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Solid lesions emerge within diverse tissue environments making their characterization and
diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been
developed to transform images into quantifiable feature sets producing summary statistics
that describe the morphology and texture of solid masses. Relying on empirical distribution
summaries as well as grey-level co-occurrence statistics, several approaches have been de-
vised to characterize tissue density heterogeneity. This article proposes a novel decision-tree
based approach which quantifies the tissue density heterogeneity of a given lesion through
its resultant distribution of tree-structured dissimilarity metrics computed with least com-
mon ancestor trees under repeated pixel re-sampling. The methodology, based on statistics
derived from Galton-Watson trees, produces metrics that are minimally correlated with
existing features, adding new information to the feature space and improving quantitative
characterization of the extent to which a CT image conveys heterogeneous density distribu-
tion. We demonstrate its practical application through a diagnostic study of adrenal lesions.
Integrating the proposed with existing features identifies classifiers of three important le-
sion types; malignant from benign (AUC = 0.78), functioning from non-functioning (AUC
= 0.93) and calcified from non-calcified (AUC of 1).
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1. Introduction

One of the critical aspects to the study of solid lesions is intra-tumor heterogeneity (ITH).
Solid lesions are often heterogeneous phenotypically, physiologically, and genetically, due to
variations in processes such as cell proliferation, cell death, and local environmental factors.1–3

Cellular diagnostic techniques such as biopsies are not only invasive, but they also do not
allow for a thorough or complete investigation of the entire tumor environment. In order to
get a more comprehensive picture of the entire lesion environment without having to take
multiple biopsies or depend on qualitative visual assessments, quantitative imaging features
can be mined with analytical techniques often called radiomics.4 These radiomic features are
objectively assessed and quantitatively descriptive of the lesion phenotypes and can be used
to develop models that can be used in prediction, classification or diagnosis. The “radiomics
hypothesis” that is central to this strategy is that advanced levels of analytics on imaging data
can capture information that would not otherwise be available.5 It has been hypothesized that
this information on phenotypic patterns are reflective of complementary tumor characteristics
at molecular, cellular and genetic levels.6

There are many possible ways to extract this radiomic data from routine images: features
that describe size and shape, features that describe the intensity of and relationship between
pixel values, textures features, and fractal features.6 The ability to access a large number
of quantitative features from images is now possible due to the progress made in imaging
techniques, but issues like high levels of correlation between these features have led to the
need to determine which of these features to use in downstream analyses and interpretation.
As with any big data problem, when working with such a large number of variables, it is
imperative to balance interpretability vs. computational tractability.

Currently the most commonly used radiomic features are texture-seeking. They can be
divided into two categories, intensity and texture. Intensity features capture the shape of
the histogram of the pixel values, while texture features describe the spatial distribution and
pattern of the pixel values.7 Texture-seeking methods can be divided into four categories: Non-
spatial methods (NSM), Spatial Grey Level methods (SGLM), Fractal Analysis and Filters
and Transforms. As NSM and SGLM are the methods used in the majority of analysis, we
will focus in on those and give a brief description before highlighting potential new features
derived from the tumor heterogeneity trees (THT).

NSM are intensity based features, comprised of first order statistics computed on the image
grey level data. These are basic metrics, which include metrics such as the first order features,
taken from the grey level image, include minimum and maximum, as well as computations
such as range, mean, standard deviation, variance, median, skewness, kurtosis, entropy, root
mean square (RMS) and total energy.7

The most frequently used of the central moments are variance, skewness and kurtosis.8

Variation gives an idea of the size of the spread of the distribution around the mean, skewness
is a measure of asymmetry around the mean, and kurtosis is a measure of the sharpness
of the histogram. Intensity features give insight into how the pixel densities are distributed,
but cannot give insight into their relative spatial positions, which limits their potential for
describing the texture features of the image. The size of the images is a confounding factor for
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several of these metrics, but the simplicity of these metrics is an advantage, and they contain
a nontrivial amount of information about the image.

SGLM are texture features that are used to interrogate the spatial relationships between
the grey levels of the image. A Grey Level Co-occurrence Matrix (GLCM) is an object that
describes the spatial relationship of the grey levels of pixels in an image by counting the
number of times two grey level valued pixels appear a specific distance and angle from each
other. Before calculating the matrix, the number of grey levels must be chosen. This is done
while considering the level of detail desired, the number of unique pixel values available, and
the distribution of the density of these pixel values. These grey level “buckets” can be of
consistent size, but the choice can alternatively be made to split the pixel value distribution
along percentiles. This approach is a potential way to account for outlier pixel values within
the pixel distribution. For example, the grey level matrix of angle 0°and distance 1, the cell
(i, j) will contain the number of times a pixel of grey level j appears immediately to the right
of a pixel of grey level i. This matrix can be made symmetric or not, and can be normalized
by dividing each count by the number of pixels in the image. The angle can vary, allowing for
comparison vertically or along the diagonal as well as the horizontal example given previously.
The distance can be changed as well, with no restriction beyond the size of the image along
the chosen angle.

GLCM features were first proposed by Haralick in 19739 and these features are easily
computable from the GLCM matrix and include features that measure attributes such as
image coarseness, symmetry, energy, and heterogeneity.7 These features are often computed
on multiple combinations of angle, distance and number of grey levels, leading to a large set
of features that can be used in model building and data analysis.

While the above metrics work well in capturing the morphological characteristics of the
tumor, they limited in their characterization of IHT. In consideration of lesion heterogeneity,
tree-structured objects offer hierarchical dissimilarity processes that may better reflect the
“relationship” between the pixels as a representation of the cellular evolution of cancer and
of the lesion as it grows and develops. It is well-established that cancer as a disease starts at
a “single point,” a cell, which divides and proliferates outward to an extent that is allowed by
the local immune and tissue environments. Each cell division is a biological bifurcation and
this process is repeated up to the moment of the diagnostic scan capturing the cross-sectional
state of the tumor. Conceptually, malignant cell proliferation is well characterized by a binary
decision tree, which describes a hierarchical splitting process that divides iteratively from a
common root until arriving at the final state of nodes or leaves. Considering tissue density
as a surrogate10 for the cellular division process, the growth process of a tumor may be
well characterized by dissimilarity measures of pixel intensities obtained from tree-structured
objects.

With this in mind, it is the goal of this paper to briefly discuss some of the various methods
used to interrogate tumor texture, and to present a potential additional method based on
tree-based analysis of the lesions, which will be used in conjunction with the currently used
methods on a set of solid adrenal lesions to capture various aspects of cancer progression and
development. Specifically, we use the feature set to classify benign from malignant, functioning
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from non-functioning, and calcified from non-calcified, lesions with encouraging results.

2. Methods

Trees are a data type that is a specific subset of graphs. They are a directed, acyclic set of
linked nodes that are connected by edges. The parental node is called the root, while the
terminal nodes are called leaves. Depending on construction, they can either start at the
leaves and repeatedly combine pairs (in a binary tree) until all leaves are grouped together,
or start at the root and divide until each leaf is separate from all others. This branching
process shows the relationship between the leaves and the history of how they separated from
each other, when and in what order. If this process is applied to pixels from an image, and
we consider that a radiological image is a representation the cells present inside the body,
the tree can give a “history” of the representation of these cells and how they have divided
from an original source, to a reasonable degree. In cancer, the pattern of growth is critical
to the lesion development and this growth can be affected by the cellular environment, and
is reflective of the ITH. A goal of introducing this feature is capturing this ITH via building
the tree-based relationship between the pixels as intermediates for cells. Figure 2 gives a high
level summary of the steps for creating tree-based features from radiological images which we
describe in ensuing sections.

Fig. 1. A pictorial description of the methodology for extracting the tree-based feature metrics from
a radiological image: First, a hierarchical tree is built from the image. Then, the branch length sums
and other derived metrics are calculated from the tree. These metrics capture ITH and then can be
used in further statistical analytics.

2.1. Constructing Trees from pixel-level ROI data

The mathematical objects underlying the first three aspects of Figure 2 are further dia-
grammed in Equation 1. THT are constructed from radiological images, from which Least-
Common Ancestor (LCA) trees are drawn. This sample of LCA trees can then be summarized
into metrics to be used as features such as the ones outlined previously, to join these other
features in modeling and analysis.

Ii︸︷︷︸
Radiologic Image

→ Ti︸︷︷︸
Tumor Heterogeneity Tree

→ ci(k)︸︷︷︸
LCA Tree

→ si︸︷︷︸
Branch length sum,
a tree-based metric

(1)

To construct the THT, we follow the work of Bharath et al,11 and denote a rooted finite
tree with n vertices as τn, where τn is a point in the space Tn × Rn−1

+ . Tn is the set of all
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finite trees on n vertices. A convenient notation for the tree is τn = (V(τn), E(τn)), where
V(τn) = (root, v1, . . . , v2n−1), the set of vertices and E = (e1, . . . , e2n−1), the set of edges. Note
that τn denotes a tree with n vertices, including the root and τ(n) denotes a tree with n terminal
vertices.11,12 The tree τn is not itself a probabilistic structure, so a stochastic process is placed
on the growth of the tree in order to build a probabilistic model on the tree-structured data,
and further steps are taken to provide a consistent family of densities. A Galton-Watson (GW)
process {Xn}n≥0 is a stochastic process that takes on positive integer values in discrete time,
often used to model populations. It has an offspring distribution (πk, k = 0, 1, 2, . . . ). When
this process is conditioned to have n vertices, the resulting tree τn is known as a conditioned
GW tree.

These conditioned GW trees come from offspring distributions πk, where k is equal to the
number of leaves in the tree. To obtain information about variations in branch structure and
to incorporate information about branch lengths, we must move to the Continuum Random
Tree (CRT) through weak convergence. The CRT is the asymptotic limit of the GW tree, and
in this limit, σ2, the variance parameter of the GW tree’s offspring distribution appears. Least
common ancestor (LCA) trees are randomly chosen binary subtrees of conditioned GW trees,
and can be understood as marginals of the CRT and provide dimension reduction. To create
an LCA tree from τn, choose k < n then uniformly choose k vertices from the n vertices of
V(τn). The density of the family of consistent CRT binary trees C(k) from which these LCA
trees with k < n leaves are drawn is shown in equation 2.

fk,σ2(c(k)) =

[
k−1∏
i=1

1

2i− 1

]−1
1

2k−1
(σ2)ks exp(

−s2σ2

2
) (2)

In summation, properties of the CRT allow us to use this density to approximate the
density from which the LCA tree from any conditioned GW tree is drawn. The σ2 term,
gained by taking the CRT of the tree, captures variability in the branching process between
different GW trees, while the LCA tree provides the ability to reduce the dimension of the data
to s. Thus, for each image’s tree Ti, we create a LCA-tree ci(ki) by choosing ki of the ni vertices,
then calculate the value si by taking the sum of the lengths of the branches of LCA-tree. The
density above has the kernel of a Gamma distribution with respect to s. Further, we know
that s is non-negative, as the branch length components are non-negative, and these CRT
branch lengths also asymptotically follow a Gamma distribution in this CRT construction of
trees. As the sum of Gamma random variables is also Gamma, this allows for exploration of
this feature in a generalized linear model setting. A full reasoning for the choice of the Gamma
distribution on the trees can be found in K. Bharath et. al.

The trees produced from the images, as well as informative variables derived from these
trees, will be the focus of the analysis in this paper. In practice, for each image, Ii, hierarchical
clustering is done on the vector of pixel densities, vij, where j = 1, . . . , ni, and ni is equal to
the number of pixels in image Ii. The agglomerative clustering was done using the UPGMA
(average) linkage method13 and Euclidean distance to produce a tree, Ti, from each image.
Sensitivity analysis to the selection of distance metrics and clustering methods was performed.
From this tree Ti, a LCA tree ci(k) is randomly sampled and the branch length sum s from
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ci(k) is calculated.

2.2. Deriving metrics of ITH from tree representations

In order to account for the randomness of the selection of leaves in the LCA trees, we randomly
sampled 100-fold from the same image. The median value of the sum of the branch lengths
and a measure of the spread of these values were collected as the variables of interest. This
process is summarized and depicted in Figure 2, where the multi-modality of the empirical
distribution highlights the need to take the median as the measure of center.

It is hypothesized that the edge sum value for each lesion can be a feature that is reflective
of the ITH. A group of pixels that are more diverse will produce a tree that is taller; a tree
that, for example, clusters somewhat quickly into various groups but then those groups do
not merge into one cluster until much later. If an image has a large amount of density values
that are similar, those will cluster quickly, leading to short branch lengths. A reflection of this
hypothesis can be seen in the left hand column of Figure 3, a graph using images from the case
study described below. Tumors with a large amount of similarly valued pixels have low branch
length sums, while those that have sharp differences have higher median edge sum values. In
fact, the lesion with the highest valued median edge sum has a large group of extremely dense
pixels, surrounded by more moderately valued pixels. Trees produced from this lesion have
very long branches from the split of the group and non-group pixels, which is reflected in its’
very large branch sum value. While some of the difference in visual levels of heterogeneity can
be explained by the pixel size of the images, there are differences in the small and large valued
groups of the median.

Fig. 2. A depiction of the LCA sampling process. To the left, the original image. Next, a 30%
sample of pixels is taken, illustrated by the three images with only 30% of their pixels still in color.
From each of these, a hierarchical tree is built, where subtle differences can be seen in the third set of
images. The final image to the right is the empirical density plot of the 100 LCA samples taken from
this image, and it provides an instance in which taking the median instead of the mean is important.
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Fig. 3. From left to right, the violin plots show the empirical densities of the Median, Median
Absolute Deviation (MAD), and Median/Median Absolute Deviation features for the adrenal lesions
used in the case study below, normalized to be between 0 and 1. To the immediate right of the
density for each feature are the lesion images for the five highest and lowest values of each, along
with their normalized value. The image colors have been scaled so that the individual mean pixel
intensities correspond to the same color across all images.
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3. Application to Solid Adrenal Lesions

3.1. Adrenal Lesions

Adrenal masses are common and can be either functioning or non-functioning. Within each
side of this divide, they can be either benign or cancerous. Cancerous lesions can be either
first degree, primary, tumors or second degree, metastatic tumors. In patients without known
cancer, these masses are often benign adenomas and of little clinical significance, but the pro-
portion that are malignant increases slightly with previous knowledge of cancer14 as well as
with age.15 A primary non-functioning tumor is a rare malignancy known as an adrenocortical
carcinoma (ACC)16 and a non-functioning benign lesion is an adenoma, which make up ap-
proximately 50% of the non-functional lesions.17 There are many different types of functioning
lesions, such as paragangliomas and pheochromocytomas, both of which can present as either
benign or malignant.

3.2. Data

Our retrospective data consists of 379 CT scans from 356 patients. Of the lesions, 195 are
malignant and are 182 benign, 334 are non-functioning lesions and 43 are functioning. For
tumors that are metastatic, the information about the primary type of cancer and the timing
is available as well. Their pathologies have been verified by the radiologist and are available
in table form in the supplementary material, located at http://kas23.web.rice.edu/PSB_

supplementary_material.pdf. There are 13 calcified lesions, 13 fatty lesions, 202 hetero-
geneous lesions and 134 homogeneous ones. The density of lesion size (calculated by pixel
count) was heavily skewed to the right, with large lesions presenting as outliers. An unsuper-
vised clustering was performed on the pixel size using k-nearest neighbors in order to produce
a distinction between the main group of lesions and the large outlier lesions. To attempt to
remove these outlier affects, this cluster of large tumors was not included in calculations based
solely on the THT features.

Using the methodology described above, a GW tree was built for each adrenal lesion image
using Matlab, averaging 0.98 seconds per tree. Then 100 branch length samples were taken
for each of the lesions. This was done with a C++ program accessed through R. It took, on
average, 4 seconds to compute one LCA sample of one tree. This was done on a computer
with a 3.3 GHz processor and 16 GBs of RAM. The average number of pixels in an image was
2064 and the median number was 812. Several of the lesions’ branch sum distributions were
multi-modal, see Figure 2 as an example, so it was decided to take the median in place of the
mean as the measure of central tendency to account for this. The median absolute deviation
(MAD) of the samples was calculated to capture the spread of these samples.

The median branch length sum empirical density from this truncated group of lesions is
plotted vertically in the far left violin bar in Figure 3, along with the densities of the MAD of
the sample draws and the normalized feature. For all three, the curve is unimodal and varying
degrees of right skewed, but the normalized feature on the right does present a smaller tail.
As mentioned previously, a visual difference between the upper and lower groups can be seen,
particularly in the median and the MAD features (the left and middle columns, respectively).
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Note that when time is referenced, it is not in the usual temporal sense, but rather time within
the tree similarity space. The group of lesions with small median values are very smooth with
similarly valued pixels, leading to trees that go a long distance without branching out, with
pixels tending to stay in the cluster instead of breaking apart. The group with large median
values have large differences in color, some even with visible sections of pixels that are isolated
and a much different value from the rest. Trees for an image such as this are going to have
clusters that break apart quickly due to the large variation of intensity values present, leading
to tall trees that have large branch length sums. The extreme outlier lesion at the bottom
of the column is a perfect example of this, with a large cluster of high-density pixels that
cause there to be a fast division into two primary clusters that stay clustered with themselves
for a very long time. Lesions with low MAD values appear to be more homogeneous and
uniform, likely from the similar pixels causing the sampled trees to be relatively similar as
well, i.e., regardless of random sample taken as in Figure 2, the resulting tree is similar. Higher
MAD values correspond to lesions with large visible pixel differences; the sampling of pixels
from these lesions can make a large difference in the height of the resulting tree. While the
normalized feature has less of a visible differential between the high and low image groupings,
it contains the information from both other features and has the advantage that it is less
correlated with the commonly used radiomics features.

3.3. Connection with Other Radiomics Features

Fig. 4. A heatmap showing the correlation between a set of the NSM and SGLM features with the
THT based features (highlighted in yellow).
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When the group of small lesions’ branch length sums are compared against each of the set of
preexisting radiomics features, as in Figure 4, various relationships and lack of relationships can
be observed. Less informative features such as minimum and maximum appear dramatically
related with the branch lengths, but more expository features such as contrast, which measures
local intensity variation, and entropy, which can be used to distinguish tissue with structure,
also appear to be correlated with branch length. As can be seen in Figure 4, the median
is slightly correlated with the other radiomics features. This correlation led to the decision
to divide the median by the calculated MAD, and a normalized feature that was much less
correlated with the other radiomics features emerged. This feature is used as the THT feature
in further statistical analysis. Besides the THT feature computed for each lesion, the first order
NSM features as well as the second order SGLM features were computed. For simplicity and
ease of computation, only one GLCM was used for these features, the GLCM with distance
1 and angle of 0°. Thus, for each lesion, there were a total of 37 features collected using a
combination of NSM, SGLM, and THT methods.

3.4. Characterization and Classification

In order to search for separation caused by the groups of features, a Principal Component
Analysis (PCA) was performed on these 37 features in order to construct an orthogonal set
of features. The components produced were further used in a 5-fold cross validated logistic
regression on three qualitative features of the data set to determine the discriminatory abilities
of these features when modeled conjointly. The feature loadings as well as the coefficients of
the logistic regression can be found in Section 2 of the supplementary material.

We decided to use the first 6 PCs, as this was sufficient to explain 90% of the variance. The
scree plot of the variances can be found as Figure S1 in the supplementary material. When
each of these 6 PCs are plotted against each of the other components, the points cluster in a
line with the outliers scattered to the side. As can be seen in Figure S2, especially in the 4th
and 5th PCs, when compared against the various qualitative information available about the
lesions, it was found that the majority of these outlier lesions were denoted by the radiologist
as calcified. Calcification is typically distinguishable on CT scans, but doesn’t signify one
subtype of lesion over any other.18 This delineation of the calcified lesions is likewise apparent
in the results of the logistic regression, presented in Figure 5. The set of PCs has a very high
level of accuracy for characterizing calcified lesions from non-calcified lesions (AUC = 1) and
functioning from non-functioning (AUC = 0.93) and does moderately well at distinguishing
malignant from benign (AUC = 0.78).

At a qualitative level, as can be seen above in Figure 3, a difference between the textural
and visual presentation of the high and low value images along the top of the density plot can
be seen for the median. This leads to the conclusion that this feature is capturing some aspect
of the ITH. When looking at the lesions in the right column of Figure 3, there appears to be
a difference in ITH. In general, while the lower valued images have larger particles of density
clusters, the ones with higher values have a much finer grain of texture. At a quantitative
level, the feature set was able to make a perfect characterization of calcified tumors (AUC of
1) and was highly accurate for determining functioning tumors (AUC of 0.93).
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Fig. 5. Receiver Operating Curves for three endpoints chosen for discrimination. Perfect stratifica-
tion was achieved in the calcified lesions, and near perfection for the functioning status.

4. Discussion

One of the foundational ideas behind radiomics is that analytics can detect nuances in tumors
that a human eye might be unable to distinguish. By capturing unique aspects of ITH, as
demonstrated through lack of correlation with existing quantitative image features, as well
as yielding accurate tissue characterization in integrative analysis, THT-derived features rep-
resent a valuable contribution to the parameter domain of radiomics. By their formulation,
tree-structured objects offer the potential to better reflect the biological and evolutionary
processes that give rise to solid lesions. Summing the branch lengths of GW trees, the feature
demonstrated in our case study, and interrogating their distributions under repeat sampling is
straightforward and highly interpretable. THTs potentially access much broader information,
however, whether that be features from the empirical distribution of the tree samples, the
point process inherent to the branch breaking pattern, or using the rationale of the statis-
tical grounding of the known distribution for the branch length sums. More exploration can
be done, on this data set or others, to determine the full extent of the THT for producing
features for characterization, classification or more.

Translation and dissemination of code is ongoing, available upon request. For further detail
about the selection of the random LCA trees, see www.github.com/pkambadu/DyckPaths,
where it is available under a BSD-style license

Acknowledgements

This work was supported by NIH R01-CA194391, NIH R01160736 and NSF 1463233 (to VB).
KS was partially supported by NIH grant T32 - CA09652.

References

1. L. Alic, W. J. Niessen and J. F. Veenland, PLOS ONE 9, 1 (10 2014).
2. M.-C. Asselin, J. P. OConnor, R. Boellaard, N. A. Thacker and A. Jackson, European Journal

of Cancer 48, 447 (2012).

© 2017 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2018

226



3. A. Sottoriva, I. Spiteri, S. G. M. Piccirillo, A. Touloumis, V. P. Collins, J. C. Marioni, C. Curtis,
C. Watts and S. Tavar, Proceedings of the National Academy of Sciences 110, 4009 (2013).

4. H. J. Aerts, E. R. Velazquez, R. T. Leijenaar, C. Parmar, P. Grossmann, S. Cavalho, J. Bussink,
R. Monshouwer, B. Haibe-Kains, D. Rietveld et al., Nature communications 5 (2014).

5. P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. G. van Stiphout, P. Granton, C. M.
Zegers, R. Gillies, R. Boellard, A. Dekker and H. J. Aerts, European Journal of Cancer 48, 441
(2012).

6. S. S. F. Yip and H. J. W. L. Aerts, Physics in medicine and biology 61, R150 (2016).
7. C. Parmar, E. Rios Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R. H. Mak, S. Mitra,

B. U. Shankar, R. Kikinis, B. Haibe-Kains, P. Lambin and H. J. W. L. Aerts, PLOS ONE 9, 1
(07 2014).

8. N. Aggarwal and R. K. Agrawal, Journal of Signal and Information Processing 3, 146 (2012).
9. R. M. Haralick, K. Shanmugam et al., IEEE Transactions on systems, man, and cybernetics ,

610 (1973).
10. M. Fassnacht, M. Kroiss and B. Allolio, The Journal of Clinical Endocrinology & Metabolism

98, p. 4551 (2013).
11. K. Bharath, P. Kambadur, D. K. Dey, A. Rao and V. Baladandayuthapani, Journal of the

American Statistical Association (2016).
12. D. Aldous, Ann. Probab. 19, 1 (01 1991).
13. R. R. Sokal and C. D. Michener, University of Kansas Science Bulletin 38, 1409 (1958).
14. J. C. Miller, M. A. Blake and G. W. L. Boland, BMJ 338 (2009).
15. G. W. L. Boland, M. A. Blake, P. F. Hahn and W. W. Mayo-Smith, Radiology 249, 756 (2008),

PMID: 19011181.
16. E. Duregon, M. Volante, E. Bollito, M. Goia, C. Buttigliero, B. Zaggia, A. Berruti, G. V.

Scagliotti and M. Papotti, Human Pathology 46, 1799 (2015).
17. A. B. Grossman, Nonfunctional Adrenal Masses. Merck Manual.
18. P. J. Kenney and R. J. Stanley, Urologic radiology 9, 9 (Dec 1988).

Pacific Symposium on Biocomputing 2018

227




