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Genome-wide association studies (GWAS) have been successful in facilitating the understanding of 
genetic architecture behind human diseases, but this approach faces many challenges. To identify 
disease-related loci with modest to weak effect size, GWAS requires very large sample sizes, which 
can be computational burdensome. In addition, the interpretation of discovered associations remains 
difficult. PrediXcan was developed to help address these issues. With built in SNP-expression 
models, PrediXcan is able to predict the expression of genes that are regulated by putative expression 
quantitative trait loci (eQTLs), and these predicted expression levels can then be used to perform 
gene-based association studies. This approach reduces the multiple testing burden from millions of 
variants down to several thousand genes. But most importantly, the identified associations can reveal 
the genes that are under regulation of eQTLs and consequently involved in disease pathogenesis. In 
this study, two of the most practical functions of PrediXcan were tested: 1) predicting gene 
expression, and 2) prioritizing GWAS results. We tested the prediction accuracy of PrediXcan by 
comparing the predicted and observed gene expression levels, and also looked into some potential 
influential factors and a filter criterion with the aim of improving PrediXcan performance. As for 
GWAS prioritization, predicted gene expression levels were used to obtain gene-trait associations, 
and background regions of significant associations were examined to decrease the likelihood of false 
positives. Our results showed that 1) PrediXcan predicted gene expression levels accurately for some 
but not all genes; 2) including more putative eQTLs into prediction did not improve the prediction 
accuracy; and 3) integrating predicted gene expression levels from the two PrediXcan whole blood 
models did not eliminate false positives. Still, PrediXcan was able to prioritize GWAS associations 
that were below the genome-wide significance threshold in GWAS, while retaining GWAS 
significant results. This study suggests several ways to consider PrediXcan’s performance that will 
be of value to eQTL and complex human disease research.  
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1.   Introduction 

Genome-wide association studies (GWAS) have successfully identified disease susceptibility loci 
for complex traits. Yet, disease related loci discovered to date explain a small portion of the variance 
in disease risk1. It is not known whether the missing heritability is predominantly driven by variants 
with small effect sizes or by causal factors beyond genic regions. As a consequence, GWAS have 
relied on increasing sample size which increases the power to find disease-related loci and provides 
opportunities for rare variant analysis. However, analysis based on larger datasets consume an 
excessive amount of computational resources, which may not be available to everyone. The 
excessive number of single nucleotide polymorphism (SNP) loci in comparison to sample size leads 
to “the curse of dimensionality”2. Moreover, loci in intergenic regions may be robustly associated 
with complex traits, but the mechanisms behind such associations are generally not apparent. 

Researchers have been trying to integrate functional genomics into GWAS in the anticipation 
that mechanistic studies of complex diseases will be facilitated by better interpretation of identified 
associations3-6. Much attention has been paid to the study of regulatory elements that change genes’ 
transcriptional activities and consequently alter phenotypes. Expression quantitative trait loci 
(eQTLs) are one important class of such regulatory elements7. The Genotype-Tissue Expression 
(GTEx) Project8 was initiated to identify a comprehensive set of eQTLs from different human 
tissues and their relationship to gene expression.  

PrediXcan9 is a computational algorithm developed to exploit GTEx data, including eQTLs 
identification and their relationship to complex traits. PrediXcan evaluates the aggregate effects of 
cis-regulatory variants (within in 1MB upstream or downstream of genes of interest) on gene 
expression via an elastic net regression method, and consequently, PrediXcan may identify loci with 
modest to weak effect sizes that do not achieve significance in variant-based association studies. In 
theory, PrediXcan has a greatly reduced multiple testing burden as compared to single-variant-
single-trait association tests. For example, given one trait and a genotypic dataset of 10 million 
SNPs, there are at most about 20,000 tests for PrediXcan (~20,000 genes), but 10 million tests for 
single-variant-single-trait association study. Putative eQTLs and their effect sizes on gene 
expression level in each GTEx tissue type are available online in PredictDB (http://predictdb.org/). 

Several cases have been recently identified where eQTLs are likely to play a causal role in 
disease by regulating gene expression26,27. But while more eQTLs have been identified in recent 
years, it remains challenging to prioritize the ‘true’ causal variants. Thus, as PrediXcan is designed 
to predict gene expression levels and prioritize GWAS results, PrediXcan can also be of great use 
for mechanistic studies. Here, PrediXcan performance was examined by two datasets where the 
PrediXcan whole blood models, the most similar tissue type to the samples, were used. One is the 
genotypic and transcriptomic data of the Yoruba (YRI) cohort from the 1000 Genomes Project10. 
While perhaps not the optimal dataset, it is very accessible which makes it convenient for readers 
to replicate this study. The other is based on the AIDS Clinical Trials Group (ACTG) protocol 
A520211,12,24, which we refer to as the A5202 cohort hereafter. A5202 cohort has a large enough 
sample size for evaluating the association tests (see methods) and has underwent a thorough variant-
based association study24 to compare with. To test prediction accuracy, PrediXcan’s predicted gene 
expression levels were compared to the actual gene expression levels measured in the YRI cohort. 
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We also investigated possible influential factors and filter criterion to increase the possibility of 
identifying true predictions. As for GWAS prioritization, we carried out a transcriptome-wide 
association study (TWAS) based on PrediXcan predictions to obtain gene-trait associations and 
evaluate whether these associations prioritized the GWAS results. Our study provides insight into 
PrediXcan’s capabilities and more importantly eQTL relationships to molecular phenotypes and 
disease traits, which is of great value in studying transcriptional regulation and disease pathogenesis.  

2.   Methods & materials 

2.1.   Data preparation 

The YRI cohort from the 1000 Genomes Project was used to evaluate the prediction accuracy of 
PrediXcan for gene expression levels. The YRI cohort comprises 75 individuals. All specimens and 
4,395,198 variants passed genotype quality control (based on Hardy-Weinberg Equilibrium (P > 
0.05) and minor allele frequency (MAF) > 5%). From these 75 individuals, gene expression levels 
of 23,723 genes in RPKM (Reads Per Kilobase of transcript per Million mapped reads) were 
provided by the 1000 Genomes Project.  
 Another 1000 Genomes Project cohort, the Northern Europeans from Utah (CEU) cohort, was 
also included in this experiment to perform some components of the prediction accuracy test. The 
CEU cohort comprised 72 individuals and 3,660,275 variants after quality control (Hardy-Weinberg 
Equilibrium (P > 0.05) and MAF > 5%). But since the CEU cohort is part of the Depression Genes 
and Networks (DGN) cohort that was used to construct the DGN whole blood model by PrediXcan, 
we did not apply the DGN model to predict expression for the CEU cohort. This is the primary 
rationale for selecting the YRI cohort for our analyses. 
 Genotypic and phenotypic data from the A5202 cohort (data based on ACTG protocol 
A520211,12,24) were used to evaluate PrediXcan’s ability to prioritize GWAS results. The A5202 
cohort comprises 47% European, 26% African, and 25% Hispanic Americans according to self-
reported race or ethnicities. A5202 genotype and imputed data have been previously studied and 
reported24. Imputed genotypic data was quality checked using PLINK and non-ambiguous-stranded 
variants with imputation score > 0.7, MAF > 1%, and in Hardy-Weinberg Equilibrium (P > 0.05) 
were retained, resulting in 1221 individuals and 5,091,820 variants. Phenotypic data contained 690 
continuous traits, which were based on laboratory assay results from HIV-infected patients before 
and after initiating antiretroviral therapy. The 690 traits were derived from plasma atazanavir 
pharmacokinetics, plasma efavirenz pharmacokinetics, change in CD4+ T-cell count, fasting low-
density lipoprotein (LDL)-cholesterol, and fasting triglyceride data. Details about population 
structures, phenotypes, genotypes, and GWAS strategy are described elsewhere24.  

2.2.   Heritability Estimation 

To obtain the upper bound of how well a gene expression level can be predicted using genotypic 
data, we estimated the narrow-sense heritability between SNP variants and gene expression levels. 
Restricted maximum likelihood (REML) analysis was performed using GCTA13 for each gene that 
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is included in both the PrediXcan models and the YRI cohort’s gene expression data. Variant-gene 
relationships were retrieved from the weights table in the PrediXcan models so as to use the same 
exact set of variants for heritability and prediction accuracy estimations.  

2.3.   Performance of gene expression prediction 

PrediXcan provides tissue-specific genotype-expression models, including 44 tissues from GTEx 
and 1 tissue (whole blood) from DGN14. As the 1000 Genomes project uses cultured cell lines 
derived from blood for genotypic and transcriptomic data, GTEx whole blood and DGN whole blood 
models were analyzed with the genotypic data from the YRI cohort to predict gene expression levels. 
The square of Pearson correlation (R2) between predicted and observed gene expression levels was 
calculated to measure prediction accuracy. To assess directionality, the Pearson Correlation 
Coefficient (PCC) between predicted and actual gene expression levels was calculated and is called 
directionality estimates in the following context. For example, PCC is positive when predicted and 
observed gene expression levels both increase or decrease at the same time; PCC is negative when 
the predicted and observed directions are discordant. Of note, some genes had flat predicted gene 
expression levels across individuals whose genotypes differed. Standard deviations for these 
predicted gene expression levels were 0, which forced these genes to be dropped from the prediction 
estimation using R2 or PCC.  
 To test which factors influence PrediXcan’s prediction accuracy, we examined relationships 
between a few different model characteristics and accuracy estimates (R2). For each predicted gene 
expression level, we evaluated whether the prediction accuracy is influenced by the following model 
characteristics: 1) the number of variants, 2) the number of variants adjusted by gene length, 3) the 
percentage of variants over the number of all variants in a PrediXcan model used, and 4) choice of 
PrediXcan models (tissue specific models). Gene length was annotated using Biofilter25.   

2.4.   Filtering for possibly more accurately predicted genes 

In most experimental data analyses, we have either genotypic data or transcriptomic data, but not 
both, to perform GWAS or TWAS (see method 2.5. for details). Thus, it is unlikely that we can 
estimate prediction accuracy or genotype-expression heritability and accordingly select more 
accurately predicted genes for downstream analyses. To address this issue, we explored whether it 
is possible to filter the gene list for a subset of more accurately predicted genes without prior 
knowledge of actual gene expression levels. The filter criterion we tested was based on the similarity 
of the predicted gene expression levels from the two whole blood models, GTEx and DGN, as 
predictions from different models will be the easiest to obtain for every PrediXcan users. PCC was 
used to measure the similarity between prediction results.  

2.5.   GWAS Prioritization 

In addition to predicting gene expression levels for individuals who have SNP data but no gene 
expression data, we also tested PrediXcan’s ability to prioritize GWAS results. Some SNP loci may 
be omitted from mechanistic studies because they only have modest to weak impact on traits and 
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thus the association signals are not strong enough to pass the multiple testing thresholds set by 
GWAS or phenome-wide association studies (PheWAS15). We were interested in whether 
PrediXcan could prioritize such association signals. Thus, we carried out PrediXcan followed by 
TWAS and compared the association hits to PheWAS (since we had multiple phenotypes). To obtain 
gene-trait association p-values, PrediXcan GTEx whole blood model was applied to the genotypic 
data from ACTG A5202 to predict gene expression levels. Then predicted gene expression levels 
and 690 traits were used to perform phenome-wide TWAS via PLATO16. Sex, age, and the first 
three principal components were used as covariates to adjust for sampling biases and underlying 
population structure. As for variant-trait association studies, to reduce computation time and burden, 
we only explored the variants within and close to (1MB upstream or downstream) the PrediXcan-
TWAS significant genes (Bonferroni-corrected P < 0.05). Filtering of variants was done using 
Biofilter17. The criterion of vicinity was in accordance with the region window used by PrediXcan 
for expression prediction. We then carried out PheWAS using PLATO on the PrediXcan significant 
traits and the variants nearby PrediXcan significant genes. The association p-values of PrediXcan-
TWAS and PheWAS were visualized using ggplot218 in R.  

3.   Results 

3.1.   Prediction accuracy 

Fig. 1.  Prediction performance of DGN (A) and GTEx (B) whole blood tissue model on the YRI cohort. 
DGN and GTEx whole blood tissue models were applied to the genotypic data from the YRI cohort. 

Prediction accuracy (R2 of predicted versus observed gene expression levels; green) was compared to the 
narrow-sense heritability (h2) estimates (black). 
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Using the genotypic data of the YRI cohort, the 
PrediXcan DGN and GTEx tissue models 
predicted expression of 11,538 and 6,695 genes, 
respectively. Prediction performance was 
evaluated using PCC and R2 for 10,387 DGN 
genes and 6,127 GTEx genes, respectively (see 
method 2.3 for why some genes did not have 
estimates and the justification of using PCC and 
R2). Due to the finite number of genes that were 
common to both models and transcriptomic data, 
heritability estimation was limited to 4,711 
genes.  

We first evaluated how well PrediXcan 
predictions capture the regulatory effects of 
variants on gene expression levels (Fig. 1). We 
found that genes with higher expression 
heritability were more likely to have higher R2 
values than genes with lower expression 
heritability. These results are consistent with 
what has been published in initial PrediXcan 
paper9. In theory, the better PrediXcan performs 
at capturing additive regulatory effects imposed 

by variants, the closer h2 estimates (black line) and R2 (green dots) should be, which was what we 
observed for the genes whose expression levels were influenced by genetic factors (h2 > 0). These 
results (Fig. 1) suggest that PrediXcan predictions were able to capture the transcriptome/gene 
expression level variability. 
 We next sought out to evaluate PrediXcan’s prediction accuracy. We found that PrediXcan’s 
DGN and GTEx model had similar performance in predicting of gene expression. As indicated in 
the initial PrediXcan paper9, PrediXcan precisely predicted gene expressions for some genes (DGN 
results shown in Fig. 2, GTEx results in supplementary figure 2), but prediction accuracy was 
overall unsatisfactory as most genes had accuracy estimates near 0 (Fig. 1). For the two whole blood 
models, the directionality estimates centered on zero with a small standard deviation, which 
suggested that most predicted gene expression levels did not correlate with the observed gene 
expression levels (Fig. 3). The GTEx model on the CEU cohort from 1000 Genomes Project 
performed similarly, with mean of -0.067 and variance of 0.03 (supplementary figure 3). In addition, 
for all three tests, about one-half of all predictions had negative correlation between predictions and 
observed values, which made interpretation difficult. In short, based on our evaluation, PrediXcan 
did not predict gene expression well when DGN and GTEx models were used as training sets to 
predict gene expression levels in YRI and CEU cohorts.  While this finding may not be surprising, 
many researchers have assumed that PrediXcan could be used for this purpose.  Thus, this 
examination was worthwhile. 

Fig. 2.  Examples of well-predicted genes. These plots 
show the top four performing genes based on 

PrediXcan’s prediction accuracy. Predicted gene 
expression levels were generated using the DGN 

whole blood model. Observed expression levels (in 
RPKM) for the YRI cohort were provided the 1000 

Genome Project. 
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Next, we examined factors that were 
responsible for predicting gene expression and 
more importantly which factors could improve the 
prediction performance of PrediXcan. We first 
evaluated whether prediction performance was 
dependent on specific model properties. For 
example, would prediction accuracy for a certain 
gene improve if more variants were included in the 
input genotypic data for expression prediction? To 
address this possibility, we explored the 
relationships between the prediction accuracy and 
three model properties: 1) the number of model 
variants used for prediction (Fig. 4A); 2) the 
percentage of the model variants used for 
prediction (Fig. 4B); and 3) the number of model 
variants used with adjustment for gene length (Fig. 
4C). A slight improvement in prediction accuracy 
was apparent in these scatterplots when more 
variants were taken into account to predict gene 
expression levels. However, relationships were so 

weak that these model properties could not be used to favorably assess or improve PrediXcan’s 
prediction performance.  

Fig. 4.  Prediction accuracy has weak relationship to the model properties. R2 was computed between 
observed and GTEx whole blood model predicted expressions. A few genotype-expression model 
properties were explored, including the number (A) and the percentage (B) of model variants used 
for prediction, and the number of used model variants adjusted to gene length (C). But neither of 
them explained the unsatisfactory prediction, nor could be used as a filtering criterion. 
 

Fig. 3. Performance of prediction directionality of 
PrediXcan models, DGN (top) and GTEx (bottom), 

on the YRI cohort. Directionality was computed 
between predicted and observed gene expression 

levels. 
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Another potential filtering criterion, the similarity of predicted gene expression levels in the two 

whole blood models, was also explored. Blood is the most accessible tissue, which makes whole 
blood models of great practical value and their prediction accuracy critical. The fact that PrediXcan 
provided two whole blood tissue models offered the opportunity to examine the prediction results 
based on the two distinct model cohorts. If gene expression was truly regulated by genetic factors, 
then genotype-expression relationship would be captured regardless of the cohort, and predicted 
values should be the same given the same genotype data. With this assumption, we hypothesized 
that the predicted expression for a given gene would likely be more reliable and accurate if the 
predictions were similar in both whole blood models. As shown in Fig. 5A, we selected three sets 
of genes whose correlations between predicted expression were low, median, or high between the 
two models. If our hypothesis was correct, we would observe an increase of prediction accuracy 
from genes with low similarity to those with high similarity, which was indeed what we observed 
in Fig. 5B. The average of prediction accuracy increased from 0.023 to 0.084 for the DGN model 
and from 0.02 to 0.083 for the GTEx model. In effect, genes whose predicted expressions were more 
similar between models showed higher prediction accuracy in either PrediXcan whole blood model. 
However, the filtered results still contained genes whose predicted gene expression levels were 
directionally different from actual gene expression levels (figures not shown in this paper). In 
summary, similarity between models was a useful but not ideal filter criterion to improve prediction 
performance. However, the test of prediction similarity between models can be expanded to using 
models of different tissue types or using samples from different populations. It may also be 
worthwhile to investigate genes whose predictions are accurate and similar across models, which 
could be a good resource or reference set for future investigation of prediction accuracy. In short, 

Fig. 5.  Prediction similarity between two models has weak, if any, indication on prediction accuracy. Prediction 
similarity was measured by the Pearson correlation of predicted expressions between the DGN and the GTEx 
model. (A) Distribution of prediction similarity. (B) Indication of prediction similarity on prediction accuracy. 

Prediction accuracy slightly, if any, increases when prediction similarity increases from the lowest to the highest. 
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many more evaluations could be done with the PrediXcan models or the underlying GTEx data to 
better understand the SNP-expression relationships in different populations, different tissues, and 
different genes.  

3.2.    Prioritizing GWAS results 

We were also interested in evaluating another use of PrediXcan – prioritization of GWAS results. 
We wanted to determine whether PrediXcan-TWAS could prioritize important genetic associations 
that could not be identified by PheWAS due to biological or statistical limitations. To address this 
question, variant-trait associations that were located within 1MB upstream or downstream of genes 
were compared to the gene-trait associations identified by PrediXcan-TWAS, using data from the 
A5202 cohort (Fig. 6). Nineteen significant genes identified by PrediXcan-TWAS (P < 10-5) were 
all associated with triglyceride change from baseline to 24 or 48 weeks on treatment. For example, 
“tgch24_42” in Fig. 6A indicates the change in triglyceride from baseline (before starting HIV 
therapy) to week 24, and was the 42nd phenotype collected. Fig. 6A showed that if there were 
significant variant-trait associations, PrediXcan-TWAS was able to retain the significant signals (P 
< 10-5). This included 3 genes, DLEU7, DDX1, and NARF. On the other hand, PrediXcan-TWAS 
prioritized PheWAS associations that almost reached certain significance thresholds (P = 10-5; Fig. 
6B). This highlighted 9 genes – GPN3, RAP1A, TTC8, SLC5A6, ELOVL7, SUMO1, BAIAP2, OCM, 
and SPRYD4. The remaining 7 genes had no GWAS association signals in the vicinity regions and 
thus were likely false positives. Loci within DLEU7, DDX1, RAP1A, TTC8, SLC5A6, SUMO1, and 
SPRYD4 were related to triglycerides in previous studies19,20 according to GRASP28. DDX1 was 
reported to play a role in HIV-1 infection21. More studies are needed to see whether these genes are 
involved in changes in triglyceride levels on HIV therapy. Other identified genes did not have 
apparent connections with viral infections or triglycerides, but they could be disease related genes 
or simply genes that could help to fine-map causal genetic factors. In summary, we demonstrated 
the ability of PrediXcan to prioritize GWAS results, but the identified gene-trait associations warrant 
further investigation. 

Fig. 6. PrediXcan is able to prioritize GWAS 
associations. ACTG A5202 imputed genotypic data 
after quality control was used as input for 
PrediXcan using GTEx whole blood model and 
followed by phenome-wide TWAS. Variants 
within 1MB upstream or downstream of 
PrediXcan-TWAS significant genes were used to 
carry out PheWAS. The figures showed the 
comparison of p-values between PrediXcan-TWAS 
associations (green line; grey shaded areas 
represent the size of genes) and PheWAS 
associations (black dots; blue and red lines denote 
the suggestive and genome-wide significant p-
value, respectively). (A) PrediXcan-TWAS was 
able to replicate PheWAS results. (B) PrediXcan 
was able to prioritize non-significant PheWAS 
results. 
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4.   Discussion 

In this study, we carried out a preliminary investigation of the PrediXcan capabilities to predict gene 
expression levels and to prioritize GWAS signals. If PrediXcan accurately predicts gene expression 
from SNP data, there could be many potential uses of the algorithm such as imputation of missing 
transcriptomic data and exploring the biological mechanisms that link genotype to phenotype. But 
these future analyses are all contingent on the assumption that PrediXcan can accurately predict 
both the direction of a variants’ effect and levels of gene expression. We tested the prediction 
accuracy of the two PrediXcan whole blood models, DGN and GTEx. PrediXcan was able to 
accurately predict gene expression for some but not all genes. The slopes of correlation between 
predicted and actual gene expression levels were negative for almost one-half of genes. This limited 
the utility of PrediXcan as a transcriptomic data imputation/prediction tool. Several model 
properties that we explored failed to explain the suboptimal predictions. Dr. Im and her colleagues 
examined tissues from GTEx and DGN and the results suggested that the local architecture of gene 
expression traits is simple rather than polygenic22. In effect, gene expression is genetically regulated 
by few rather than multiple eQTLs. This simple local genetic architecture of gene expression might 
explain why including more putative eQTLs did not improve prediction accuracy in our study. Using 
prediction similarity between the two whole blood models as a filter improved prediction accuracy 
somewhat, but did not avoid the negative linear correlation between some predicted and observed 
gene expression levels. When it came to prioritizing genetic association study results, PrediXcan 
was able to identify genes that were not significant in GWAS, and also retained significant variant-
trait associations.  These results were reassuring of the utility of PrediXcan. PrediXcan possessed 
promising features to reduce research burden by focusing on genes instead of SNPs, and map 
regulatory effects of distant SNPs onto responding genes, which are overlooked by most studies 
where only genes adjacent to SNPs are investigated.  

Overall, the present study found that PrediXcan performed differently when evaluated for 
different functions. There are limitations to our study and PrediXcan models. First, whole blood 
itself is a heterogeneous tissue. And we applied the PrediXcan whole blood model to the YRI cohort 
whose transcriptomic data actually comes from immortalized blood cell lines. Second is the sample 
size and population specificity of the test cohort. The YRI cohort (75 individuals) was the most 
accessible cohort with both genotypic and transcriptomic data, but has a different population 
structure than the model cohorts from PrediXcan, either DGN or GTEx. While the GTEx cohort 
includes African Americans, the GTEx model did not yield better expression predictions. To better 
investigate the influence of population structure and sample size, we would need genotypic and 
transcriptomic data from multiple populations and of much larger sample sizes. If available, these 
datasets of different population background will also allow us to explore allelic heterogeneity and 
population-specific eQTLs. Third, we only evaluated the whole blood models. However, the trait of 
interest may be regulated by other tissue(s). For example, change of triglyceride in blood may be 
regulated by metabolism in liver. Thus, it is of biological interest and necessity to explore other 
tissue models to better understand the tissue specific SNP-expression-trait relationships in the future. 
Last but not least, PrediXcan is based on two assumptions, 1) loci are equivalent in their functional 
roles as potential eQTLs, despite the fact that loci at different functional regions may influence gene 
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expression via different biological mechanisms; and 2) different alleles have the same effect on gene 
expression. Our study did not specifically evaluate these assumptions. Investigating the relationship 
of locus functional regions and their roles as eQTLs depends on more detailed annotation and 
categorization of different types of eQTLs. On the other hand, researchers have looked into allelic 
expression, which could be a future development for PrediXcan’s SNP-expression model design23.  

Although there are challenges, PrediXcan has illuminated a new path for GWAS – incorporating 
functional genomics and providing mechanistic insights for derived genetic associations. 
PrediXcan-TWAS results indicated that behind the association, a group of cis-eQTLs regulated gene 
expression and consequently affected the phenotype. More study is needed to assess PrediXcan’s 
ability to predict gene expression levels and prioritize GWAS results, which will hopefully further 
our understanding of relationships between eQTLs, gene expression levels, and phenotypes or 
disease traits.   

5.   Supplementary 

At http://ritchielab.psu.edu/files/PrediXcan_PSB_2018_Binglan_Supplementary_Figures.pdf 
can supplementary material be found. 
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