who die from a cardiovascular 

etiology would have one of the MACE ICD-9 billing codes preceding their death. Second, our 

treatment dynamic algorithm currently does not yet include changes in drug dosages, which is one 

technique physicians can use to adjust the degree of antihypertensive medication efficacy. 

Similarly, we do not consider patient BMIs when modeling drug efficacy per patient, which is 

related to drug dosages. Finally, as with all observational studies, there may be unmeasured 

confounders which may influence our results to some degree. To this end, we are comforted to 

some extent by the fact that our study conclusions more closely resembled those from a 

randomized clinical trial results than those from other observational analyses. 

 

To the best of our knowledge, the e results represent a first application of the parametric g formula 

to a hospital-based electronic health record system, and almost certainly the first application of 

such a model in the context of cardiovascular preventative medicine. Causal inference methods 

allow for the retrospective analysis of treatment regimes which could not easily be performed, or 

in some cases would not even be ethical to be performed in a randomized clinical trial setting. 

Taken altogether, we believe our study (1) demonstrates the utility of the parametric g-formula for 

analysis of treatment interventions in EHR data; and (2) presents complementary and concordant 

evidence to the SPRINT trial in support of intensive antihypertensive therapy. 
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